circuitpython/ports/atmel-samd/usb.c
Scott Shawcroft 4aeef100f6 atmel-samd: More USB polish
* Introduce a python script to generate the USB descriptor instead of
  a bunch of C macros. In the future, we can use this dynamically in
  CircuitPython.
* Add support for detecting read-only mass storage mounts.

Fixes #377
2017-10-30 18:29:20 -07:00

325 lines
9.9 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "usb.h"
#include <stdint.h>
// We must include this early because it sets values used in the ASF4 includes
// below.
#include "py/mpconfig.h"
#include "hal/include/hal_gpio.h"
#include "usb/class/cdc/device/cdcdf_acm.h"
// #include "hiddf_mouse.h"
// #include "hiddf_keyboard.h"
#include "usb/class/hid/device/hiddf_generic.h"
#include "usb/class/composite/device/composite_desc.h"
#include "usb/class/msc/device/mscdf.h"
#include "peripheral_clk_config.h"
#include "hpl/pm/hpl_pm_base.h"
#include "hpl/gclk/hpl_gclk_base.h"
#include "lib/utils/interrupt_char.h"
#include "tools/autogen_usb_descriptor.h"
#include "reset.h"
#include "usb_mass_storage.h"
#include "supervisor/shared/autoreload.h"
// Store received characters on our own so that we can filter control characters
// and act immediately on CTRL-C for example.
// Receive buffer
static uint8_t usb_rx_buf[USB_RX_BUF_SIZE];
// Receive buffer head
static volatile uint8_t usb_rx_buf_head = 0;
// Receive buffer tail
static volatile uint8_t usb_rx_buf_tail = 0;
// Number of bytes in receive buffer
volatile uint8_t usb_rx_count = 0;
volatile bool mp_cdc_enabled = false;
volatile bool usb_transmitting = false;
/** Ctrl endpoint buffer */
COMPILER_ALIGNED(4) static uint8_t ctrl_buffer[64];
static void init_hardware(void) {
#ifdef SAMD21
_pm_enable_bus_clock(PM_BUS_APBB, USB);
_pm_enable_bus_clock(PM_BUS_AHB, USB);
_gclk_enable_channel(USB_GCLK_ID, GCLK_CLKCTRL_GEN_GCLK0_Val);
#endif
#ifdef SAMD51
hri_gclk_write_PCHCTRL_reg(GCLK, USB_GCLK_ID, CONF_GCLK_USB_SRC | GCLK_PCHCTRL_CHEN);
hri_mclk_set_AHBMASK_USB_bit(MCLK);
hri_mclk_set_APBBMASK_USB_bit(MCLK);
#endif
usb_d_init();
gpio_set_pin_direction(PIN_PA24, GPIO_DIRECTION_OUT);
gpio_set_pin_level(PIN_PA24, false);
gpio_set_pin_pull_mode(PIN_PA24, GPIO_PULL_OFF);
gpio_set_pin_direction(PIN_PA25, GPIO_DIRECTION_OUT);
gpio_set_pin_level(PIN_PA25, false);
gpio_set_pin_pull_mode(PIN_PA25, GPIO_PULL_OFF);
#ifdef SAMD21
gpio_set_pin_function(PIN_PA24, PINMUX_PA24G_USB_DM);
gpio_set_pin_function(PIN_PA25, PINMUX_PA25G_USB_DP);
#endif
#ifdef SAMD51
gpio_set_pin_function(PIN_PA24, PINMUX_PA24H_USB_DM);
gpio_set_pin_function(PIN_PA25, PINMUX_PA25H_USB_DP);
#endif
}
COMPILER_ALIGNED(4) uint8_t cdc_packet_buffer[64];
static volatile bool pending_read;
static int32_t start_read(void) {
pending_read = true;
return cdcdf_acm_read(cdc_packet_buffer, 64);
}
static bool read_complete(const uint8_t ep, const enum usb_xfer_code rc, const uint32_t count) {
if (rc != USB_XFER_DONE) {
return false; // No errors.
}
pending_read = false;
volatile hal_atomic_t flags;
atomic_enter_critical(&flags);
// If our buffer can't fit the data received, then error out.
if (count > (uint8_t) (USB_RX_BUF_SIZE - usb_rx_count)) {
atomic_leave_critical(&flags);
return true;
}
for (uint16_t i = 0; i < count; i++) {
uint8_t c = cdc_packet_buffer[i];
if (c == mp_interrupt_char) {
mp_keyboard_interrupt();
// If interrupted, flush all the input.
usb_rx_count = 0;
usb_rx_buf_head = 0;
usb_rx_buf_tail = 0;
break;
} else {
// The count of characters present in receive buffer is
// incremented.
usb_rx_count++;
usb_rx_buf[usb_rx_buf_tail] = c;
usb_rx_buf_tail++;
if (usb_rx_buf_tail == USB_RX_BUF_SIZE) {
// Reached the end of buffer, revert back to beginning of
// buffer.
usb_rx_buf_tail = 0;
}
}
}
atomic_leave_critical(&flags);
// Trigger a follow up read if we have space.
if (usb_rx_count < USB_RX_BUF_SIZE) {
int32_t result = start_read();
if (result != ERR_NONE) {
return true;
}
}
/* No error. */
return false;
}
static bool write_complete(const uint8_t ep,
const enum usb_xfer_code rc,
const uint32_t count) {
if (rc != USB_XFER_DONE) {
return false; // No errors.
