circuitpython/ports/raspberrypi/common-hal/rp2pio/StateMachine.c
Scott Shawcroft 66edcf5d03
Add PicoDVI support
PicoDVI in CP support 640x480 and 800x480 on Feather DVI, Pico and
Pico W. 1 and 2 bit grayscale are full resolution. 8 and 16 bit
color are half resolution.

Memory layout is modified to give the top most 4k of ram to the
second core. Its MPU is used to prevent flash access after startup.

The port saved word is moved to a watchdog scratch register so that
it doesn't get overwritten by other things in RAM.

Right align status bar and scroll area. This normally gives a few
pixels of padding on the left hand side and improves the odds it is
readable in a case. Fixes #7562

Fixes c stack checking. The length was correct but the top was being
set to the current stack pointer instead of the correct top.
Fixes #7643

This makes Bitmap subscr raise IndexError instead of ValueError
when the index arguments are wrong.
2023-04-19 15:14:02 -07:00

1056 lines
42 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "bindings/rp2pio/StateMachine.h"
#include "common-hal/microcontroller/__init__.h"
#include "shared-bindings/digitalio/Pull.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "src/rp2040/hardware_regs/include/hardware/platform_defs.h"
#include "src/rp2_common/hardware_clocks/include/hardware/clocks.h"
#include "src/rp2_common/hardware_dma/include/hardware/dma.h"
#include "src/rp2_common/hardware_pio/include/hardware/pio_instructions.h"
#include "src/rp2040/hardware_structs/include/hardware/structs/iobank0.h"
#include "src/rp2_common/hardware_irq/include/hardware/irq.h"
#include "shared/runtime/interrupt_char.h"
#include "py/obj.h"
#include "py/objproperty.h"
#include "py/runtime.h"
#define NO_DMA_CHANNEL (-1)
// Count how many state machines are using each pin.
STATIC uint8_t _pin_reference_count[NUM_BANK0_GPIOS];
STATIC uint32_t _current_program_id[NUM_PIOS][NUM_PIO_STATE_MACHINES];
STATIC uint8_t _current_program_offset[NUM_PIOS][NUM_PIO_STATE_MACHINES];
STATIC uint8_t _current_program_len[NUM_PIOS][NUM_PIO_STATE_MACHINES];
STATIC bool _never_reset[NUM_PIOS][NUM_PIO_STATE_MACHINES];
STATIC uint32_t _current_pins[NUM_PIOS];
STATIC uint32_t _current_sm_pins[NUM_PIOS][NUM_PIO_STATE_MACHINES];
STATIC int8_t _sm_dma_plus_one[NUM_PIOS][NUM_PIO_STATE_MACHINES];
#define SM_DMA_ALLOCATED(pio_index, sm) (_sm_dma_plus_one[(pio_index)][(sm)] != 0)
#define SM_DMA_GET_CHANNEL(pio_index, sm) (_sm_dma_plus_one[(pio_index)][(sm)] - 1)
#define SM_DMA_CLEAR_CHANNEL(pio_index, sm) (_sm_dma_plus_one[(pio_index)][(sm)] = 0)
#define SM_DMA_SET_CHANNEL(pio_isntance, sm, channel) (_sm_dma_plus_one[(pio_index)][(sm)] = (channel) + 1)
STATIC PIO pio_instances[2] = {pio0, pio1};
typedef void (*interrupt_handler_type)(void *);
STATIC interrupt_handler_type _interrupt_handler[NUM_PIOS][NUM_PIO_STATE_MACHINES];
STATIC void *_interrupt_arg[NUM_PIOS][NUM_PIO_STATE_MACHINES];
STATIC void rp2pio_statemachine_interrupt_handler(void);
static void rp2pio_statemachine_set_pull(uint32_t pull_pin_up, uint32_t pull_pin_down, uint32_t pins_we_use) {
for (size_t i = 0; i < NUM_BANK0_GPIOS; i++) {
bool used = pins_we_use & (1 << i);
if (used) {
bool pull_up = pull_pin_up & (1 << i);
bool pull_down = pull_pin_down & (1 << i);
gpio_set_pulls(i, pull_up, pull_down);
}
}
}
STATIC void rp2pio_statemachine_clear_dma(int pio_index, int sm) {
if (SM_DMA_ALLOCATED(pio_index, sm)) {
int channel = SM_DMA_GET_CHANNEL(pio_index, sm);
uint32_t channel_mask = 1u << channel;
dma_hw->inte0 &= ~channel_mask;
if (!dma_hw->inte0) {
irq_set_mask_enabled(1 << DMA_IRQ_0, false);
}
MP_STATE_PORT(background_pio)[channel] = NULL;
dma_channel_abort(channel);
dma_channel_unclaim(channel);
}
SM_DMA_CLEAR_CHANNEL(pio_index, sm);
}
STATIC void _reset_statemachine(PIO pio, uint8_t sm, bool leave_pins) {
uint8_t pio_index = pio_get_index(pio);
rp2pio_statemachine_clear_dma(pio_index, sm);
uint32_t program_id = _current_program_id[pio_index][sm];
if (program_id == 0) {
return;
}
_current_program_id[pio_index][sm] = 0;
bool program_in_use = false;
