1019 lines
30 KiB
C
1019 lines
30 KiB
C
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stm32f4xx.h>
|
|
#include <stm32f4xx_rcc.h>
|
|
#include <stm32f4xx_syscfg.h>
|
|
#include <stm32f4xx_gpio.h>
|
|
#include <stm32f4xx_exti.h>
|
|
#include <stm32f4xx_tim.h>
|
|
#include <stm32f4xx_pwr.h>
|
|
#include <stm32f4xx_rtc.h>
|
|
#include <stm32f4xx_usart.h>
|
|
#include <stm32f4xx_rng.h>
|
|
#include <stm_misc.h>
|
|
#include "std.h"
|
|
|
|
#include "misc.h"
|
|
#include "ff.h"
|
|
#include "mpconfig.h"
|
|
#include "qstr.h"
|
|
#include "nlr.h"
|
|
#include "misc.h"
|
|
#include "lexer.h"
|
|
#include "lexerfatfs.h"
|
|
#include "parse.h"
|
|
#include "obj.h"
|
|
#include "compile.h"
|
|
#include "runtime0.h"
|
|
#include "runtime.h"
|
|
#include "repl.h"
|
|
#include "gc.h"
|
|
#include "systick.h"
|
|
#include "led.h"
|
|
#include "servo.h"
|
|
#include "lcd.h"
|
|
#include "storage.h"
|
|
#include "mma.h"
|
|
#include "usart.h"
|
|
#include "usb.h"
|
|
#include "timer.h"
|
|
#include "audio.h"
|
|
#include "pybwlan.h"
|
|
#include "i2c.h"
|
|
#include "usrsw.h"
|
|
#include "adc.h"
|
|
|
|
int errno;
|
|
|
|
extern uint32_t _heap_start;
|
|
|
|
static FATFS fatfs0;
|
|
|
|
void flash_error(int n) {
|
|
for (int i = 0; i < n; i++) {
|
|
led_state(PYB_LED_R1, 1);
|
|
led_state(PYB_LED_R2, 0);
|
|
sys_tick_delay_ms(250);
|
|
led_state(PYB_LED_R1, 0);
|
|
led_state(PYB_LED_R2, 1);
|
|
sys_tick_delay_ms(250);
|
|
}
|
|
led_state(PYB_LED_R2, 0);
|
|
}
|
|
|
|
void __fatal_error(const char *msg) {
|
|
lcd_print_strn("\nFATAL ERROR:\n", 14);
|
|
lcd_print_strn(msg, strlen(msg));
|
|
for (;;) {
|
|
flash_error(1);
|
|
}
|
|
}
|
|
|
|
static qstr pyb_config_source_dir = 0;
|
|
static qstr pyb_config_main = 0;
|
|
|
|
mp_obj_t pyb_source_dir(mp_obj_t source_dir) {
|
|
pyb_config_source_dir = mp_obj_get_qstr(source_dir);
|
|
return mp_const_none;
|
|
}
|
|
|
|
mp_obj_t pyb_main(mp_obj_t main) {
|
|
pyb_config_main = mp_obj_get_qstr(main);
|
|
return mp_const_none;
|
|
}
|
|
|
|
// sync all file systems
|
|
mp_obj_t pyb_sync(void) {
|
|
storage_flush();
|
|
return mp_const_none;
|
|
}
|
|
|
|
mp_obj_t pyb_delay(mp_obj_t count) {
|
|
sys_tick_delay_ms(mp_obj_get_int(count));
|
|
return mp_const_none;
|
|
}
|
|
|
|
void fatality(void) {
|
|
led_state(PYB_LED_R1, 1);
|
|
led_state(PYB_LED_G1, 1);
|
|
led_state(PYB_LED_R2, 1);
|
|
led_state(PYB_LED_G2, 1);
|
|
}
|
|
|
|
static const char fresh_boot_py[] =
|
|
"# boot.py -- run on boot-up\n"
|
|
"# can run arbitrary Python, but best to keep it minimal\n"
|
|
"\n"
|
|
"pyb.source_dir('/src')\n"
|
|
"pyb.main('main.py')\n"
|
|
"#pyb.usb_usr('VCP')\n"
|
|
"#pyb.usb_msd(True, 'dual partition')\n"
|
|
"#pyb.flush_cache(False)\n"
|
|
"#pyb.error_log('error.txt')\n"
|
|
;
|
|
|
|
static const char fresh_main_py[] =
|
|
"# main.py -- put your code here!\n"
|
|
;
|
|
|
|
