9e44383e3f
Supports suspend and hibernate modes. Waking is possible throug GPIO and WLAN. The mpcallback class is generic and can be reused by other classes.
426 lines
16 KiB
C
426 lines
16 KiB
C
//*****************************************************************************
|
|
// startup_gcc.c
|
|
//
|
|
// Startup code for use with GCC.
|
|
//
|
|
// Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com/
|
|
//
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions
|
|
// are met:
|
|
//
|
|
// Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the
|
|
// distribution.
|
|
//
|
|
// Neither the name of Texas Instruments Incorporated nor the names of
|
|
// its contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
//*****************************************************************************
|
|
|
|
#include <stdint.h>
|
|
#include "inc/hw_nvic.h"
|
|
#include "inc/hw_types.h"
|
|
#include "fault_registers.h"
|
|
|
|
//*****************************************************************************
|
|
//
|
|
// The following are constructs created by the linker, indicating where the
|
|
// the "data" and "bss" segments reside in memory. The initializers for the
|
|
// for the "data" segment resides immediately following the "text" segment.
|
|
//
|
|
//*****************************************************************************
|
|
extern uint32_t _data;
|
|
extern uint32_t _edata;
|
|
extern uint32_t _bss;
|
|
extern uint32_t _ebss;
|
|
extern uint32_t _estack;
|
|
extern uint32_t __init_data;
|
|
|
|
//*****************************************************************************
|
|
//
|
|
// Forward declaration of the default fault handlers.
|
|
//
|
|
//*****************************************************************************
|
|
__attribute__ ((section (".boot")))
|
|
void ResetISR(void);
|
|
#ifdef DEBUG
|
|
static void NmiSR(void) __attribute__( ( naked ) );
|
|
static void FaultISR( void ) __attribute__( ( naked ) );
|
|
void HardFault_HandlerC(uint32_t *pulFaultStackAddress);
|
|
static void BusFaultHandler(void) __attribute__( ( naked ) );
|
|
#endif
|
|
static void IntDefaultHandler(void) __attribute__( ( naked ) );
|
|
|
|
//*****************************************************************************
|
|
//
|
|
// External declaration for the freeRTOS handlers
|
|
//
|
|
//*****************************************************************************
|
|
#ifdef USE_FREERTOS
|
|
extern void vPortSVCHandler(void);
|
|
extern void xPortPendSVHandler(void);
|
|
extern void xPortSysTickHandler(void);
|
|
#endif
|
|
|
|
//*****************************************************************************
|
|
//
|
|
// The entry point for the application.
|
|
//
|
|
//*****************************************************************************
|
|
extern int main(void);
|
|
|
|
//*****************************************************************************
|
|
//
|
|
// The vector table. Note that the proper constructs must be placed on this to
|
|
// ensure that it ends up at physical address 0x0000.0000.