for (size_t i = 0; i < NUM_PIO_STATE_MACHINES; i++) {
if (_current_program_id[pio_index][i] == program_id) {
program_in_use = true;
break;
}
}
if (!program_in_use) {
uint8_t offset = _current_program_offset[pio_index][sm];
pio_program_t program_struct = {
.length = _current_program_len[pio_index][sm]
};
pio_remove_program(pio, &program_struct, offset);
}
uint32_t pins = _current_sm_pins[pio_index][sm];
for (size_t pin_number = 0; pin_number < NUM_BANK0_GPIOS; pin_number++) {
if ((pins & (1 << pin_number)) == 0) {
continue;
}
_pin_reference_count[pin_number]--;
if (_pin_reference_count[pin_number] == 0) {
if (!leave_pins) {
reset_pin_number(pin_number);
}
_current_pins[pio_index] &= ~(1 << pin_number);
}
}
_current_sm_pins[pio_index][sm] = 0;
pio->inte0 &= ~((PIO_IRQ0_INTF_SM0_RXNEMPTY_BITS | PIO_IRQ0_INTF_SM0_TXNFULL_BITS | PIO_IRQ0_INTF_SM0_BITS) << sm);
pio_sm_unclaim(pio, sm);
}
void reset_rp2pio_statemachine(void) {
for (size_t i = 0; i < NUM_PIOS; i++) {
PIO pio = pio_instances[i];
for (size_t j = 0; j < NUM_PIO_STATE_MACHINES; j++) {
if (_never_reset[i][j]) {
continue;
}
_reset_statemachine(pio, j, false);
}
}
for (uint8_t irq = PIO0_IRQ_0; irq <= PIO1_IRQ_1; irq++) {
irq_handler_t int_handler = irq_get_exclusive_handler(irq);
if (int_handler > 0) {
irq_set_enabled(irq, false);
irq_remove_handler(irq,int_handler);
}
}
}
STATIC uint32_t _check_pins_free(const mcu_pin_obj_t *first_pin, uint8_t pin_count, bool exclusive_pin_use) {
uint32_t pins_we_use = 0;
if (first_pin != NULL) {
for (size_t i = 0; i < pin_count; i++) {
uint8_t pin_number = first_pin->number + i;
if (pin_number >= NUM_BANK0_GPIOS) {
mp_raise_ValueError(translate("Pin count too large"));
}
const mcu_pin_obj_t *pin = mcu_get_pin_by_number(pin_number);
if (!pin) {
mp_raise_ValueError_varg(translate("%q in use"), MP_QSTR_Pin);
}
if (exclusive_pin_use || _pin_reference_count[pin_number] == 0) {
assert_pin_free(pin);
}
pins_we_use |= 1 << pin_number;
}
}
return pins_we_use;
}
bool rp2pio_statemachine_construct(rp2pio_statemachine_obj_t *self,
const uint16_t *program, size_t program_len,
size_t frequency,
const uint16_t *init, size_t init_len,
const mcu_pin_obj_t *first_out_pin, uint8_t out_pin_count,
const mcu_pin_obj_t *first_in_pin, uint8_t in_pin_count,
uint32_t pull_pin_up, uint32_t pull_pin_down,
const mcu_pin_obj_t *first_set_pin, uint8_t set_pin_count,
const mcu_pin_obj_t *first_sideset_pin, uint8_t sideset_pin_count,
uint32_t initial_pin_state, uint32_t initial_pin_direction,
const mcu_pin_obj_t *jmp_pin,
uint32_t pins_we_use, bool tx_fifo, bool rx_fifo,
bool auto_pull, uint8_t pull_threshold, bool out_shift_right,
bool wait_for_txstall,
bool auto_push, uint8_t push_threshold, bool in_shift_right,
bool claim_pins,
bool user_interruptible,
bool sideset_enable,
int wrap_target, int wrap
) {
// Create a program id that isn't the pointer so we can store it without storing the original object.
uint32_t program_id = ~((uint32_t)program);
// Next, find a PIO and state machine to use.
size_t pio_index = NUM_PIOS;
uint8_t program_offset = 32;
pio_program_t program_struct = {
.instructions = (uint16_t *)program,
.length = program_len,
.origin = -1
};
for (size_t i = 0; i < NUM_PIOS; i++) {
PIO pio = pio_instances[i];
uint8_t free_count = 0;
for (size_t j = 0; j < NUM_PIO_STATE_MACHINES; j++) {
if (_current_program_id[i][j] == program_id &&
_current_program_len[i][j] == program_len) {
program_offset = _current_program_offset[i][j];
}
if (!pio_sm_is_claimed(pio, j)) {
free_count++;
}
}
if (free_count > 0 && (program_offset < 32 || pio_can_add_program(pio, &program_struct))) {
pio_index = i;
if (program_offset < 32) {
break;
}
}
// Reset program offset if we weren't able to find a free state machine
// on that PIO. (We would have broken the loop otherwise.)
program_offset = 32;
}
size_t state_machine = NUM_PIO_STATE_MACHINES;
if (pio_index < NUM_PIOS) {
PIO pio = pio_instances[pio_index];
for (size_t i = 0; i < NUM_PIOS; i++) {
if (i == pio_index) {
continue;
}
if ((_current_pins[i] & pins_we_use) != 0) {
// Pin in use by another PIO already.
