Scott Shawcroft 8f26d181c3 Blinking the LED works. Clocks should be set up correctly.
Everything works fine without USB being plugged in but faults (I think) when USB is plugged in. This is switched away from the USB code from the bootloader onto the USB code thats generated by Atmel Studio using the high level classes from ASF.
2016-08-22 23:53:11 -07:00

1175 lines
37 KiB
C

/**
* \file
*
* \brief Commonly used includes, types and macros.
*
* Copyright (C) 2012-2016 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef UTILS_COMPILER_H_INCLUDED
#define UTILS_COMPILER_H_INCLUDED
/**
* \defgroup group_sam0_utils Compiler abstraction layer and code utilities
*
* Compiler abstraction layer and code utilities for Cortex-M0+ based Atmel SAM devices.
* This module provides various abstraction layers and utilities to make code compatible between different compilers.
*
* @{
*/
#if (defined __ICCARM__)
# include <intrinsics.h>
#endif
#include <stddef.h>
#include <parts.h>
#include <status_codes.h>
#include <preprocessor.h>
#include <io.h>
#ifndef __ASSEMBLY__
#include <stdio.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
/**
* \def UNUSED
* \brief Marking \a v as a unused parameter or value.
*/
#define UNUSED(v) (void)(v)
/**
* \def barrier
* \brief Memory barrier
*/
#ifdef __GNUC__
# define barrier() asm volatile("" ::: "memory")
#else
# define barrier() asm ("")
#endif
/**
* \brief Emit the compiler pragma \a arg.
*
* \param[in] arg The pragma directive as it would appear after \e \#pragma
* (i.e. not stringified).
*/
#define COMPILER_PRAGMA(arg) _Pragma(#arg)
/**
* \def COMPILER_PACK_SET(alignment)
* \brief Set maximum alignment for subsequent struct and union definitions to \a alignment.
*/
#define COMPILER_PACK_SET(alignment) COMPILER_PRAGMA(pack(alignment))
/**
* \def COMPILER_PACK_RESET()
* \brief Set default alignment for subsequent struct and union definitions.
*/
#define COMPILER_PACK_RESET() COMPILER_PRAGMA(pack())
/**
* \brief Set aligned boundary.
*/
#if (defined __GNUC__) || (defined __CC_ARM)
# define COMPILER_ALIGNED(a) __attribute__((__aligned__(a)))
#elif (defined __ICCARM__)
# define COMPILER_ALIGNED(a) COMPILER_PRAGMA(data_alignment = a)
#endif
/**
* \brief Set word-aligned boundary.
*/
#if (defined __GNUC__) || defined(__CC_ARM)
#define COMPILER_WORD_ALIGNED __attribute__((__aligned__(4)))
#elif (defined __ICCARM__)
#define COMPILER_WORD_ALIGNED COMPILER_PRAGMA(data_alignment = 4)
#endif
/**
* \def __always_inline
* \brief The function should always be inlined.
*
* This annotation instructs the compiler to ignore its inlining
* heuristics and inline the function no matter how big it thinks it
* becomes.
*/
#if defined(__CC_ARM)
# define __always_inline __forceinline
#elif (defined __GNUC__)
# define __always_inline __attribute__((__always_inline__))
#elif (defined __ICCARM__)
# define __always_inline _Pragma("inline=forced")
#endif
/**
* \def __no_inline
* \brief The function should never be inlined
*
* This annotation instructs the compiler to ignore its inlining
* heuristics and not inline the function no matter how small it thinks it
* becomes.
*/
#if defined(__CC_ARM)
# define __no_inline __attribute__((noinline))
#elif (defined __GNUC__)
# define __no_inline __attribute__((noinline))
#elif (defined __ICCARM__)
# define __no_inline _Pragma("inline=never")
#endif
/** \brief This macro is used to test fatal errors.
*
* The macro tests if the expression is false. If it is, a fatal error is
* detected and the application hangs up. If \c TEST_SUITE_DEFINE_ASSERT_MACRO
* is defined, a unit test version of the macro is used, to allow execution
* of further tests after a false expression.
*
* \param[in] expr Expression to evaluate and supposed to be nonzero.