|
|
//
|
|
//*****************************************************************************
|
|
__attribute__ ((section(".intvecs")))
|
|
void (* const g_pfnVectors[256])(void) =
|
|
{
|
|
(void (*)(void))((uint32_t)&_estack), // The initial stack pointer
|
|
ResetISR, // The reset handler
|
|
#ifdef DEBUG
|
|
NmiSR, // The NMI handler
|
|
FaultISR, // The hard fault handler
|
|
#else
|
|
IntDefaultHandler, // The NMI handler
|
|
IntDefaultHandler, // The hard fault handler
|
|
#endif
|
|
IntDefaultHandler, // The MPU fault handler
|
|
#ifdef DEBUG
|
|
BusFaultHandler, // The bus fault handler
|
|
#else
|
|
IntDefaultHandler, // The bus fault handler
|
|
#endif
|
|
IntDefaultHandler, // The usage fault handler
|
|
0, // Reserved
|
|
0, // Reserved
|
|
0, // Reserved
|
|
0, // Reserved
|
|
#ifdef USE_FREERTOS
|
|
vPortSVCHandler, // SVCall handler
|
|
#else
|
|
IntDefaultHandler, // SVCall handler
|
|
#endif
|
|
IntDefaultHandler, // Debug monitor handler
|
|
0, // Reserved
|
|
#ifdef USE_FREERTOS
|
|
xPortPendSVHandler, // The PendSV handler
|
|
xPortSysTickHandler, // The SysTick handler
|
|
#else
|
|
IntDefaultHandler, // The PendSV handler
|
|
IntDefaultHandler, // The SysTick handler
|
|
#endif
|
|
IntDefaultHandler, // GPIO Port A
|
|
IntDefaultHandler, // GPIO Port B
|
|
IntDefaultHandler, // GPIO Port C
|
|
IntDefaultHandler, // GPIO Port D
|
|
0, // Reserved
|
|
IntDefaultHandler, // UART0 Rx and Tx
|
|
IntDefaultHandler, // UART1 Rx and Tx
|
|
0, // Reserved
|
|
IntDefaultHandler, // I2C0 Master and Slave
|
|
0,0,0,0,0, // Reserved
|
|
IntDefaultHandler, // ADC Channel 0
|
|
IntDefaultHandler, // ADC Channel 1
|
|
IntDefaultHandler, // ADC Channel 2
|
|
IntDefaultHandler, // ADC Channel 3
|
|
IntDefaultHandler, // Watchdog Timer
|
|
IntDefaultHandler, // Timer 0 subtimer A
|
|
IntDefaultHandler, // Timer 0 subtimer B
|
|
IntDefaultHandler, // Timer 1 subtimer A
|
|
IntDefaultHandler, // Timer 1 subtimer B
|
|
IntDefaultHandler, // Timer 2 subtimer A
|
|
IntDefaultHandler, // Timer 2 subtimer B
|
|
0,0,0,0, // Reserved
|
|
IntDefaultHandler, // Flash
|
|
0,0,0,0,0, // Reserved
|
|
IntDefaultHandler, // Timer 3 subtimer A
|
|
IntDefaultHandler, // Timer 3 subtimer B
|
|
0,0,0,0,0,0,0,0,0, // Reserved
|
|
IntDefaultHandler, // uDMA Software Transfer
|
|
IntDefaultHandler, // uDMA Error
|
|
0,0,0,0,0,0,0,0,0,0, // Reserved
|
|
0,0,0,0,0,0,0,0,0,0, // Reserved
|
|
0,0,0,0,0,0,0,0,0,0, // Reserved
|
|
0,0,0,0,0,0,0,0,0,0, // Reserved
|
|
0,0,0,0,0,0,0,0,0,0, // Reserved
|
|
0,0,0,0,0,0,0,0,0,0, // Reserved
|
|
0,0,0,0,0,0,0,0,0,0, // Reserved
|
|
0,0,0,0,0,0,0,0,0,0, // Reserved
|
|
0,0,0,0,0,0,0,0,0,0, // Reserved
|
|
0,0,0,0,0,0,0,0,0,0, // Reserved
|
|
IntDefaultHandler, // SHA
|
|
0,0, // Reserved
|
|
IntDefaultHandler, // AES
|
|
0, // Reserved
|
|
IntDefaultHandler, // DES
|
|
0,0,0,0,0, // Reserved
|
|
IntDefaultHandler, // SDHost
|
|
0, // Reserved
|
|
IntDefaultHandler, // I2S
|
|
0, // Reserved
|
|
IntDefaultHandler, // Camera
|
|
0,0,0,0,0,0,0, // Reserved
|
|
IntDefaultHandler, // NWP to APPS Interrupt
|
|
IntDefaultHandler, // Power, Reset and Clock module
|
|
0,0, // Reserved
|
|
IntDefaultHandler, // Shared SPI
|
|
IntDefaultHandler, // Generic SPI
|
|
IntDefaultHandler, // Link SPI
|
|
0,0,0,0,0,0,0,0,0,0, // Reserved
|
|
0,0,0,0,0,0,0,0,0,0, // Reserved
|
|
0,0,0,0,0,0,0,0,0,0, // Reserved
|
|
0,0,0,0,0,0,0,0,0,0, // Reserved
|
|
0,0,0,0,0,0,0,0,0,0, // Reserved
|
|
0,0,0,0,0,0,0,0,0,0, // Reserved
|
|
0,0 // Reserved
|
|
};
|
|
|
|
|
|
|
|
//*****************************************************************************
|
|
//
|
|
// This is the code that gets called when the processor first starts execution
|
|
// following a reset event. Only the absolutely necessary set is performed,
|
|
// after which the application supplied entry() routine is called. Any fancy
|
|
// actions (such as making decisions based on the reset cause register, and
|
|
// resetting the bits in that register) are left solely in the hands of the
|
|
// application.