return false;
}
}
state_machine = pio_claim_unused_sm(pio, false);
}
if (pio_index == NUM_PIOS || state_machine < 0 || state_machine >= NUM_PIO_STATE_MACHINES) {
return false;
}
self->pio = pio_instances[pio_index];
self->state_machine = state_machine;
if (program_offset == 32) {
program_offset = pio_add_program(self->pio, &program_struct);
}
self->offset = program_offset;
_current_program_id[pio_index][state_machine] = program_id;
_current_program_len[pio_index][state_machine] = program_len;
_current_program_offset[pio_index][state_machine] = program_offset;
_current_sm_pins[pio_index][state_machine] = pins_we_use;
_current_pins[pio_index] |= pins_we_use;
pio_sm_set_pins_with_mask(self->pio, state_machine, initial_pin_state, pins_we_use);
pio_sm_set_pindirs_with_mask(self->pio, state_machine, initial_pin_direction, pins_we_use);
rp2pio_statemachine_set_pull(pull_pin_up, pull_pin_down, pins_we_use);
self->initial_pin_state = initial_pin_state;
self->initial_pin_direction = initial_pin_direction;
self->pull_pin_up = pull_pin_up;
self->pull_pin_down = pull_pin_down;
for (size_t pin_number = 0; pin_number < NUM_BANK0_GPIOS; pin_number++) {
if ((pins_we_use & (1 << pin_number)) == 0) {
continue;
}
const mcu_pin_obj_t *pin = mcu_get_pin_by_number(pin_number);
if (!pin) {
return false;
}
_pin_reference_count[pin_number]++;
// Also claim the pin at the top level when we're the first to grab it.
if (_pin_reference_count[pin_number] == 1) {
if (claim_pins) {
claim_pin(pin);
}
pio_gpio_init(self->pio, pin_number);
}
// Use lowest drive level for all State Machine outputs. (#7515
// workaround). Remove if/when Pin objects get a drive_strength
// property and use that value instead.
gpio_set_drive_strength(pin_number, GPIO_DRIVE_STRENGTH_2MA);
}
pio_sm_config c = {0, 0, 0};
if (frequency == 0) {
frequency = clock_get_hz(clk_sys);
}
uint64_t frequency256 = ((uint64_t)clock_get_hz(clk_sys)) * 256;
uint64_t div256 = frequency256 / frequency;
if (frequency256 % div256 > 0) {
div256 += 1;
}
self->actual_frequency = frequency256 / div256;
sm_config_set_clkdiv_int_frac(&c, div256 / 256, div256 % 256);
if (first_out_pin != NULL) {
sm_config_set_out_pins(&c, first_out_pin->number, out_pin_count);
}
if (first_in_pin != NULL) {
sm_config_set_in_pins(&c, first_in_pin->number);
}
if (first_set_pin != NULL) {
sm_config_set_set_pins(&c, first_set_pin->number, set_pin_count);
}
if (first_sideset_pin != NULL) {
size_t total_sideset_bits = sideset_pin_count;
if (sideset_enable) {
total_sideset_bits += 1;
}
sm_config_set_sideset(&c, total_sideset_bits, sideset_enable, false /* pin direction */);
sm_config_set_sideset_pins(&c, first_sideset_pin->number);
}
if (jmp_pin != NULL) {
sm_config_set_jmp_pin(&c, jmp_pin->number);
}
mp_arg_validate_int_range(wrap, -1, program_len - 1, MP_QSTR_wrap);
if (wrap == -1) {
wrap = program_len - 1;
}
mp_arg_validate_int_range(wrap_target, 0, program_len - 1, MP_QSTR_wrap_target);
wrap += program_offset;
wrap_target += program_offset;
sm_config_set_wrap(&c, wrap_target, wrap);
sm_config_set_in_shift(&c, in_shift_right, auto_push, push_threshold);
sm_config_set_out_shift(&c, out_shift_right, auto_pull, pull_threshold);
enum pio_fifo_join join = PIO_FIFO_JOIN_NONE;
if (!rx_fifo) {
join = PIO_FIFO_JOIN_TX;
} else if (!tx_fifo) {
join = PIO_FIFO_JOIN_RX;
}
if (rx_fifo) {
self->rx_dreq = pio_get_dreq(self->pio, self->state_machine, false);
}
if (tx_fifo) {
self->tx_dreq = pio_get_dreq(self->pio, self->state_machine, true);
}
self->in = rx_fifo;
self->out = tx_fifo;
self->out_shift_right = out_shift_right;
self->in_shift_right = in_shift_right;
self->wait_for_txstall = wait_for_txstall;
self->user_interruptible = user_interruptible;
self->init = init;
self->init_len = init_len;
sm_config_set_fifo_join(&c, join);
self->sm_config = c;
// no DMA allocated
SM_DMA_CLEAR_CHANNEL(pio_index, state_machine);
pio_sm_init(self->pio, self->state_machine, program_offset, &c);
common_hal_rp2pio_statemachine_run(self, init, init_len);
common_hal_rp2pio_statemachine_set_frequency(self, frequency);
pio_sm_set_enabled(self->pio, self->state_machine, true);
return true;
}
static uint32_t mask_and_rotate(const mcu_pin_obj_t *first_pin, uint32_t bit_count, uint32_t value) {
if (!first_pin) {
return 0;
}
value = value & ((1 << bit_count) - 1);
uint32_t shift = first_pin->number;
return value << shift | value >> (32 - shift);
}
void common_hal_rp2pio_statemachine_construct(rp2pio_statemachine_obj_t *self,
const uint16_t *program, size_t program_len,
size_t frequency,
const uint16_t *init, size_t init_len,
const mcu_pin_obj_t *first_out_pin, uint8_t out_pin_count, uint32_t initial_out_pin_state, uint32_t initial_out_pin_direction,
const mcu_pin_obj_t *first_in_pin, uint8_t in_pin_count,
uint32_t pull_pin_up, uint32_t pull_pin_down,
const mcu_pin_obj_t *first_set_pin, uint8_t set_pin_count, uint32_t initial_set_pin_state, uint32_t initial_set_pin_direction,
const mcu_pin_obj_t *first_sideset_pin, uint8_t sideset_pin_count, uint32_t initial_sideset_pin_state, uint32_t initial_sideset_pin_direction,
bool sideset_enable,
const mcu_pin_obj_t *jmp_pin, digitalio_pull_t jmp_pull,
uint32_t wait_gpio_mask,
bool exclusive_pin_use,
bool auto_pull, uint8_t pull_threshold, bool out_shift_right,
bool wait_for_txstall,
bool auto_push, uint8_t push_threshold, bool in_shift_right,
bool user_interruptible,
int wrap_target, int wrap) {
// First, check that all pins are free OR already in use by any PIO if exclusive_pin_use is false.