*/
#if defined(_ASSERT_ENABLE_)
# if defined(TEST_SUITE_DEFINE_ASSERT_MACRO)
# include "unit_test/suite.h"
# else
# undef TEST_SUITE_DEFINE_ASSERT_MACRO
# define Assert(expr) \
{\
if (!(expr)) asm("BKPT #0");\
}
# endif
#else
# define Assert(expr) ((void) 0)
#endif
/* Define WEAK attribute */
#if defined ( __CC_ARM )
# define WEAK __attribute__ ((weak))
#elif defined ( __ICCARM__ )
# define WEAK __weak
#elif defined ( __GNUC__ )
# define WEAK __attribute__ ((weak))
#endif
/* Define NO_INIT attribute */
#if defined ( __CC_ARM )
# define NO_INIT __attribute__((zero_init))
#elif defined ( __ICCARM__ )
# define NO_INIT __no_init
#elif defined ( __GNUC__ )
# define NO_INIT __attribute__((section(".no_init")))
#endif
#include "interrupt.h"
/** \name Usual Types
* @{ */
#ifndef __cplusplus
# if !defined(__bool_true_false_are_defined)
typedef unsigned char bool;
# endif
#endif
typedef uint16_t le16_t;
typedef uint16_t be16_t;
typedef uint32_t le32_t;
typedef uint32_t be32_t;
typedef uint32_t iram_size_t;
/** @} */
/** \name Aliasing Aggregate Types
* @{ */
/** 16-bit union. */
typedef union
{
int16_t s16;
uint16_t u16;
int8_t s8[2];
uint8_t u8[2];
} Union16;
/** 32-bit union. */
typedef union
{
int32_t s32;
uint32_t u32;
int16_t s16[2];
uint16_t u16[2];
int8_t s8[4];
uint8_t u8[4];
} Union32;
/** 64-bit union. */
typedef union
{
int64_t s64;
uint64_t u64;
int32_t s32[2];
uint32_t u32[2];
int16_t s16[4];
uint16_t u16[4];
int8_t s8[8];
uint8_t u8[8];
} Union64;
/** Union of pointers to 64-, 32-, 16- and 8-bit unsigned integers. */
typedef union
{
int64_t *s64ptr;
uint64_t *u64ptr;
int32_t *s32ptr;
uint32_t *u32ptr;
int16_t *s16ptr;
uint16_t *u16ptr;
int8_t *s8ptr;
uint8_t *u8ptr;
} UnionPtr;
/** Union of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. */
typedef union
{
volatile int64_t *s64ptr;
volatile uint64_t *u64ptr;
volatile int32_t *s32ptr;
volatile uint32_t *u32ptr;
volatile int16_t *s16ptr;
volatile uint16_t *u16ptr;
volatile int8_t *s8ptr;
volatile uint8_t *u8ptr;
} UnionVPtr;
/** Union of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. */
typedef union
{
const int64_t *s64ptr;
const uint64_t *u64ptr;
const int32_t *s32ptr;
const uint32_t *u32ptr;
const int16_t *s16ptr;
const uint16_t *u16ptr;
const int8_t *s8ptr;
const uint8_t *u8ptr;
} UnionCPtr;
/** Union of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. */
typedef union
{
const volatile int64_t *s64ptr;
const volatile uint64_t *u64ptr;
const volatile int32_t *s32ptr;
const volatile uint32_t *u32ptr;
const volatile int16_t *s16ptr;
const volatile uint16_t *u16ptr;
const volatile int8_t *s8ptr;
const volatile uint8_t *u8ptr;
} UnionCVPtr;
/** Structure of pointers to 64-, 32-, 16- and 8-bit unsigned integers. */
typedef struct
{
int64_t *s64ptr;
uint64_t *u64ptr;
int32_t *s32ptr;
uint32_t *u32ptr;
int16_t *s16ptr;
uint16_t *u16ptr;
int8_t *s8ptr;
uint8_t *u8ptr;
} StructPtr;
/** Structure of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. */
typedef struct
{
volatile int64_t *s64ptr;
volatile uint64_t *u64ptr;
volatile int32_t *s32ptr;
volatile uint32_t *u32ptr;
volatile int16_t *s16ptr;
volatile uint16_t *u16ptr;
volatile int8_t *s8ptr;
volatile uint8_t *u8ptr;
} StructVPtr;
/** Structure of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. */
typedef struct
{
const int64_t *s64ptr;
const uint64_t *u64ptr;
const int32_t *s32ptr;
const uint32_t *u32ptr;
const int16_t *s16ptr;
const uint16_t *u16ptr;
const int8_t *s8ptr;
const uint8_t *u8ptr;
} StructCPtr;
/** Structure of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. */
typedef struct
{
const volatile int64_t *s64ptr;
const volatile uint64_t *u64ptr;
const volatile int32_t *s32ptr;
const volatile uint32_t *u32ptr;
const volatile int16_t *s16ptr;
const volatile uint16_t *u16ptr;
const volatile int8_t *s8ptr;
const volatile uint8_t *u8ptr;
} StructCVPtr;
/** @} */
#endif /* #ifndef __ASSEMBLY__ */
/** \name Usual Constants
* @{ */
#define DISABLE 0
#define ENABLE 1
#ifndef __cplusplus
# if !defined(__bool_true_false_are_defined)
# define false 0
# define true 1
# endif
#endif
/** @} */
#ifndef __ASSEMBLY__
/** \name Optimization Control
* @{ */
/**
* \def likely(exp)
* \brief The expression \a exp is likely to be true
*/
#if !defined(likely) || defined(__DOXYGEN__)
# define likely(exp) (exp)
#endif
/**
* \def unlikely(exp)
* \brief The expression \a exp is unlikely to be true
*/
#if !defined(unlikely) || defined(__DOXYGEN__)
# define unlikely(exp) (exp)
#endif
/**
* \def is_constant(exp)
* \brief Determine if an expression evaluates to a constant value.