static const char *help_text =
|
|
"Welcome to Micro Python!\n\n"
|
|
"This is a *very* early version of Micro Python and has minimal functionality.\n\n"
|
|
"Specific commands for the board:\n"
|
|
" pyb.info() -- print some general information\n"
|
|
" pyb.gc() -- run the garbage collector\n"
|
|
" pyb.delay(<n>) -- wait for n milliseconds\n"
|
|
" pyb.Led(<n>) -- create Led object for LED n (n=1,2)\n"
|
|
" Led methods: on(), off()\n"
|
|
" pyb.Servo(<n>) -- create Servo object for servo n (n=1,2,3,4)\n"
|
|
" Servo methods: angle(<x>)\n"
|
|
" pyb.switch() -- return True/False if switch pressed or not\n"
|
|
" pyb.accel() -- get accelerometer values\n"
|
|
" pyb.rand() -- get a 16-bit random number\n"
|
|
" pyb.gpio(<port>) -- get port value (port='a4' for example)\n"
|
|
" pyb.gpio(<port>, <val>) -- set port value, True or False, 1 or 0\n"
|
|
;
|
|
|
|
// get some help about available functions
|
|
static mp_obj_t pyb_help(void) {
|
|
printf("%s", help_text);
|
|
return mp_const_none;
|
|
}
|
|
|
|
// get lots of info about the board
|
|
static mp_obj_t pyb_info(void) {
|
|
// get and print unique id; 96 bits
|
|
{
|
|
byte *id = (byte*)0x1fff7a10;
|
|
printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
|
|
}
|
|
|
|
// get and print clock speeds
|
|
// SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
|
|
{
|
|
RCC_ClocksTypeDef rcc_clocks;
|
|
RCC_GetClocksFreq(&rcc_clocks);
|
|
printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n", rcc_clocks.SYSCLK_Frequency, rcc_clocks.HCLK_Frequency, rcc_clocks.PCLK1_Frequency, rcc_clocks.PCLK2_Frequency);
|
|
}
|
|
|
|
// to print info about memory
|
|
{
|
|
extern void *_sidata;
|
|
extern void *_sdata;
|
|
extern void *_edata;
|
|
extern void *_sbss;
|
|
extern void *_ebss;
|
|
extern void *_estack;
|
|
extern void *_etext;
|
|
printf("_sidata=%p\n", &_sidata);
|
|
printf("_sdata=%p\n", &_sdata);
|
|
printf("_edata=%p\n", &_edata);
|
|
printf("_sbss=%p\n", &_sbss);
|
|
printf("_ebss=%p\n", &_ebss);
|
|
printf("_estack=%p\n", &_estack);
|
|
printf("_etext=%p\n", &_etext);
|
|
printf("_heap_start=%p\n", &_heap_start);
|
|
}
|
|
|
|
// GC info
|
|
{
|
|
gc_info_t info;
|
|
gc_info(&info);
|
|
printf("GC:\n");
|
|
printf(" %lu total\n", info.total);
|
|
printf(" %lu : %lu\n", info.used, info.free);
|
|
printf(" 1=%lu 2=%lu m=%lu\n", info.num_1block, info.num_2block, info.max_block);
|
|
}
|
|
|
|
// free space on flash
|
|
{
|
|
DWORD nclst;
|
|
FATFS *fatfs;
|
|
f_getfree("0:", &nclst, &fatfs);
|
|
printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
|
|
}
|
|
|
|
return mp_const_none;
|
|
}
|
|
|
|
// SD card test
|
|
static mp_obj_t pyb_sd_test(void) {
|
|
extern void sdio_init(void);
|
|
sdio_init();
|
|
return mp_const_none;
|
|
}
|
|
|
|
static void SYSCLKConfig_STOP(void) {
|
|
/* After wake-up from STOP reconfigure the system clock */