uint32_t pins_we_use = wait_gpio_mask;
pins_we_use |= _check_pins_free(first_out_pin, out_pin_count, exclusive_pin_use);
pins_we_use |= _check_pins_free(first_in_pin, in_pin_count, exclusive_pin_use);
pins_we_use |= _check_pins_free(first_set_pin, set_pin_count, exclusive_pin_use);
pins_we_use |= _check_pins_free(first_sideset_pin, sideset_pin_count, exclusive_pin_use);
pins_we_use |= _check_pins_free(jmp_pin, 1, exclusive_pin_use);
// Look through the program to see what we reference and make sure it was provided.
bool tx_fifo = false;
bool rx_fifo = false;
bool in_loaded = false; // can be loaded in other ways besides the fifo
bool out_loaded = false;
bool in_used = false;
bool out_used = false;
for (size_t i = 0; i < program_len; i++) {
uint16_t full_instruction = program[i];
uint16_t instruction = full_instruction & 0xe000;
if (instruction == 0x8000) {
if ((full_instruction & 0xe080) == pio_instr_bits_push) {
rx_fifo = true;
in_loaded = true;
} else { // pull otherwise.
tx_fifo = true;
out_loaded = true;
}
}
if (instruction == pio_instr_bits_jmp) {
uint16_t condition = (full_instruction & 0x00e0) >> 5;
if ((condition == 0x6) && (jmp_pin == NULL)) {
mp_raise_ValueError_varg(translate("Missing jmp_pin. Instruction %d jumps on pin"), i);
}
}
if (instruction == pio_instr_bits_wait) {
uint16_t wait_source = (full_instruction & 0x0060) >> 5;
uint16_t wait_index = full_instruction & 0x001f;
if (wait_source == 0 && (pins_we_use & (1 << wait_index)) == 0) { // GPIO
mp_raise_ValueError_varg(translate("Instruction %d uses extra pin"), i);
}
if (wait_source == 1) { // Input pin
if (first_in_pin == NULL) {
mp_raise_ValueError_varg(translate("Missing first_in_pin. Instruction %d waits based on pin"), i);
}
if (wait_index >= in_pin_count) {
mp_raise_ValueError_varg(translate("Instruction %d waits on input outside of count"), i);
}
}
}
if (instruction == pio_instr_bits_in) {
uint16_t source = (full_instruction & 0x00e0) >> 5;
uint16_t bit_count = full_instruction & 0x001f;
if (source == 0) {
if (first_in_pin == NULL) {
mp_raise_ValueError_varg(translate("Missing first_in_pin. Instruction %d shifts in from pin(s)"), i);
}
if (bit_count > in_pin_count) {
mp_raise_ValueError_varg(translate("Instruction %d shifts in more bits than pin count"), i);
}
}
if (auto_push) {
in_loaded = true;
rx_fifo = true;
}
in_used = true;
}
if (instruction == pio_instr_bits_out) {
uint16_t bit_count = full_instruction & 0x001f;
uint16_t destination = (full_instruction & 0x00e0) >> 5;
// Check for pins or pindirs destination.
if (destination == 0x0 || destination == 0x4) {
if (first_out_pin == NULL) {
mp_raise_ValueError_varg(translate("Missing first_out_pin. Instruction %d shifts out to pin(s)"), i);
}
if (bit_count > out_pin_count) {
mp_raise_ValueError_varg(translate("Instruction %d shifts out more bits than pin count"), i);
}
}
if (auto_pull) {
out_loaded = true;
tx_fifo = true;
}
out_used = true;
}
if (instruction == pio_instr_bits_set) {
uint16_t destination = (full_instruction & 0x00e0) >> 5;
// Check for pins or pindirs destination.
if ((destination == 0x00 || destination == 0x4) && first_set_pin == NULL) {
mp_raise_ValueError_varg(translate("Missing first_set_pin. Instruction %d sets pin(s)"), i);
}
}
if (instruction == pio_instr_bits_mov) {
uint16_t source = full_instruction & 0x0007;
uint16_t destination = (full_instruction & 0x00e0) >> 5;
// Check for pins or pindirs destination.
if (destination == 0x0 && first_out_pin == NULL) {
mp_raise_ValueError_varg(translate("Missing first_out_pin. Instruction %d writes pin(s)"), i);
}
if (source == 0x0 && first_in_pin == NULL) {
mp_raise_ValueError_varg(translate("Missing first_in_pin. Instruction %d reads pin(s)"), i);
}
if (destination == 0x6) {
in_loaded = true;
} else if (destination == 0x7) {
out_loaded = true;
}
}
}
if (!in_loaded && in_used) {
mp_raise_ValueError_varg(translate("Program does IN without loading ISR"));
}
if (!out_loaded && out_used) {
mp_raise_ValueError_varg(translate("Program does OUT without loading OSR"));
}
uint32_t initial_pin_state = mask_and_rotate(first_out_pin, out_pin_count, initial_out_pin_state);
uint32_t initial_pin_direction = mask_and_rotate(first_out_pin, out_pin_count, initial_out_pin_direction);
initial_set_pin_state = mask_and_rotate(first_set_pin, set_pin_count, initial_set_pin_state);
initial_set_pin_direction = mask_and_rotate(first_set_pin, set_pin_count, initial_set_pin_direction);
uint32_t set_out_overlap = mask_and_rotate(first_out_pin, out_pin_count, 0xffffffff) &
mask_and_rotate(first_set_pin, set_pin_count, 0xffffffff);
// Check that OUT and SET settings agree because we don't have a way of picking one over the other.