*
* \param[in] exp Any expression
*
* \return true if \a exp is constant, false otherwise.
*/
#if (defined __GNUC__) || (defined __CC_ARM)
# define is_constant(exp) __builtin_constant_p(exp)
#else
# define is_constant(exp) (0)
#endif
/** @} */
/** \name Bit-Field Handling
* @{ */
/** \brief Reads the bits of a value specified by a given bit-mask.
*
* \param[in] value Value to read bits from.
* \param[in] mask Bit-mask indicating bits to read.
*
* \return Read bits.
*/
#define Rd_bits( value, mask) ((value) & (mask))
/** \brief Writes the bits of a C lvalue specified by a given bit-mask.
*
* \param[in] lvalue C lvalue to write bits to.
* \param[in] mask Bit-mask indicating bits to write.
* \param[in] bits Bits to write.
*
* \return Resulting value with written bits.
*/
#define Wr_bits(lvalue, mask, bits) ((lvalue) = ((lvalue) & ~(mask)) |\
((bits ) & (mask)))
/** \brief Tests the bits of a value specified by a given bit-mask.
*
* \param[in] value Value of which to test bits.
* \param[in] mask Bit-mask indicating bits to test.
*
* \return \c 1 if at least one of the tested bits is set, else \c 0.
*/
#define Tst_bits( value, mask) (Rd_bits(value, mask) != 0)
/** \brief Clears the bits of a C lvalue specified by a given bit-mask.
*
* \param[in] lvalue C lvalue of which to clear bits.
* \param[in] mask Bit-mask indicating bits to clear.
*
* \return Resulting value with cleared bits.
*/
#define Clr_bits(lvalue, mask) ((lvalue) &= ~(mask))
/** \brief Sets the bits of a C lvalue specified by a given bit-mask.
*
* \param[in] lvalue C lvalue of which to set bits.
* \param[in] mask Bit-mask indicating bits to set.
*
* \return Resulting value with set bits.
*/
#define Set_bits(lvalue, mask) ((lvalue) |= (mask))
/** \brief Toggles the bits of a C lvalue specified by a given bit-mask.
*
* \param[in] lvalue C lvalue of which to toggle bits.
* \param[in] mask Bit-mask indicating bits to toggle.
*
* \return Resulting value with toggled bits.
*/
#define Tgl_bits(lvalue, mask) ((lvalue) ^= (mask))
/** \brief Reads the bit-field of a value specified by a given bit-mask.
*
* \param[in] value Value to read a bit-field from.
* \param[in] mask Bit-mask indicating the bit-field to read.
*
* \return Read bit-field.
*/
#define Rd_bitfield( value, mask) (Rd_bits( value, mask) >> ctz(mask))
/** \brief Writes the bit-field of a C lvalue specified by a given bit-mask.
*
* \param[in] lvalue C lvalue to write a bit-field to.
* \param[in] mask Bit-mask indicating the bit-field to write.
* \param[in] bitfield Bit-field to write.
*
* \return Resulting value with written bit-field.
*/
#define Wr_bitfield(lvalue, mask, bitfield) (Wr_bits(lvalue, mask, (uint32_t)(bitfield) << ctz(mask)))
/** @} */
/** \name Zero-Bit Counting
*
* Under GCC, __builtin_clz and __builtin_ctz behave like macros when
* applied to constant expressions (values known at compile time), so they are
* more optimized than the use of the corresponding assembly instructions and
* they can be used as constant expressions e.g. to initialize objects having
* static storage duration, and like the corresponding assembly instructions
* when applied to non-constant expressions (values unknown at compile time), so
* they are more optimized than an assembly periphrasis. Hence, clz and ctz
* ensure a possible and optimized behavior for both constant and non-constant
* expressions.
*
* @{ */
/** \brief Counts the leading zero bits of the given value considered as a 32-bit integer.
*
* \param[in] u Value of which to count the leading zero bits.
*
* \return The count of leading zero bits in \a u.
*/
#if (defined __GNUC__) || (defined __CC_ARM)
# define clz(u) __builtin_clz(u)
#else
# define clz(u) (((u) == 0) ? 32 : \
((u) & (1ul << 31)) ? 0 : \
((u) & (1ul << 30)) ? 1 : \
((u) & (1ul << 29)) ? 2 : \
((u) & (1ul << 28)) ? 3 : \
((u) & (1ul << 27)) ? 4 : \
((u) & (1ul << 26)) ? 5 : \
((u) & (1ul << 25)) ? 6 : \
((u) & (1ul << 24)) ? 7 : \
((u) & (1ul << 23)) ? 8 : \
((u) & (1ul << 22)) ? 9 : \
((u) & (1ul << 21)) ? 10 : \
((u) & (1ul << 20)) ? 11 : \
((u) & (1ul << 19)) ? 12 : \
((u) & (1ul << 18)) ? 13 : \
((u) & (1ul << 17)) ? 14 : \
((u) & (1ul << 16)) ? 15 : \
((u) & (1ul << 15)) ? 16 : \
((u) & (1ul << 14)) ? 17 : \
((u) & (1ul << 13)) ? 18 : \
((u) & (1ul << 12)) ? 19 : \
((u) & (1ul << 11)) ? 20 : \
((u) & (1ul << 10)) ? 21 : \
((u) & (1ul << 9)) ? 22 : \
((u) & (1ul << 8)) ? 23 : \
((u) & (1ul << 7)) ? 24 : \
((u) & (1ul << 6)) ? 25 : \
((u) & (1ul << 5)) ? 26 : \
((u) & (1ul << 4)) ? 27 : \
((u) & (1ul << 3)) ? 28 : \
((u) & (1ul << 2)) ? 29 : \
((u) & (1ul << 1)) ? 30 : \
31)
#endif
/** \brief Counts the trailing zero bits of the given value considered as a 32-bit integer.