|
|
/* Enable HSE */
|
|
RCC_HSEConfig(RCC_HSE_ON);
|
|
|
|
/* Wait till HSE is ready */
|
|
while (RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET) {
|
|
}
|
|
|
|
/* Enable PLL */
|
|
RCC_PLLCmd(ENABLE);
|
|
|
|
/* Wait till PLL is ready */
|
|
while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) {
|
|
}
|
|
|
|
/* Select PLL as system clock source */
|
|
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
|
|
|
|
/* Wait till PLL is used as system clock source */
|
|
while (RCC_GetSYSCLKSource() != 0x08) {
|
|
}
|
|
}
|
|
|
|
static mp_obj_t pyb_stop(void) {
|
|
PWR_EnterSTANDBYMode();
|
|
//PWR_FlashPowerDownCmd(ENABLE); don't know what the logic is with this
|
|
|
|
/* Enter Stop Mode */
|
|
PWR_EnterSTOPMode(PWR_Regulator_LowPower, PWR_STOPEntry_WFI);
|
|
|
|
/* Configures system clock after wake-up from STOP: enable HSE, PLL and select
|
|
* PLL as system clock source (HSE and PLL are disabled in STOP mode) */
|
|
SYSCLKConfig_STOP();
|
|
|
|
//PWR_FlashPowerDownCmd(DISABLE);
|
|
|
|
return mp_const_none;
|
|
}
|
|
|
|
static mp_obj_t pyb_standby(void) {
|
|
PWR_EnterSTANDBYMode();
|
|
return mp_const_none;
|
|
}
|
|
|
|
char *strdup(const char *str) {
|
|
uint32_t len = strlen(str);
|
|
char *s2 = m_new(char, len + 1);
|
|
memcpy(s2, str, len);
|
|
s2[len] = 0;
|
|
return s2;
|
|
}
|
|
|
|
#define READLINE_HIST_SIZE (8)
|
|
|
|
static const char *readline_hist[READLINE_HIST_SIZE] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL};
|
|
|
|
void stdout_tx_str(const char *str) {
|
|
if (pyb_usart_global_debug != PYB_USART_NONE) {
|
|
usart_tx_str(pyb_usart_global_debug, str);
|
|
}
|
|
usb_vcp_send_str(str);
|
|
}
|
|
|
|
int readline(vstr_t *line, const char *prompt) {
|
|
stdout_tx_str(prompt);
|
|
int len = vstr_len(line);
|
|
int escape = 0;
|
|
int hist_num = 0;
|
|
for (;;) {
|
|
char c;
|
|
for (;;) {
|
|
if (usb_vcp_rx_any() != 0) {
|
|
c = usb_vcp_rx_get();
|
|
break;
|
|
} else if (pyb_usart_global_debug != PYB_USART_NONE && usart_rx_any(pyb_usart_global_debug)) {
|
|
c = usart_rx_char(pyb_usart_global_debug);
|
|
break;
|
|
}
|
|
sys_tick_delay_ms(1);
|
|
if (storage_needs_flush()) {
|
|
storage_flush();
|
|
}
|
|
}
|
|
if (escape == 0) {
|
|
if (c == 4 && vstr_len(line) == len) {
|
|
return 0;
|
|
} else if (c == '\r') {
|
|
stdout_tx_str("\r\n");
|
|
for (int i = READLINE_HIST_SIZE - 1; i > 0; i--) {
|
|
readline_hist[i] = readline_hist[i - 1];
|
|
}
|
|
readline_hist[0] = strdup(vstr_str(line));
|
|
return 1;
|
|
} else if (c == 27) {
|
|
escape = true;
|
|
} else if (c == 127) {
|
|
if (vstr_len(line) > len) {
|
|
vstr_cut_tail(line, 1);
|
|
stdout_tx_str("\b \b");
|
|
}
|
|
} else if (32 <= c && c <= 126) {
|
|
vstr_add_char(line, c);
|
|
stdout_tx_str(line->buf + line->len - 1);
|
|
}
|
|
} else if (escape == 1) {
|
|
if (c == '[') {
|
|
escape = 2;
|
|
} else {
