circuitpython/atmel-samd/internal_flash.c
Scott Shawcroft d189a3f3cf atmel-samd: Support auto-reset based on USB write activity.
It will soft-reboot micropython after a burst of writes to the
file system. This means that after you save files on your computer
they will be automatically rerun.

This can be disabled in the build by unsetting AUTORESET_TIMER in
mpconfigboard.h.

Using the REPL will also prevent the soft resets until you reset
with CTRL-D manually.
2016-10-25 18:36:37 -07:00

309 lines
11 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <string.h>
#include "py/mphal.h"
#include "py/obj.h"
#include "py/runtime.h"
#include "lib/fatfs/ff.h"
#include "extmod/fsusermount.h"
#include "asf/sam0/drivers/nvm/nvm.h"
#include "asf/sam0/drivers/port/port.h"
#include "internal_flash.h"
#define TOTAL_INTERNAL_FLASH_SIZE 0x010000
#define INTERNAL_FLASH_MEM_SEG1_START_ADDR (0x00040000 - TOTAL_INTERNAL_FLASH_SIZE)
#define INTERNAL_FLASH_PART1_START_BLOCK (0x1)
#define INTERNAL_FLASH_PART1_NUM_BLOCKS (TOTAL_INTERNAL_FLASH_SIZE / INTERNAL_FLASH_BLOCK_SIZE)
static bool internal_flash_is_initialised = false;
void internal_flash_init(void) {
if (!internal_flash_is_initialised) {
struct nvm_config config_nvm;
nvm_get_config_defaults(&config_nvm);
config_nvm.manual_page_write = false;
nvm_set_config(&config_nvm);
internal_flash_is_initialised = true;
// Activity LED for flash writes.
#ifdef MICROPY_HW_LED_MSC
struct port_config pin_conf;
port_get_config_defaults(&pin_conf);
pin_conf.direction = PORT_PIN_DIR_OUTPUT;
port_pin_set_config(MICROPY_HW_LED_MSC, &pin_conf);
port_pin_set_output_level(MICROPY_HW_LED_MSC, false);
#endif
}
}
uint32_t internal_flash_get_block_size(void) {
return INTERNAL_FLASH_BLOCK_SIZE;
}
uint32_t internal_flash_get_block_count(void) {
return INTERNAL_FLASH_PART1_START_BLOCK + INTERNAL_FLASH_PART1_NUM_BLOCKS;
}
void internal_flash_flush(void) {
}
static void build_partition(uint8_t *buf, int boot, int type, uint32_t start_block, uint32_t num_blocks) {
buf[0] = boot;
if (num_blocks == 0) {
buf[1] = 0;
buf[2] = 0;
buf[3] = 0;
} else {
buf[1] = 0xff;
buf[2] = 0xff;
buf[3] = 0xff;
}
buf[4] = type;
if (num_blocks == 0) {
buf[5] = 0;
buf[6] = 0;
buf[7] = 0;
} else {
buf[5] = 0xff;
buf[6] = 0xff;
buf[7] = 0xff;
}
buf[8] = start_block;
buf[9] = start_block >> 8;
buf[10] = start_block >> 16;
buf[11] = start_block >> 24;
buf[12] = num_blocks;
buf[13] = num_blocks >> 8;
buf[14] = num_blocks >> 16;
buf[15] = num_blocks >> 24;
}
static uint32_t convert_block_to_flash_addr(uint32_t block) {
if (INTERNAL_FLASH_PART1_START_BLOCK <= block && block < INTERNAL_FLASH_PART1_START_BLOCK + INTERNAL_FLASH_PART1_NUM_BLOCKS) {
// a block in partition 1
block -= INTERNAL_FLASH_PART1_START_BLOCK;
return INTERNAL_FLASH_MEM_SEG1_START_ADDR + block * INTERNAL_FLASH_BLOCK_SIZE;
}
// bad block
return -1;
}
bool internal_flash_read_block(uint8_t *dest, uint32_t block) {
//printf("RD %u\n", block);
if (block == 0) {
// fake the MBR so we can decide on our own partition table
for (int i = 0; i < 446; i++) {
dest[i] = 0;
}
build_partition(dest + 446, 0, 0x01 /* FAT12 */, INTERNAL_FLASH_PART1_START_BLOCK, INTERNAL_FLASH_PART1_NUM_BLOCKS);
build_partition(dest + 462, 0, 0, 0, 0);
build_partition(dest + 478, 0, 0, 0, 0);
build_partition(dest + 494, 0, 0, 0, 0);
dest[510] = 0x55;
dest[511] = 0xaa;
return true;
} else {
// non-MBR block, get data from flash memory
uint32_t src = convert_block_to_flash_addr(block);
if (src == -1) {
// bad block number
return false;
}
enum status_code error_code;
// A block is made up of multiple pages. Read each page
// sequentially.
for (int i = 0; i < INTERNAL_FLASH_BLOCK_SIZE / NVMCTRL_PAGE_SIZE; i++) {
do
{
error_code = nvm_read_buffer(src + i * NVMCTRL_PAGE_SIZE,
dest + i * NVMCTRL_PAGE_SIZE,
NVMCTRL_PAGE_SIZE);
} while (error_code == STATUS_BUSY);
}
return true;
}
}
bool internal_flash_write_block(const uint8_t *src, uint32_t block) {
if (block == 0) {
// can't write MBR, but pretend we did
return true;
} else {
#ifdef MICROPY_HW_LED_MSC
port_pin_set_output_level(MICROPY_HW_LED_MSC, true);
#endif
// non-MBR block, copy to cache
volatile uint32_t dest = convert_block_to_flash_addr(block);
if (dest == -1) {