if ((initial_pin_state & set_out_overlap) != (initial_set_pin_state & set_out_overlap)) {
mp_raise_ValueError(translate("Initial set pin state conflicts with initial out pin state"));
}
if ((initial_pin_direction & set_out_overlap) != (initial_set_pin_direction & set_out_overlap)) {
mp_raise_ValueError(translate("Initial set pin direction conflicts with initial out pin direction"));
}
initial_pin_state |= initial_set_pin_state;
initial_pin_direction |= initial_set_pin_direction;
// Sideset overrides OUT or SET so we always use its values.
uint32_t sideset_mask = mask_and_rotate(first_sideset_pin, sideset_pin_count, 0x1f);
initial_pin_state = (initial_pin_state & ~sideset_mask) | mask_and_rotate(first_sideset_pin, sideset_pin_count, initial_sideset_pin_state);
initial_pin_direction = (initial_pin_direction & ~sideset_mask) | mask_and_rotate(first_sideset_pin, sideset_pin_count, initial_sideset_pin_direction);
// Deal with pull up/downs
uint32_t pull_up = mask_and_rotate(first_in_pin, in_pin_count, pull_pin_up);
uint32_t pull_down = mask_and_rotate(first_in_pin, in_pin_count, pull_pin_down);
if (jmp_pin) {
uint32_t jmp_mask = mask_and_rotate(jmp_pin, 1, 0x1f);
if (jmp_pull == PULL_UP) {
pull_up |= jmp_mask;
}
if (jmp_pull == PULL_DOWN) {
pull_up |= jmp_mask;
}
}
if (initial_pin_direction & (pull_up | pull_down)) {
mp_raise_ValueError(translate("pull masks conflict with direction masks"));
}
bool ok = rp2pio_statemachine_construct(
self,
program, program_len,
frequency,
init, init_len,
first_out_pin, out_pin_count,
first_in_pin, in_pin_count,
pull_up, pull_down,
first_set_pin, set_pin_count,
first_sideset_pin, sideset_pin_count,
initial_pin_state, initial_pin_direction,
jmp_pin,
pins_we_use, tx_fifo, rx_fifo,
auto_pull, pull_threshold, out_shift_right,
wait_for_txstall,
auto_push, push_threshold, in_shift_right,
true /* claim pins */,
user_interruptible,
sideset_enable,
wrap_target, wrap);
if (!ok) {
mp_raise_RuntimeError(translate("All state machines in use"));
}
}
void common_hal_rp2pio_statemachine_restart(rp2pio_statemachine_obj_t *self) {
common_hal_rp2pio_statemachine_stop(self);
// Reset program counter to the original offset. A JMP is 0x0000 plus
// the desired offset, so we can just use self->offset.
pio_sm_exec(self->pio, self->state_machine, self->offset);
pio_sm_restart(self->pio, self->state_machine);
uint8_t pio_index = pio_get_index(self->pio);
uint32_t pins_we_use = _current_sm_pins[pio_index][self->state_machine];
pio_sm_set_pins_with_mask(self->pio, self->state_machine, self->initial_pin_state, pins_we_use);
pio_sm_set_pindirs_with_mask(self->pio, self->state_machine, self->initial_pin_direction, pins_we_use);
rp2pio_statemachine_set_pull(self->pull_pin_up, self->pull_pin_down, pins_we_use);
common_hal_rp2pio_statemachine_run(self, self->init, self->init_len);
pio_sm_set_enabled(self->pio, self->state_machine, true);
}
void common_hal_rp2pio_statemachine_stop(rp2pio_statemachine_obj_t *self) {
pio_sm_set_enabled(self->pio, self->state_machine, false);
}
void common_hal_rp2pio_statemachine_run(rp2pio_statemachine_obj_t *self, const uint16_t *instructions, size_t len) {
for (size_t i = 0; i < len; i++) {
pio_sm_exec(self->pio, self->state_machine, instructions[i]);
}
}
uint32_t common_hal_rp2pio_statemachine_get_frequency(rp2pio_statemachine_obj_t *self) {
return self->actual_frequency;
}
void common_hal_rp2pio_statemachine_set_frequency(rp2pio_statemachine_obj_t *self, uint32_t frequency) {
if (frequency == 0) {
frequency = clock_get_hz(clk_sys);
}
uint64_t frequency256 = ((uint64_t)clock_get_hz(clk_sys)) * 256;
uint64_t div256 = frequency256 / frequency;
if (frequency256 % div256 > 0) {
div256 += 1;
}
// 0 is interpreted as 0x10000 so it's valid.
if (div256 / 256 > 0x10000 || frequency > clock_get_hz(clk_sys)) {
mp_raise_ValueError_varg(translate("%q out of range"), MP_QSTR_frequency);
}
self->actual_frequency = frequency256 / div256;
pio_sm_set_clkdiv_int_frac(self->pio, self->state_machine, div256 / 256, div256 % 256);
// Reset the clkdiv counter in case our new TOP is lower.