|
|
//
|
|
//*****************************************************************************
|
|
|
|
void ResetISR(void)
|
|
{
|
|
#if defined(DEBUG) && !defined(BOOTLOADER)
|
|
//
|
|
// Fill the main stack with a known value so that
|
|
// we can measure the main stack high water mark
|
|
//
|
|
__asm volatile
|
|
(
|
|
"ldr r0, =_stack \n"
|
|
"ldr r1, =_estack \n"
|
|
"mov r2, #0x55555555 \n"
|
|
".thumb_func \n"
|
|
"fill_loop: \n"
|
|
"cmp r0, r1 \n"
|
|
"it lt \n"
|
|
"strlt r2, [r0], #4 \n"
|
|
"blt fill_loop \n"
|
|
);
|
|
#endif
|
|
|
|
// Get the initial stack pointer location from the vector table
|
|
// and write this value to the msp register
|
|
__asm volatile
|
|
(
|
|
"ldr r0, =_text \n"
|
|
"ldr r0, [r0] \n"
|
|
"msr msp, r0 \n"
|
|
);
|
|
|
|
{
|
|
uint32_t *pui32Src, *pui32Dest;
|
|
|
|
//
|
|
// Copy the data segment initializers
|
|
//
|
|
pui32Src = &__init_data;
|
|
for(pui32Dest = &_data; pui32Dest < &_edata; )
|
|
{
|
|
*pui32Dest++ = *pui32Src++;
|
|
}
|
|
|
|
//
|
|
// Zero fill the bss segment.
|
|
//
|
|
__asm volatile
|
|
(
|
|
"ldr r0, =_bss \n"
|
|
"ldr r1, =_ebss \n"
|
|
"mov r2, #0 \n"
|
|
".thumb_func \n"
|
|
"zero_loop: \n"
|
|
"cmp r0, r1 \n"
|
|
"it lt \n"
|
|
"strlt r2, [r0], #4 \n"
|
|
"blt zero_loop \n"
|
|
);
|
|
}
|
|
|
|
//
|
|
// Call the application's entry point.
|
|
//
|
|
main();
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
//*****************************************************************************
|
|
//
|
|
// This is the code that gets called when the processor receives a NMI. This
|
|
// simply enters an infinite loop, preserving the system state for examination
|
|
// by a debugger.
|
|
//
|
|
//*****************************************************************************
|
|
|
|
static void NmiSR(void)
|
|
{
|
|
// Break into the debugger
|
|
__asm volatile ("bkpt #0 \n");
|
|
|
|
//
|
|
// Enter an infinite loop.
|
|
//
|
|
for ( ; ; )
|
|
{
|
|
}
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
// This is the code that gets called when the processor receives a hard fault
|
|
// interrupt. This simply enters an infinite loop, preserving the system state
|
|
// for examination by a debugger.