*
* \param[in] u Value of which to count the trailing zero bits.
*
* \return The count of trailing zero bits in \a u.
*/
#if (defined __GNUC__) || (defined __CC_ARM)
# define ctz(u) ((u) ? __builtin_ctz(u) : 32)
#else
# define ctz(u) ((u) & (1ul << 0) ? 0 : \
(u) & (1ul << 1) ? 1 : \
(u) & (1ul << 2) ? 2 : \
(u) & (1ul << 3) ? 3 : \
(u) & (1ul << 4) ? 4 : \
(u) & (1ul << 5) ? 5 : \
(u) & (1ul << 6) ? 6 : \
(u) & (1ul << 7) ? 7 : \
(u) & (1ul << 8) ? 8 : \
(u) & (1ul << 9) ? 9 : \
(u) & (1ul << 10) ? 10 : \
(u) & (1ul << 11) ? 11 : \
(u) & (1ul << 12) ? 12 : \
(u) & (1ul << 13) ? 13 : \
(u) & (1ul << 14) ? 14 : \
(u) & (1ul << 15) ? 15 : \
(u) & (1ul << 16) ? 16 : \
(u) & (1ul << 17) ? 17 : \
(u) & (1ul << 18) ? 18 : \
(u) & (1ul << 19) ? 19 : \
(u) & (1ul << 20) ? 20 : \
(u) & (1ul << 21) ? 21 : \
(u) & (1ul << 22) ? 22 : \
(u) & (1ul << 23) ? 23 : \
(u) & (1ul << 24) ? 24 : \
(u) & (1ul << 25) ? 25 : \
(u) & (1ul << 26) ? 26 : \
(u) & (1ul << 27) ? 27 : \
(u) & (1ul << 28) ? 28 : \
(u) & (1ul << 29) ? 29 : \
(u) & (1ul << 30) ? 30 : \
(u) & (1ul << 31) ? 31 : \
32)
#endif
/** @} */
/** \name Bit Reversing
* @{ */
/** \brief Reverses the bits of \a u8.
*
* \param[in] u8 U8 of which to reverse the bits.
*
* \return Value resulting from \a u8 with reversed bits.
*/
#define bit_reverse8(u8) ((U8)(bit_reverse32((U8)(u8)) >> 24))
/** \brief Reverses the bits of \a u16.
*
* \param[in] u16 U16 of which to reverse the bits.
*
* \return Value resulting from \a u16 with reversed bits.
*/
#define bit_reverse16(u16) ((uint16_t)(bit_reverse32((uint16_t)(u16)) >> 16))
/** \brief Reverses the bits of \a u32.
*
* \param[in] u32 U32 of which to reverse the bits.
*
* \return Value resulting from \a u32 with reversed bits.
*/
#define bit_reverse32(u32) __RBIT(u32)
/** \brief Reverses the bits of \a u64.
*
* \param[in] u64 U64 of which to reverse the bits.
*
* \return Value resulting from \a u64 with reversed bits.
*/
#define bit_reverse64(u64) ((uint64_t)(((uint64_t)bit_reverse32((uint64_t)(u64) >> 32)) |\
((uint64_t)bit_reverse32((uint64_t)(u64)) << 32)))
/** @} */
/** \name Alignment
* @{ */
/** \brief Tests alignment of the number \a val with the \a n boundary.
*
* \param[in] val Input value.
* \param[in] n Boundary.
*
* \return \c 1 if the number \a val is aligned with the \a n boundary, else \c 0.
*/
#define Test_align(val, n) (!Tst_bits( val, (n) - 1 ) )
/** \brief Gets alignment of the number \a val with respect to the \a n boundary.
*
* \param[in] val Input value.
* \param[in] n Boundary.
*
* \return Alignment of the number \a val with respect to the \a n boundary.
*/
#define Get_align(val, n) ( Rd_bits( val, (n) - 1 ) )
/** \brief Sets alignment of the lvalue number \a lval to \a alg with respect to the \a n boundary.
*
* \param[in] lval Input/output lvalue.
* \param[in] n Boundary.
* \param[in] alg Alignment.