pio_sm_clkdiv_restart(self->pio, self->state_machine);
}
void rp2pio_statemachine_reset_ok(PIO pio, int sm) {
uint8_t pio_index = pio_get_index(pio);
_never_reset[pio_index][sm] = false;
}
void rp2pio_statemachine_never_reset(PIO pio, int sm) {
uint8_t pio_index = pio_get_index(pio);
_never_reset[pio_index][sm] = true;
}
void rp2pio_statemachine_deinit(rp2pio_statemachine_obj_t *self, bool leave_pins) {
common_hal_rp2pio_statemachine_stop(self);
(void)common_hal_rp2pio_statemachine_stop_background_write(self);
uint8_t sm = self->state_machine;
uint8_t pio_index = pio_get_index(self->pio);
common_hal_mcu_disable_interrupts();
_interrupt_arg[pio_index][sm] = NULL;
_interrupt_handler[pio_index][sm] = NULL;
common_hal_mcu_enable_interrupts();
_never_reset[pio_index][sm] = false;
_reset_statemachine(self->pio, sm, leave_pins);
self->state_machine = NUM_PIO_STATE_MACHINES;
}
void common_hal_rp2pio_statemachine_deinit(rp2pio_statemachine_obj_t *self) {
rp2pio_statemachine_deinit(self, false);
}
void common_hal_rp2pio_statemachine_never_reset(rp2pio_statemachine_obj_t *self) {
rp2pio_statemachine_never_reset(self->pio, self->state_machine);
// TODO: never reset all the pins
}
bool common_hal_rp2pio_statemachine_deinited(rp2pio_statemachine_obj_t *self) {
return self->state_machine == NUM_PIO_STATE_MACHINES;
}
STATIC enum dma_channel_transfer_size _stride_to_dma_size(uint8_t stride) {
switch (stride) {
case 4:
return DMA_SIZE_32;
case 2:
return DMA_SIZE_16;
case 1:
default:
return DMA_SIZE_8;
}
}
static bool _transfer(rp2pio_statemachine_obj_t *self,
const uint8_t *data_out, size_t out_len, uint8_t out_stride_in_bytes,
uint8_t *data_in, size_t in_len, uint8_t in_stride_in_bytes, bool swap_out, bool swap_in) {
// This implementation is based on SPI but varies because the tx and rx buffers
// may be different lengths and occur at different times or speeds.
// Use DMA for large transfers if channels are available
const size_t dma_min_size_threshold = 32;
int chan_tx = -1;
int chan_rx = -1;
size_t len = MAX(out_len, in_len);
bool tx = data_out != NULL;
bool rx = data_in != NULL;
bool use_dma = len >= dma_min_size_threshold || swap_out || swap_in;
if (use_dma) {
// Use DMA channels to service the two FIFOs
if (tx) {
chan_tx = dma_claim_unused_channel(false);
// DMA allocation failed...
if (chan_tx < 0) {
return false;
}
}
if (rx) {
chan_rx = dma_claim_unused_channel(false);
// DMA allocation failed...
if (chan_rx < 0) {
// may need to free tx channel
if (chan_tx >= 0) {
dma_channel_unclaim(chan_tx);
}
return false;
}
}
}
volatile uint8_t *tx_destination = NULL;
const volatile uint8_t *rx_source = NULL;
if (tx) {
tx_destination = (volatile uint8_t *)&self->pio->txf[self->state_machine];
if (!self->out_shift_right) {
tx_destination += 4 - out_stride_in_bytes;
}
}
if (rx) {
rx_source = (const volatile uint8_t *)&self->pio->rxf[self->state_machine];
if (self->in_shift_right) {
rx_source += 4 - in_stride_in_bytes;
}
}
uint32_t stall_mask = 1 << (PIO_FDEBUG_TXSTALL_LSB + self->state_machine);
if (use_dma) {
dma_channel_config c;
uint32_t channel_mask = 0;
if (tx) {
c = dma_channel_get_default_config(chan_tx);
channel_config_set_transfer_data_size(&c, _stride_to_dma_size(out_stride_in_bytes));
channel_config_set_dreq(&c, self->tx_dreq);
channel_config_set_read_increment(&c, true);
channel_config_set_write_increment(&c, false);
channel_config_set_bswap(&c, swap_out);
dma_channel_configure(chan_tx, &c,
tx_destination,
data_out,
out_len / out_stride_in_bytes,
false);
channel_mask |= 1u << chan_tx;
}
if (rx) {
c = dma_channel_get_default_config(chan_rx);
channel_config_set_transfer_data_size(&c, _stride_to_dma_size(in_stride_in_bytes));
channel_config_set_dreq(&c, self->rx_dreq);
channel_config_set_read_increment(&c, false);
channel_config_set_write_increment(&c, true);
channel_config_set_bswap(&c, swap_in);
dma_channel_configure(chan_rx, &c,
data_in,
rx_source,
in_len / in_stride_in_bytes,
false);
channel_mask |= 1u << chan_rx;
}
dma_start_channel_mask(channel_mask);
while ((rx && dma_channel_is_busy(chan_rx)) ||
(tx && dma_channel_is_busy(chan_tx))) {
// TODO: We should idle here until we get a DMA interrupt or something else.