}
// This is called after writes are finished.
usb_transmitting = false;
/* No error. */
return false;
}
volatile bool reset_on_disconnect = false;
volatile bool cdc_connected = false;
static bool usb_device_cb_state_c(usb_cdc_control_signal_t state)
{
cdc_connected = state.rs232.DTR;
if (state.rs232.DTR) {
} else if (!state.rs232.DTR && reset_on_disconnect) {
reset_to_bootloader();
}
/* No error. */
return false;
}
static bool usb_device_cb_line_coding_c(const usb_cdc_line_coding_t* coding)
{
reset_on_disconnect = coding->dwDTERate == 1200;
/* Ok to change. */
return true;
}
void init_usb(void) {
init_hardware();
mp_cdc_enabled = false;
usbdc_init(ctrl_buffer);
/* usbdc_register_funcion inside */
cdcdf_acm_init();
pending_read = false;
mscdf_init(1);
// hiddf_mouse_init();
// hiddf_keyboard_init();
mscdf_register_callback(MSCDF_CB_INQUIRY_DISK, (FUNC_PTR)usb_msc_inquiry_info);
mscdf_register_callback(MSCDF_CB_GET_DISK_CAPACITY, (FUNC_PTR)usb_msc_get_capacity);
mscdf_register_callback(MSCDF_CB_START_READ_DISK, (FUNC_PTR)usb_msc_new_read);
mscdf_register_callback(MSCDF_CB_START_WRITE_DISK, (FUNC_PTR)usb_msc_new_write);
mscdf_register_callback(MSCDF_CB_EJECT_DISK, (FUNC_PTR)usb_msc_disk_eject);
mscdf_register_callback(MSCDF_CB_TEST_DISK_READY, (FUNC_PTR)usb_msc_disk_is_ready);
mscdf_register_callback(MSCDF_CB_XFER_BLOCKS_DONE, (FUNC_PTR)usb_msc_xfer_done);
mscdf_register_callback(MSCDF_CB_IS_WRITABLE, (FUNC_PTR)usb_msc_disk_is_writable);
usbdc_start(&descriptor_bounds);
usbdc_attach();
}
static inline bool cdc_enabled(void) {
if (mp_cdc_enabled) {
return true;
}
if (!cdcdf_acm_is_enabled()) {
return false;
}
cdcdf_acm_register_callback(CDCDF_ACM_CB_READ, (FUNC_PTR)read_complete);
cdcdf_acm_register_callback(CDCDF_ACM_CB_WRITE, (FUNC_PTR)write_complete);
cdcdf_acm_register_callback(CDCDF_ACM_CB_STATE_C, (FUNC_PTR)usb_device_cb_state_c);
cdcdf_acm_register_callback(CDCDF_ACM_CB_LINE_CODING_C, (FUNC_PTR)usb_device_cb_line_coding_c);
mp_cdc_enabled = true;
return true;
}
bool usb_bytes_available(void) {
if (!pending_read) {
start_read();
}
if (usb_rx_count == 0) {
cdc_enabled();
return false;
}
return usb_rx_count > 0;
}
int usb_read(void) {
if (!cdc_enabled() || usb_rx_count == 0) {
return 0;
}
// Copy from head.
int data;
CRITICAL_SECTION_ENTER();
data = usb_rx_buf[usb_rx_buf_head];
usb_rx_buf_head++;
usb_rx_count--;
if ((USB_RX_BUF_SIZE) == usb_rx_buf_head) {
usb_rx_buf_head = 0;
}
CRITICAL_SECTION_LEAVE();
// Trigger a new read because we just cleared some space.
if (!pending_read && usb_rx_count == USB_RX_BUF_SIZE - 1) {
start_read();
}
return data;
}
// TODO(tannewt): See if we can disable the internal CDC IN cache since we
// we manage this one ourselves.
#define CDC_BULKIN_SIZE CONF_USB_COMPOSITE_CDC_ACM_DATA_BULKIN_MAXPKSZ
COMPILER_ALIGNED(4) uint8_t cdc_output_buffer[CDC_BULKIN_SIZE];
void usb_write(const char* buffer, uint32_t len) {
if (!cdc_enabled()) {
return;
}
if (!cdc_connected) {
// TODO(tannewt): Should we write to a file instead?
return;
}
uint8_t * output_buffer;
uint8_t output_len;
while (len > 0) {
while (usb_transmitting) {}
output_buffer = (uint8_t *) buffer;
output_len = len;
// Use our own cache in two different cases:
// * When we're at the end of a transmission and we'll return before
// the given buffer is actually transferred to the USB device.
// * When our given buffer isn't aligned on word boundaries.
if (output_len <= CDC_BULKIN_SIZE || ((uint32_t) buffer) % 4 != 0) {
output_buffer = cdc_output_buffer;
output_len = output_len > CDC_BULKIN_SIZE ? CDC_BULKIN_SIZE : output_len;
memcpy(cdc_output_buffer, buffer, output_len);
} else {
output_len = CDC_BULKIN_SIZE;
}
usb_transmitting = true;
cdcdf_acm_write(output_buffer, output_len);
buffer += output_len * sizeof(char);
len -= output_len;
}
}
bool usb_connected(void) {
return cdc_enabled();
}
// Poll for input if keyboard interrupts are enabled,
// so that we can check for the interrupt char. read_complete() does the checking.
void usb_cdc_background() {
//
if (mp_interrupt_char != -1 && cdc_enabled() && !pending_read) {
start_read();
}
}