|
|
escape = 0;
|
|
}
|
|
} else if (escape == 2) {
|
|
escape = 0;
|
|
if (c == 'A') {
|
|
// up arrow
|
|
if (hist_num < READLINE_HIST_SIZE && readline_hist[hist_num] != NULL) {
|
|
// erase line
|
|
for (int i = line->len - len; i > 0; i--) {
|
|
stdout_tx_str("\b \b");
|
|
}
|
|
// set line to history
|
|
line->len = len;
|
|
vstr_add_str(line, readline_hist[hist_num]);
|
|
// draw line
|
|
stdout_tx_str(readline_hist[hist_num]);
|
|
// increase hist num
|
|
hist_num += 1;
|
|
}
|
|
}
|
|
} else {
|
|
escape = 0;
|
|
}
|
|
sys_tick_delay_ms(10);
|
|
}
|
|
}
|
|
|
|
void do_repl(void) {
|
|
stdout_tx_str("Micro Python build <git hash> on 2/1/2014; PYBv3 with STM32F405RG\r\n");
|
|
stdout_tx_str("Type \"help()\" for more information.\r\n");
|
|
|
|
vstr_t line;
|
|
vstr_init(&line, 32);
|
|
|
|
for (;;) {
|
|
vstr_reset(&line);
|
|
int ret = readline(&line, ">>> ");
|
|
if (ret == 0) {
|
|
// EOF
|
|
break;
|
|
}
|
|
|
|
if (vstr_len(&line) == 0) {
|
|
continue;
|
|
}
|
|
|
|
if (mp_repl_is_compound_stmt(vstr_str(&line))) {
|
|
for (;;) {
|
|
vstr_add_char(&line, '\n');
|
|
int len = vstr_len(&line);
|
|
int ret = readline(&line, "... ");
|
|
if (ret == 0 || vstr_len(&line) == len) {
|
|
// done entering compound statement
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
mp_lexer_t *lex = mp_lexer_new_from_str_len("<stdin>", vstr_str(&line), vstr_len(&line), 0);
|
|
qstr parse_exc_id;
|
|
const char *parse_exc_msg;
|
|
mp_parse_node_t pn = mp_parse(lex, MP_PARSE_SINGLE_INPUT, &parse_exc_id, &parse_exc_msg);
|
|
qstr source_name = mp_lexer_source_name(lex);
|
|
|
|
if (pn == MP_PARSE_NODE_NULL) {
|
|
// parse error
|
|
mp_lexer_show_error_pythonic_prefix(lex);
|
|
printf("%s: %s\n", qstr_str(parse_exc_id), parse_exc_msg);
|
|
mp_lexer_free(lex);
|
|
} else {
|
|
// parse okay
|
|
mp_lexer_free(lex);
|
|
mp_obj_t module_fun = mp_compile(pn, source_name, true);
|
|
if (module_fun != mp_const_none) {
|
|
nlr_buf_t nlr;
|
|
uint32_t start = sys_tick_counter;
|
|
if (nlr_push(&nlr) == 0) {
|
|
rt_call_function_0(module_fun);
|
|
nlr_pop();
|
|
// optional timing
|
|
if (0) {
|
|
uint32_t ticks = sys_tick_counter - start; // TODO implement a function that does this properly
|
|
printf("(took %lu ms)\n", ticks);
|
|
}
|
|
} else {
|
|
// uncaught exception
|
|
mp_obj_print_exception((mp_obj_t)nlr.ret_val);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
stdout_tx_str("\r\n");
|
|
}
|
|
|
|
bool do_file(const char *filename) {
|
|
mp_lexer_t *lex = mp_lexer_new_from_file(filename);
|
|
|
|
if (lex == NULL) {
|
|
printf("could not open file '%s' for reading\n", filename);
|
|
return false;
|
|
}
|
|
|
|
qstr parse_exc_id;
|
|
const char *parse_exc_msg;
|
|
mp_parse_node_t pn = mp_parse(lex, MP_PARSE_FILE_INPUT, &parse_exc_id, &parse_exc_msg);
|
|
qstr source_name = mp_lexer_source_name(lex);
|
|
|
|