RUN_BACKGROUND_TASKS;
if (self->user_interruptible && mp_hal_is_interrupted()) {
if (rx && dma_channel_is_busy(chan_rx)) {
dma_channel_abort(chan_rx);
}
if (tx && dma_channel_is_busy(chan_tx)) {
dma_channel_abort(chan_tx);
}
break;
}
}
// Clear the stall bit so we can detect when the state machine is done transmitting.
self->pio->fdebug = stall_mask;
}
// If we have claimed only one channel successfully, we should release immediately. This also
// releases the DMA after use_dma has been done.
if (chan_rx >= 0) {
dma_channel_unclaim(chan_rx);
}
if (chan_tx >= 0) {
dma_channel_unclaim(chan_tx);
}
if (!use_dma && !(self->user_interruptible && mp_hal_is_interrupted())) {
// Use software for small transfers, or if couldn't claim two DMA channels
size_t rx_remaining = in_len / in_stride_in_bytes;
size_t tx_remaining = out_len / out_stride_in_bytes;
while (rx_remaining || tx_remaining) {
while (tx_remaining && !pio_sm_is_tx_fifo_full(self->pio, self->state_machine)) {
if (out_stride_in_bytes == 1) {
*tx_destination = *data_out;
} else if (out_stride_in_bytes == 2) {
*((uint16_t *)tx_destination) = *((uint16_t *)data_out);
} else if (out_stride_in_bytes == 4) {
*((uint32_t *)tx_destination) = *((uint32_t *)data_out);
}
data_out += out_stride_in_bytes;
--tx_remaining;
}
while (rx_remaining && !pio_sm_is_rx_fifo_empty(self->pio, self->state_machine)) {
if (in_stride_in_bytes == 1) {
*data_in = (uint8_t)*rx_source;
} else if (in_stride_in_bytes == 2) {
*((uint16_t *)data_in) = *((uint16_t *)rx_source);
} else if (in_stride_in_bytes == 4) {
*((uint32_t *)data_in) = *((uint32_t *)rx_source);
}
data_in += in_stride_in_bytes;
--rx_remaining;
}
RUN_BACKGROUND_TASKS;
if (self->user_interruptible && mp_hal_is_interrupted()) {
break;
}
}
// Clear the stall bit so we can detect when the state machine is done transmitting.
self->pio->fdebug = stall_mask;
}
// Wait for the state machine to finish transmitting the data we've queued
// up.
if (tx) {
while (!pio_sm_is_tx_fifo_empty(self->pio, self->state_machine) ||
(self->wait_for_txstall && (self->pio->fdebug & stall_mask) == 0)) {
RUN_BACKGROUND_TASKS;
if (self->user_interruptible && mp_hal_is_interrupted()) {
break;
}
}
}
return true;
}
// TODO: Provide a way around these checks in case someone wants to use the FIFO
// with manually run code.
bool common_hal_rp2pio_statemachine_write(rp2pio_statemachine_obj_t *self, const uint8_t *data, size_t len, uint8_t stride_in_bytes, bool swap) {
if (!self->out) {
mp_raise_RuntimeError(translate("No out in program"));
}
return _transfer(self, data, len, stride_in_bytes, NULL, 0, 0, swap, false);
}
bool common_hal_rp2pio_statemachine_readinto(rp2pio_statemachine_obj_t *self, uint8_t *data, size_t len, uint8_t stride_in_bytes, bool swap) {
if (!self->in) {
mp_raise_RuntimeError(translate("No in in program"));
}
return _transfer(self, NULL, 0, 0, data, len, stride_in_bytes, false, swap);
}
bool common_hal_rp2pio_statemachine_write_readinto(rp2pio_statemachine_obj_t *self,
const uint8_t *data_out, size_t out_len, uint8_t out_stride_in_bytes,
uint8_t *data_in, size_t in_len, uint8_t in_stride_in_bytes, bool swap_out, bool swap_in) {
if (!self->in || !self->out) {
mp_raise_RuntimeError(translate("No in or out in program"));
}
return _transfer(self, data_out, out_len, out_stride_in_bytes, data_in, in_len, in_stride_in_bytes, swap_out, swap_in);
}
bool common_hal_rp2pio_statemachine_get_rxstall(rp2pio_statemachine_obj_t *self) {
uint32_t stall_mask = 1 << (PIO_FDEBUG_RXSTALL_LSB + self->state_machine);
return (self->pio->fdebug & stall_mask) != 0;
}
void common_hal_rp2pio_statemachine_clear_rxfifo(rp2pio_statemachine_obj_t *self) {
uint8_t level = pio_sm_get_rx_fifo_level(self->pio, self->state_machine);
uint32_t stall_mask = 1 << (PIO_FDEBUG_RXSTALL_LSB + self->state_machine);
for (size_t i = 0; i < level; i++) {
(void)self->pio->rxf[self->state_machine];
}
self->pio->fdebug = stall_mask;
}
bool common_hal_rp2pio_statemachine_get_txstall(rp2pio_statemachine_obj_t *self) {
uint32_t stall_mask = 1 << (PIO_FDEBUG_TXSTALL_LSB + self->state_machine);
return (self->pio->fdebug & stall_mask) != 0;
}
void common_hal_rp2pio_statemachine_clear_txstall(rp2pio_statemachine_obj_t *self) {
(void)pio_sm_get_rx_fifo_level(self->pio, self->state_machine);
uint32_t stall_mask = 1 << (PIO_FDEBUG_TXSTALL_LSB + self->state_machine);
self->pio->fdebug = stall_mask;
}
size_t common_hal_rp2pio_statemachine_get_in_waiting(rp2pio_statemachine_obj_t *self) {
uint8_t level = pio_sm_get_rx_fifo_level(self->pio, self->state_machine);
return level;
}
void common_hal_rp2pio_statemachine_set_interrupt_handler(rp2pio_statemachine_obj_t *self, void (*handler)(void *), void *arg, int mask) {