|
|
//
|
|
//*****************************************************************************
|
|
|
|
static void FaultISR(void)
|
|
{
|
|
/*
|
|
* Get the appropriate stack pointer, depending on our mode,
|
|
* and use it as the parameter to the C handler. This function
|
|
* will never return
|
|
*/
|
|
|
|
__asm volatile
|
|
(
|
|
"movs r0, #4 \n"
|
|
"mov r1, lr \n"
|
|
"tst r0, r1 \n"
|
|
"beq _msp \n"
|
|
"mrs r0, psp \n"
|
|
"b HardFault_HandlerC \n"
|
|
"_msp: \n"
|
|
"mrs r0, msp \n"
|
|
"b HardFault_HandlerC \n"
|
|
) ;
|
|
}
|
|
|
|
//***********************************************************************************
|
|
// HardFaultHandler_C:
|
|
// This is called from the FaultISR with a pointer the Fault stack
|
|
// as the parameter. We can then read the values from the stack and place them
|
|
// into local variables for ease of reading.
|
|
// We then read the various Fault Status and Address Registers to help decode
|
|
// cause of the fault.
|
|
// The function ends with a BKPT instruction to force control back into the debugger
|
|
//***********************************************************************************
|
|
void HardFault_HandlerC(uint32_t *pulFaultStackAddress)
|
|
{
|
|
volatile uint32_t r0 ;
|
|
volatile uint32_t r1 ;
|
|
volatile uint32_t r2 ;
|
|
volatile uint32_t r3 ;
|
|
volatile uint32_t r12 ;
|
|
volatile uint32_t lr ;
|
|
volatile uint32_t pc ;
|
|
volatile uint32_t psr ;
|
|
volatile _CFSR_t _CFSR ;
|
|
volatile _HFSR_t _HFSR ;
|
|
volatile uint32_t _BFAR ;
|
|
|
|
|
|
r0 = pulFaultStackAddress[0];
|
|
r1 = pulFaultStackAddress[1];
|
|
r2 = pulFaultStackAddress[2];
|
|
r3 = pulFaultStackAddress[3];
|
|
r12 = pulFaultStackAddress[4];
|
|
lr = pulFaultStackAddress[5];
|
|
pc = pulFaultStackAddress[6];
|
|
psr = pulFaultStackAddress[7];
|
|
|
|
// Configurable Fault Status Register
|
|
// Consists of MMSR, BFSR and UFSR
|
|
_CFSR = (*((volatile _CFSR_t *)(0xE000ED28)));
|
|
// Hard Fault Status Register
|
|
_HFSR = (*((volatile _HFSR_t *)(0xE000ED2C)));
|
|
// Bus Fault Address Register
|
|
_BFAR = (*((volatile uint32_t *)(0xE000ED38)));
|
|
|
|
// Break into the debugger
|
|
__asm volatile ("bkpt #0 \n");
|
|
|
|
for ( ; ; )
|
|
{
|
|
// Keep the compiler happy
|
|
(void)r0, (void)r1, (void)r2, (void)r3, (void)r12, (void)lr, (void)pc, (void)psr;
|
|
(void)_CFSR, (void)_HFSR, (void)_BFAR;
|
|
}
|
|
}
|
|
|
|
//*****************************************************************************
|
|
//
|
|
// This is the code that gets called when the processor receives an unexpected
|
|
// interrupt. This simply enters an infinite loop, preserving the system state
|
|
// for examination by a debugger.
|
|
//
|
|
//*****************************************************************************
|
|
|
|
static void BusFaultHandler(void)
|
|
{
|
|
// Break into the debugger
|
|
__asm volatile ("bkpt #0 \n");
|
|
|
|
//
|
|
// Enter an infinite loop.
|
|
//
|
|
for ( ; ; )
|
|
{
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//*****************************************************************************
|
|
//
|
|
// This is the code that gets called when the processor receives an unexpected
|
|
// interrupt. This simply enters an infinite loop, preserving the system state
|
|
// for examination by a debugger.
|
|
//
|
|
//*****************************************************************************
|
|
static void IntDefaultHandler(void)
|
|
{
|
|
#ifdef DEBUG
|
|
// Break into the debugger
|
|
__asm volatile ("bkpt #0 \n");
|
|
#endif
|
|
|
|
//
|
|
// Enter an infinite loop.
|
|
//
|
|
for ( ; ; )
|
|
{
|
|
}
|
|
}
|
|
|