circuitpython/ports/raspberrypi/common-hal/analogio/AnalogFastIn.c
2022-08-12 16:01:58 -04:00

164 lines
6.0 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* SPDX-FileCopyrightText: Copyright (c) 2022 Lee Atkinson, MeanStride Technology, Inc.
* Taken from AnalogIn by Scott Shawcroft for Adafruit Industries
* Also from DMA_Capture by Luke Wren of Raspberry Pi (Trading) Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "common-hal/analogio/AnalogFastIn.h"
#include "shared-bindings/analogio/AnalogFastIn.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "py/runtime.h"
#include "supervisor/shared/translate/translate.h"
#include "src/rp2_common/hardware_adc/include/hardware/adc.h"
#include "src/rp2_common/hardware_dma/include/hardware/dma.h"
// /sdk/src/rp2_common/hardware_dma/include/hardware/dma.h
// ports/raspberrypi/
#include "sdk/src/common/pico_stdlib/include/pico/stdlib.h"
#define ADC_FIRST_PIN_NUMBER 26
#define ADC_PIN_COUNT 4
// Channel 0 is GPIO26
#define CAPTURE_CHANNEL 0
#define CAPTURE_DEPTH 1000
uint8_t capture_buf[CAPTURE_DEPTH];
void common_hal_analogio_analogfastin_construct(analogio_analogfastin_obj_t *self, const mcu_pin_obj_t *pin, uint8_t *buffer, uint32_t len, uint8_t bytes_per_sample, bool samples_signed, mp_float_t sample_rate) {
// Set pin and channel
self->pin = pin;
self->chan = pin->number - ADC_FIRST_PIN_NUMBER;
// Checks on chan value here
// Set buffer and length
self->buffer = buffer;
self->len = len;
// checks on length here
// uint8_t bytes_per_sample
// Set sample rate
// self->bits_per_sample = bytes_per_sample * 8;
self->sample_rate = sample_rate;
// Standard IO Init
stdio_init_all();
// Init GPIO for analogue use: hi-Z, no pulls, disable digital input buffer.
adc_init();
adc_gpio_init(pin->number);
adc_select_input(self->chan); // chan = pin - 26 ??
// adc_select_input(self->pin->number - ADC_FIRST_PIN_NUMBER);
adc_fifo_setup(
true, // Write each completed conversion to the sample FIFO
true, // Enable DMA data request (DREQ)
1, // DREQ (and IRQ) asserted when at least 1 sample present
false, // We won't see the ERR bit because of 8 bit reads; disable. // ??
false // Shift each sample to 8 bits when pushing to FIFO // ??
);
// Divisor of 0 -> full speed. Free-running capture with the divider is
// equivalent to pressing the ADC_CS_START_ONCE button once per `div + 1`
// cycles (div not necessarily an integer). Each conversion takes 96
// cycles, so in general you want a divider of 0 (hold down the button
// continuously) or > 95 (take samples less frequently than 96 cycle
// intervals). This is all timed by the 48 MHz ADC clock.
// sample rate determines divisor, not zero.
adc_set_clkdiv(48000000.0 / self->sample_rate);
// sleep_ms(1000);
// Set up the DMA to start transferring data as soon as it appears in FIFO
uint dma_chan = dma_claim_unused_channel(true);
self->dma_chan = dma_chan;
// Set Config
self->cfg = dma_channel_get_default_config(dma_chan);
// Reading from constant address, writing to incrementing byte addresses
channel_config_set_transfer_data_size(&(self->cfg), DMA_SIZE_16);
channel_config_set_read_increment(&(self->cfg), false);
channel_config_set_write_increment(&(self->cfg), true);
// Pace transfers based on availability of ADC samples
channel_config_set_dreq(&(self->cfg), DREQ_ADC);
// clear any previous activity
adc_fifo_drain();
adc_run(false);
}
bool common_hal_analogio_analogfastin_deinited(analogio_analogfastin_obj_t *self) {
return self->pin == NULL;
}
void common_hal_analogio_analogfastin_deinit(analogio_analogfastin_obj_t *self) {
if (common_hal_analogio_analogfastin_deinited(self)) {
return;
}
// Release ADC Pin
reset_pin_number(self->pin->number);
self->pin = NULL;
// Release DMA Channel
dma_channel_unclaim(self->dma_chan);
}
// ================================================================
// capture()
// make this a bool so that later we can perform integrity checking
// ================================================================
bool common_hal_analogio_analogfastin_capture(analogio_analogfastin_obj_t *self) {
// CONSIDER THESE ISSUES
// uint16_t value = adc_read();
// Stretch 12-bit ADC reading to 16-bit range
// return (value << 4) | (value >> 8);
uint32_t cdl = self->len / 2 - 1;
dma_channel_configure(self->dma_chan, &(self->cfg),
self->buffer, // dst
&adc_hw->fifo, // src
cdl, // CAPTURE_DEPTH, // transfer count
true // start immediately
);
// Start the ADC
adc_run(true);
// Once DMA finishes, stop any new conversions from starting, and clean up
// the FIFO in case the ADC was still mid-conversion.
dma_channel_wait_for_finish_blocking(self->dma_chan);
// Clean up
adc_run(false);
adc_fifo_drain();
return true;
}