*
* \return New value of \a lval resulting from its alignment set to \a alg with respect to the \a n boundary.
*/
#define Set_align(lval, n, alg) ( Wr_bits(lval, (n) - 1, alg) )
/** \brief Aligns the number \a val with the upper \a n boundary.
*
* \param[in] val Input value.
* \param[in] n Boundary.
*
* \return Value resulting from the number \a val aligned with the upper \a n boundary.
*/
#define Align_up( val, n) (((val) + ((n) - 1)) & ~((n) - 1))
/** \brief Aligns the number \a val with the lower \a n boundary.
*
* \param[in] val Input value.
* \param[in] n Boundary.
*
* \return Value resulting from the number \a val aligned with the lower \a n boundary.
*/
#define Align_down(val, n) ( (val) & ~((n) - 1))
/** @} */
/** \name Mathematics
*
* The same considerations as for clz and ctz apply here but GCC does not
* provide built-in functions to access the assembly instructions abs, min and
* max and it does not produce them by itself in most cases, so two sets of
* macros are defined here:
* - Abs, Min and Max to apply to constant expressions (values known at
* compile time);
* - abs, min and max to apply to non-constant expressions (values unknown at
* compile time), abs is found in stdlib.h.
*
* @{ */
/** \brief Takes the absolute value of \a a.
*
* \param[in] a Input value.
*
* \return Absolute value of \a a.
*
* \note More optimized if only used with values known at compile time.
*/
#define Abs(a) (((a) < 0 ) ? -(a) : (a))
#ifndef __cplusplus
/** \brief Takes the minimal value of \a a and \a b.
*
* \param[in] a Input value.
* \param[in] b Input value.
*
* \return Minimal value of \a a and \a b.
*
* \note More optimized if only used with values known at compile time.
*/
#define Min(a, b) (((a) < (b)) ? (a) : (b))
/** \brief Takes the maximal value of \a a and \a b.
*
* \param[in] a Input value.
* \param[in] b Input value.
*
* \return Maximal value of \a a and \a b.
*
* \note More optimized if only used with values known at compile time.
*/
#define Max(a, b) (((a) > (b)) ? (a) : (b))
/** \brief Takes the minimal value of \a a and \a b.
*
* \param[in] a Input value.
* \param[in] b Input value.
*
* \return Minimal value of \a a and \a b.
*
* \note More optimized if only used with values unknown at compile time.
*/
#define min(a, b) Min(a, b)
/** \brief Takes the maximal value of \a a and \a b.
*
* \param[in] a Input value.
* \param[in] b Input value.
*
* \return Maximal value of \a a and \a b.
*
* \note More optimized if only used with values unknown at compile time.
*/
#define max(a, b) Max(a, b)
#endif
/** @} */
/** \brief Calls the routine at address \a addr.
*
* It generates a long call opcode.
*
* For example, `Long_call(0x80000000)' generates a software reset on a UC3 if
* it is invoked from the CPU supervisor mode.
*
* \param[in] addr Address of the routine to call.
*
* \note It may be used as a long jump opcode in some special cases.
*/
#define Long_call(addr) ((*(void (*)(void))(addr))())
/** \name MCU Endianism Handling
* ARM is MCU little endian.
*
* @{ */
#define BE16(x) swap16(x)
#define LE16(x) (x)
#define le16_to_cpu(x) (x)
#define cpu_to_le16(x) (x)
#define LE16_TO_CPU(x) (x)
#define CPU_TO_LE16(x) (x)
#define be16_to_cpu(x) swap16(x)
#define cpu_to_be16(x) swap16(x)
#define BE16_TO_CPU(x) swap16(x)
#define CPU_TO_BE16(x) swap16(x)
#define le32_to_cpu(x) (x)
#define cpu_to_le32(x) (x)
#define LE32_TO_CPU(x) (x)
#define CPU_TO_LE32(x) (x)
#define be32_to_cpu(x) swap32(x)
#define cpu_to_be32(x) swap32(x)
#define BE32_TO_CPU(x) swap32(x)
#define CPU_TO_BE32(x) swap32(x)
/** @} */
/** \name Endianism Conversion
*
* The same considerations as for clz and ctz apply here but GCC's
* __builtin_bswap_32 and __builtin_bswap_64 do not behave like macros when
* applied to constant expressions, so two sets of macros are defined here:
* - Swap16, Swap32 and Swap64 to apply to constant expressions (values known
* at compile time);
* - swap16, swap32 and swap64 to apply to non-constant expressions (values
* unknown at compile time).
*
* @{ */
/** \brief Toggles the endianism of \a u16 (by swapping its bytes).
*
* \param[in] u16 U16 of which to toggle the endianism.
*
* \return Value resulting from \a u16 with toggled endianism.
*
* \note More optimized if only used with values known at compile time.
*/
#define Swap16(u16) ((uint16_t)(((uint16_t)(u16) >> 8) |\
((uint16_t)(u16) << 8)))
/** \brief Toggles the endianism of \a u32 (by swapping its bytes).