uint8_t pio_index = pio_get_index(self->pio);
uint8_t sm = self->state_machine;
common_hal_mcu_disable_interrupts();
uint32_t inte = self->pio->inte0;
inte &= ~((PIO_IRQ0_INTF_SM0_RXNEMPTY_BITS | PIO_IRQ0_INTF_SM0_TXNFULL_BITS | PIO_IRQ0_INTF_SM0_BITS) << sm);
inte |= (mask << sm);
self->pio->inte0 = inte;
_interrupt_arg[pio_index][sm] = arg;
_interrupt_handler[pio_index][sm] = handler;
irq_set_exclusive_handler(PIO0_IRQ_0 + 2 * pio_index, rp2pio_statemachine_interrupt_handler);
irq_set_enabled(PIO0_IRQ_0 + 2 * pio_index, true);
common_hal_mcu_enable_interrupts();
}
STATIC void rp2pio_statemachine_interrupt_handler(void) {
for (size_t pio_index = 0; pio_index < NUM_PIOS; pio_index++) {
PIO pio = pio_instances[pio_index];
for (size_t sm = 0; sm < NUM_PIO_STATE_MACHINES; sm++) {
if (!_interrupt_handler[pio_index][sm]) {
continue;
}
uint32_t intf = (PIO_IRQ0_INTF_SM0_RXNEMPTY_BITS | PIO_IRQ0_INTF_SM0_TXNFULL_BITS | PIO_IRQ0_INTF_SM0_BITS) << sm;
if (pio->ints0 & intf) {
_interrupt_handler[pio_index][sm](_interrupt_arg[pio_index][sm]);
}
}
}
}
uint8_t rp2pio_statemachine_program_offset(rp2pio_statemachine_obj_t *self) {
uint8_t pio_index = pio_get_index(self->pio);
uint8_t sm = self->state_machine;
return _current_program_offset[pio_index][sm];
}
bool common_hal_rp2pio_statemachine_background_write(rp2pio_statemachine_obj_t *self, const sm_buf_info *once, const sm_buf_info *loop, uint8_t stride_in_bytes, bool swap) {
uint8_t pio_index = pio_get_index(self->pio);
uint8_t sm = self->state_machine;
int pending_buffers = (once->info.len != 0) + (loop->info.len != 0);
if (!once->info.len) {
once = loop;
}
if (SM_DMA_ALLOCATED(pio_index, sm)) {
if (stride_in_bytes != self->background_stride_in_bytes) {
mp_raise_ValueError(translate("Mismatched data size"));
}
if (swap != self->byteswap) {
mp_raise_ValueError(translate("Mismatched swap flag"));
}
while (self->pending_buffers) {
RUN_BACKGROUND_TASKS;
if (self->user_interruptible && mp_hal_is_interrupted()) {
return false;
}
}
common_hal_mcu_disable_interrupts();
self->once = *once;
self->loop = *loop;
self->pending_buffers = pending_buffers;
if (self->dma_completed && self->once.info.len) {
rp2pio_statemachine_dma_complete(self, SM_DMA_GET_CHANNEL(pio_index, sm));
self->dma_completed = false;
}
common_hal_mcu_enable_interrupts();
return true;
}
int channel = dma_claim_unused_channel(false);
if (channel == -1) {
return false;
}
SM_DMA_SET_CHANNEL(pio_index, sm, channel);
volatile uint8_t *tx_destination = (volatile uint8_t *)&self->pio->txf[self->state_machine];
self->tx_dreq = pio_get_dreq(self->pio, self->state_machine, true);
dma_channel_config c;
self->current = *once;
self->once = *loop;
self->loop = *loop;
self->pending_buffers = pending_buffers;
self->dma_completed = false;
self->background_stride_in_bytes = stride_in_bytes;
self->byteswap = swap;
c = dma_channel_get_default_config(channel);
channel_config_set_transfer_data_size(&c, _stride_to_dma_size(stride_in_bytes));
channel_config_set_dreq(&c, self->tx_dreq);
channel_config_set_read_increment(&c, true);
channel_config_set_write_increment(&c, false);
channel_config_set_bswap(&c, swap);
dma_channel_configure(channel, &c,
tx_destination,
once->info.buf,
once->info.len / stride_in_bytes,
false);
common_hal_mcu_disable_interrupts();
MP_STATE_PORT(background_pio)[channel] = self;
dma_hw->inte0 |= 1u << channel;
irq_set_mask_enabled(1 << DMA_IRQ_0, true);
dma_start_channel_mask(1u << channel);
common_hal_mcu_enable_interrupts();
return true;
}
void rp2pio_statemachine_dma_complete(rp2pio_statemachine_obj_t *self, int channel) {
self->current = self->once;
self->once = self->loop;
if (self->current.info.buf) {
if (self->pending_buffers > 0) {
self->pending_buffers--;
}
dma_channel_set_read_addr(channel, self->current.info.buf, false);
dma_channel_set_trans_count(channel, self->current.info.len / self->background_stride_in_bytes, true);
} else {
self->dma_completed = true;
self->pending_buffers = 0; // should be a no-op
}
}
bool common_hal_rp2pio_statemachine_stop_background_write(rp2pio_statemachine_obj_t *self) {
uint8_t pio_index = pio_get_index(self->pio);
uint8_t sm = self->state_machine;
rp2pio_statemachine_clear_dma(pio_index, sm);
memset(&self->current, 0, sizeof(self->current));
memset(&self->once, 0, sizeof(self->once));
memset(&self->loop, 0, sizeof(self->loop));
self->pending_buffers = 0;
return true;
}
bool common_hal_rp2pio_statemachine_get_writing(rp2pio_statemachine_obj_t *self) {
return !self->dma_completed;
}
int common_hal_rp2pio_statemachine_get_pending(rp2pio_statemachine_obj_t *self) {
return self->pending_buffers;
}