// bad block number
return false;
}
enum status_code error_code;
// A block is formed by two rows of flash. We must erase each row
// before we write back to it.
do
{
error_code = nvm_erase_row(dest);
} while (error_code == STATUS_BUSY);
if (error_code != STATUS_OK) {
return false;
}
do
{
error_code = nvm_erase_row(dest + NVMCTRL_ROW_SIZE);
} while (error_code == STATUS_BUSY);
if (error_code != STATUS_OK) {
return false;
}
// A block is made up of multiple pages. Write each page
// sequentially.
for (int i = 0; i < INTERNAL_FLASH_BLOCK_SIZE / NVMCTRL_PAGE_SIZE; i++) {
do
{
error_code = nvm_write_buffer(dest + i * NVMCTRL_PAGE_SIZE,
src + i * NVMCTRL_PAGE_SIZE,
NVMCTRL_PAGE_SIZE);
} while (error_code == STATUS_BUSY);
if (error_code != STATUS_OK) {
return false;
}
}
#ifdef MICROPY_HW_LED_MSC
port_pin_set_output_level(MICROPY_HW_LED_MSC, false);
#endif
return true;
}
}
mp_uint_t internal_flash_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!internal_flash_read_block(dest + i * INTERNAL_FLASH_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
return 0; // success
}
mp_uint_t internal_flash_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!internal_flash_write_block(src + i * INTERNAL_FLASH_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
return 0; // success
}
/******************************************************************************/
// MicroPython bindings
//
// Expose the flash as an object with the block protocol.
// there is a singleton Flash object
STATIC const mp_obj_base_t internal_flash_obj = {&internal_flash_type};
STATIC mp_obj_t internal_flash_obj_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// return singleton object
return (mp_obj_t)&internal_flash_obj;
}
STATIC mp_obj_t internal_flash_obj_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE);
mp_uint_t ret = internal_flash_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(internal_flash_obj_readblocks_obj, internal_flash_obj_readblocks);
STATIC mp_obj_t internal_flash_obj_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
mp_uint_t ret = internal_flash_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(internal_flash_obj_writeblocks_obj, internal_flash_obj_writeblocks);
STATIC mp_obj_t internal_flash_obj_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) {
mp_int_t cmd = mp_obj_get_int(cmd_in);
switch (cmd) {
case BP_IOCTL_INIT: internal_flash_init(); return MP_OBJ_NEW_SMALL_INT(0);
case BP_IOCTL_DEINIT: internal_flash_flush(); return MP_OBJ_NEW_SMALL_INT(0); // TODO properly
case BP_IOCTL_SYNC: internal_flash_flush(); return MP_OBJ_NEW_SMALL_INT(0);
case BP_IOCTL_SEC_COUNT: return MP_OBJ_NEW_SMALL_INT(internal_flash_get_block_count());
case BP_IOCTL_SEC_SIZE: return MP_OBJ_NEW_SMALL_INT(internal_flash_get_block_size());
default: return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(internal_flash_obj_ioctl_obj, internal_flash_obj_ioctl);
STATIC const mp_map_elem_t internal_flash_obj_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_readblocks), (mp_obj_t)&internal_flash_obj_readblocks_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_writeblocks), (mp_obj_t)&internal_flash_obj_writeblocks_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ioctl), (mp_obj_t)&internal_flash_obj_ioctl_obj },
};
STATIC MP_DEFINE_CONST_DICT(internal_flash_obj_locals_dict, internal_flash_obj_locals_dict_table);
const mp_obj_type_t internal_flash_type = {
{ &mp_type_type },
.name = MP_QSTR_InternalFlash,
.make_new = internal_flash_obj_make_new,
.locals_dict = (mp_obj_t)&internal_flash_obj_locals_dict,
};
void flash_init_vfs(fs_user_mount_t *vfs) {
vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL | FSUSER_USB_WRITEABLE;
vfs->readblocks[0] = (mp_obj_t)&internal_flash_obj_readblocks_obj;
vfs->readblocks[1] = (mp_obj_t)&internal_flash_obj;
vfs->readblocks[2] = (mp_obj_t)internal_flash_read_blocks; // native version
vfs->writeblocks[0] = (mp_obj_t)&internal_flash_obj_writeblocks_obj;
vfs->writeblocks[1] = (mp_obj_t)&internal_flash_obj;
vfs->writeblocks[2] = (mp_obj_t)internal_flash_write_blocks; // native version
vfs->u.ioctl[0] = (mp_obj_t)&internal_flash_obj_ioctl_obj;
vfs->u.ioctl[1] = (mp_obj_t)&internal_flash_obj;
}