*
* \param[in] u32 U32 of which to toggle the endianism.
*
* \return Value resulting from \a u32 with toggled endianism.
*
* \note More optimized if only used with values known at compile time.
*/
#define Swap32(u32) ((uint32_t)(((uint32_t)Swap16((uint32_t)(u32) >> 16)) |\
((uint32_t)Swap16((uint32_t)(u32)) << 16)))
/** \brief Toggles the endianism of \a u64 (by swapping its bytes).
*
* \param[in] u64 U64 of which to toggle the endianism.
*
* \return Value resulting from \a u64 with toggled endianism.
*
* \note More optimized if only used with values known at compile time.
*/
#define Swap64(u64) ((uint64_t)(((uint64_t)Swap32((uint64_t)(u64) >> 32)) |\
((uint64_t)Swap32((uint64_t)(u64)) << 32)))
/** \brief Toggles the endianism of \a u16 (by swapping its bytes).
*
* \param[in] u16 U16 of which to toggle the endianism.
*
* \return Value resulting from \a u16 with toggled endianism.
*
* \note More optimized if only used with values unknown at compile time.
*/
#define swap16(u16) Swap16(u16)
/** \brief Toggles the endianism of \a u32 (by swapping its bytes).
*
* \param[in] u32 U32 of which to toggle the endianism.
*
* \return Value resulting from \a u32 with toggled endianism.
*
* \note More optimized if only used with values unknown at compile time.
*/
#if (defined __GNUC__)
# define swap32(u32) ((uint32_t)__builtin_bswap32((uint32_t)(u32)))
#else
# define swap32(u32) Swap32(u32)
#endif
/** \brief Toggles the endianism of \a u64 (by swapping its bytes).
*
* \param[in] u64 U64 of which to toggle the endianism.
*
* \return Value resulting from \a u64 with toggled endianism.
*
* \note More optimized if only used with values unknown at compile time.
*/
#if (defined __GNUC__)
# define swap64(u64) ((uint64_t)__builtin_bswap64((uint64_t)(u64)))
#else
# define swap64(u64) ((uint64_t)(((uint64_t)swap32((uint64_t)(u64) >> 32)) |\
((uint64_t)swap32((uint64_t)(u64)) << 32)))
#endif
/** @} */
/** \name Target Abstraction
*
* @{ */
#define _GLOBEXT_ extern /**< extern storage-class specifier. */
#define _CONST_TYPE_ const /**< const type qualifier. */
#define _MEM_TYPE_SLOW_ /**< Slow memory type. */
#define _MEM_TYPE_MEDFAST_ /**< Fairly fast memory type. */
#define _MEM_TYPE_FAST_ /**< Fast memory type. */
#define memcmp_ram2ram memcmp /**< Target-specific memcmp of RAM to RAM. */
#define memcmp_code2ram memcmp /**< Target-specific memcmp of RAM to NVRAM. */
#define memcpy_ram2ram memcpy /**< Target-specific memcpy from RAM to RAM. */
#define memcpy_code2ram memcpy /**< Target-specific memcpy from NVRAM to RAM. */
/** @} */
/**
* \brief Calculate \f$ \left\lceil \frac{a}{b} \right\rceil \f$ using
* integer arithmetic.
*
* \param[in] a An integer
* \param[in] b Another integer
*
* \return (\a a / \a b) rounded up to the nearest integer.
*/
#define div_ceil(a, b) (((a) + (b) - 1) / (b))
#endif /* #ifndef __ASSEMBLY__ */
#ifdef __ICCARM__
/** \name Compiler Keywords
*
* Port of some keywords from GCC to IAR Embedded Workbench.
*
* @{ */
#define __asm__ asm
#define __inline__ inline
#define __volatile__
/** @} */
#endif
#define FUNC_PTR void *
/**
* \def unused
* \brief Marking \a v as a unused parameter or value.
*/
#define unused(v) do { (void)(v); } while(0)
/* Define RAMFUNC attribute */
#if defined ( __CC_ARM ) /* Keil uVision 4 */
# define RAMFUNC __attribute__ ((section(".ramfunc")))
#elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */
# define RAMFUNC __ramfunc
#elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */
# define RAMFUNC __attribute__ ((section(".ramfunc")))
#endif
/* Define OPTIMIZE_HIGH attribute */
#if defined ( __CC_ARM ) /* Keil uVision 4 */
# define OPTIMIZE_HIGH _Pragma("O3")
#elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */
# define OPTIMIZE_HIGH _Pragma("optimize=high")
#elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */
# define OPTIMIZE_HIGH __attribute__((optimize("s")))
#endif
#define PASS 0
#define FAIL 1
#define LOW 0
#define HIGH 1
typedef int8_t S8 ; //!< 8-bit signed integer.
typedef uint8_t U8 ; //!< 8-bit unsigned integer.
typedef int16_t S16; //!< 16-bit signed integer.
typedef uint16_t U16; //!< 16-bit unsigned integer.
typedef int32_t S32; //!< 32-bit signed integer.
typedef uint32_t U32; //!< 32-bit unsigned integer.
typedef int64_t S64; //!< 64-bit signed integer.
typedef uint64_t U64; //!< 64-bit unsigned integer.
typedef float F32; //!< 32-bit floating-point number.
typedef double F64; //!< 64-bit floating-point number.
#define MSB(u16) (((U8 *)&(u16))[1]) //!< Most significant byte of \a u16.
#define LSB(u16) (((U8 *)&(u16))[0]) //!< Least significant byte of \a u16.
#define MSH(u32) (((U16 *)&(u32))[1]) //!< Most significant half-word of \a u32.
#define LSH(u32) (((U16 *)&(u32))[0]) //!< Least significant half-word of \a u32.
#define MSB0W(u32) (((U8 *)&(u32))[3]) //!< Most significant byte of 1st rank of \a u32.
#define MSB1W(u32) (((U8 *)&(u32))[2]) //!< Most significant byte of 2nd rank of \a u32.
#define MSB2W(u32) (((U8 *)&(u32))[1]) //!< Most significant byte of 3rd rank of \a u32.
#define MSB3W(u32) (((U8 *)&(u32))[0]) //!< Most significant byte of 4th rank of \a u32.
#define LSB3W(u32) MSB0W(u32) //!< Least significant byte of 4th rank of \a u32.
#define LSB2W(u32) MSB1W(u32) //!< Least significant byte of 3rd rank of \a u32.
#define LSB1W(u32) MSB2W(u32) //!< Least significant byte of 2nd rank of \a u32.
#define LSB0W(u32) MSB3W(u32) //!< Least significant byte of 1st rank of \a u32.
#define MSW(u64) (((U32 *)&(u64))[1]) //!< Most significant word of \a u64.
#define LSW(u64) (((U32 *)&(u64))[0]) //!< Least significant word of \a u64.
#define MSH0(u64) (((U16 *)&(u64))[3]) //!< Most significant half-word of 1st rank of \a u64.
#define MSH1(u64) (((U16 *)&(u64))[2]) //!< Most significant half-word of 2nd rank of \a u64.
#define MSH2(u64) (((U16 *)&(u64))[1]) //!< Most significant half-word of 3rd rank of \a u64.
#define MSH3(u64) (((U16 *)&(u64))[0]) //!< Most significant half-word of 4th rank of \a u64.
#define LSH3(u64) MSH0(u64) //!< Least significant half-word of 4th rank of \a u64.
#define LSH2(u64) MSH1(u64) //!< Least significant half-word of 3rd rank of \a u64.
#define LSH1(u64) MSH2(u64) //!< Least significant half-word of 2nd rank of \a u64.
#define LSH0(u64) MSH3(u64) //!< Least significant half-word of 1st rank of \a u64.
#define MSB0D(u64) (((U8 *)&(u64))[7]) //!< Most significant byte of 1st rank of \a u64.
#define MSB1D(u64) (((U8 *)&(u64))[6]) //!< Most significant byte of 2nd rank of \a u64.
#define MSB2D(u64) (((U8 *)&(u64))[5]) //!< Most significant byte of 3rd rank of \a u64.
#define MSB3D(u64) (((U8 *)&(u64))[4]) //!< Most significant byte of 4th rank of \a u64.
#define MSB4D(u64) (((U8 *)&(u64))[3]) //!< Most significant byte of 5th rank of \a u64.
#define MSB5D(u64) (((U8 *)&(u64))[2]) //!< Most significant byte of 6th rank of \a u64.
#define MSB6D(u64) (((U8 *)&(u64))[1]) //!< Most significant byte of 7th rank of \a u64.
#define MSB7D(u64) (((U8 *)&(u64))[0]) //!< Most significant byte of 8th rank of \a u64.
#define LSB7D(u64) MSB0D(u64) //!< Least significant byte of 8th rank of \a u64.
#define LSB6D(u64) MSB1D(u64) //!< Least significant byte of 7th rank of \a u64.
#define LSB5D(u64) MSB2D(u64) //!< Least significant byte of 6th rank of \a u64.
#define LSB4D(u64) MSB3D(u64) //!< Least significant byte of 5th rank of \a u64.
#define LSB3D(u64) MSB4D(u64) //!< Least significant byte of 4th rank of \a u64.
#define LSB2D(u64) MSB5D(u64) //!< Least significant byte of 3rd rank of \a u64.
#define LSB1D(u64) MSB6D(u64) //!< Least significant byte of 2nd rank of \a u64.
#define LSB0D(u64) MSB7D(u64) //!< Least significant byte of 1st rank of \a u64.
#define LSB0(u32) LSB0W(u32) //!< Least significant byte of 1st rank of \a u32.
#define LSB1(u32) LSB1W(u32) //!< Least significant byte of 2nd rank of \a u32.
#define LSB2(u32) LSB2W(u32) //!< Least significant byte of 3rd rank of \a u32.
#define LSB3(u32) LSB3W(u32) //!< Least significant byte of 4th rank of \a u32.
#define MSB3(u32) MSB3W(u32) //!< Most significant byte of 4th rank of \a u32.
#define MSB2(u32) MSB2W(u32) //!< Most significant byte of 3rd rank of \a u32.
#define MSB1(u32) MSB1W(u32) //!< Most significant byte of 2nd rank of \a u32.
#define MSB0(u32) MSB0W(u32) //!< Most significant byte of 1st rank of \a u32.
#if defined(__ICCARM__)
#define SHORTENUM __packed
#elif defined(__GNUC__)
#define SHORTENUM __attribute__((packed))
#endif
/* No operation */
#if defined(__ICCARM__)
#define nop() __no_operation()
#elif defined(__GNUC__)
#define nop() (__NOP())
#endif
#define FLASH_DECLARE(x) const x
#define FLASH_EXTERN(x) extern const x
#define PGM_READ_BYTE(x) *(x)
#define PGM_READ_WORD(x) *(x)
#define MEMCPY_ENDIAN memcpy
#define PGM_READ_BLOCK(dst, src, len) memcpy((dst), (src), (len))
/*Defines the Flash Storage for the request and response of MAC*/
#define CMD_ID_OCTET (0)
/* Converting of values from CPU endian to little endian. */
#define CPU_ENDIAN_TO_LE16(x) (x)
#define CPU_ENDIAN_TO_LE32(x) (x)
#define CPU_ENDIAN_TO_LE64(x) (x)
/* Converting of values from little endian to CPU endian. */
#define LE16_TO_CPU_ENDIAN(x) (x)
#define LE32_TO_CPU_ENDIAN(x) (x)
#define LE64_TO_CPU_ENDIAN(x) (x)
/* Converting of constants from little endian to CPU endian. */
#define CLE16_TO_CPU_ENDIAN(x) (x)
#define CLE32_TO_CPU_ENDIAN(x) (x)
#define CLE64_TO_CPU_ENDIAN(x) (x)
/* Converting of constants from CPU endian to little endian. */
#define CCPU_ENDIAN_TO_LE16(x) (x)
#define CCPU_ENDIAN_TO_LE32(x) (x)
#define CCPU_ENDIAN_TO_LE64(x) (x)
#define ADDR_COPY_DST_SRC_16(dst, src) ((dst) = (src))
#define ADDR_COPY_DST_SRC_64(dst, src) ((dst) = (src))
/**
* @brief Converts a 64-Bit value into a 8 Byte array
*
* @param[in] value 64-Bit value
* @param[out] data Pointer to the 8 Byte array to be updated with 64-Bit value
* @ingroup apiPalApi
*/
static inline void convert_64_bit_to_byte_array(uint64_t value, uint8_t *data)
{
uint8_t index = 0;
while (index < 8)
{
data[index++] = value & 0xFF;
value = value >> 8;
}
}
/**
* @brief Converts a 16-Bit value into a 2 Byte array
*
* @param[in] value 16-Bit value
* @param[out] data Pointer to the 2 Byte array to be updated with 16-Bit value
* @ingroup apiPalApi
*/
static inline void convert_16_bit_to_byte_array(uint16_t value, uint8_t *data)
{
data[0] = value & 0xFF;
data[1] = (value >> 8) & 0xFF;
}
/* Converts a 16-Bit value into a 2 Byte array */
static inline void convert_spec_16_bit_to_byte_array(uint16_t value, uint8_t *data)
{
data[0] = value & 0xFF;
data[1] = (value >> 8) & 0xFF;
}
/* Converts a 16-Bit value into a 2 Byte array */
static inline void convert_16_bit_to_byte_address(uint16_t value, uint8_t *data)
{
data[0] = value & 0xFF;
data[1] = (value >> 8) & 0xFF;
}
/*
* @brief Converts a 2 Byte array into a 16-Bit value
*
* @param data Specifies the pointer to the 2 Byte array
*
* @return 16-Bit value
* @ingroup apiPalApi
*/
static inline uint16_t convert_byte_array_to_16_bit(uint8_t *data)
{
return (data[0] | ((uint16_t)data[1] << 8));
}
/* Converts a 4 Byte array into a 32-Bit value */
static inline uint32_t convert_byte_array_to_32_bit(uint8_t *data)
{
union
{
uint32_t u32;
uint8_t u8[4];
}long_addr;
uint8_t index;
for (index = 0; index < 4; index++)
{
long_addr.u8[index] = *data++;
}
return long_addr.u32;
}
/**
* @brief Converts a 8 Byte array into a 64-Bit value
*
* @param data Specifies the pointer to the 8 Byte array
*
* @return 64-Bit value
* @ingroup apiPalApi
*/
static inline uint64_t convert_byte_array_to_64_bit(uint8_t *data)
{
union
{
uint64_t u64;
uint8_t u8[8];
} long_addr;
uint8_t index;
for (index = 0; index < 8; index++)
{
long_addr.u8[index] = *data++;
}
return long_addr.u64;
}
/** @} */
#endif /* UTILS_COMPILER_H_INCLUDED */