if (pn == MP_PARSE_NODE_NULL) {
|
|
// parse error
|
|
mp_lexer_show_error_pythonic_prefix(lex);
|
|
printf("%s: %s\n", qstr_str(parse_exc_id), parse_exc_msg);
|
|
mp_lexer_free(lex);
|
|
return false;
|
|
}
|
|
|
|
mp_lexer_free(lex);
|
|
|
|
mp_obj_t module_fun = mp_compile(pn, source_name, false);
|
|
if (module_fun == mp_const_none) {
|
|
return false;
|
|
}
|
|
|
|
nlr_buf_t nlr;
|
|
if (nlr_push(&nlr) == 0) {
|
|
rt_call_function_0(module_fun);
|
|
nlr_pop();
|
|
return true;
|
|
} else {
|
|
// uncaught exception
|
|
mp_obj_print_exception((mp_obj_t)nlr.ret_val);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
#define RAM_START (0x20000000) // fixed for chip
|
|
#define HEAP_END (0x2001c000) // tunable
|
|
#define RAM_END (0x20020000) // fixed for chip
|
|
|
|
void gc_helper_get_regs_and_clean_stack(machine_uint_t *regs, machine_uint_t heap_end);
|
|
|
|
void gc_collect(void) {
|
|
uint32_t start = sys_tick_counter;
|
|
gc_collect_start();
|
|
gc_collect_root((void**)RAM_START, (((uint32_t)&_heap_start) - RAM_START) / 4);
|
|
machine_uint_t regs[10];
|
|
gc_helper_get_regs_and_clean_stack(regs, HEAP_END);
|
|
gc_collect_root((void**)HEAP_END, (RAM_END - HEAP_END) / 4); // will trace regs since they now live in this function on the stack
|
|
gc_collect_end();
|
|
uint32_t ticks = sys_tick_counter - start; // TODO implement a function that does this properly
|
|
|
|
if (0) {
|
|
// print GC info
|
|
gc_info_t info;
|
|
gc_info(&info);
|
|
printf("GC@%lu %lums\n", start, ticks);
|
|
printf(" %lu total\n", info.total);
|
|
printf(" %lu : %lu\n", info.used, info.free);
|
|
printf(" 1=%lu 2=%lu m=%lu\n", info.num_1block, info.num_2block, info.max_block);
|
|
}
|
|
}
|
|
|
|
mp_obj_t pyb_gc(void) {
|
|
gc_collect();
|
|
return mp_const_none;
|
|
}
|
|
|
|
mp_obj_t pyb_gpio(uint n_args, mp_obj_t *args) {
|
|
//assert(1 <= n_args && n_args <= 2);
|
|
|
|
const char *pin_name = qstr_str(mp_obj_get_qstr(args[0]));
|
|
GPIO_TypeDef *port;
|
|
switch (pin_name[0]) {
|
|
case 'A': case 'a': port = GPIOA; break;
|
|
case 'B': case 'b': port = GPIOB; break;
|
|
case 'C': case 'c': port = GPIOC; break;
|
|
default: goto pin_error;
|
|
}
|
|
uint pin_num = 0;
|
|
for (const char *s = pin_name + 1; *s; s++) {
|
|
if (!('0' <= *s && *s <= '9')) {
|
|
goto pin_error;
|
|
}
|
|
pin_num = 10 * pin_num + *s - '0';
|
|
}
|
|
if (!(0 <= pin_num && pin_num <= 15)) {
|
|
goto pin_error;
|
|
}
|
|
|
|
if (n_args == 1) {
|
|
// get pin
|
|
if ((port->IDR & (1 << pin_num)) != (uint32_t)Bit_RESET) {
|
|
return MP_OBJ_NEW_SMALL_INT(1);
|
|
} else {
|
|
return MP_OBJ_NEW_SMALL_INT(0);
|
|
}
|
|
} else {
|
|
// set pin
|
|
if (rt_is_true(args[1])) {
|
|
// set pin high
|
|
port->BSRRL = 1 << pin_num;
|
|
} else {
|
|
// set pin low
|
|
port->BSRRH = 1 << pin_num;
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
|
|
pin_error:
|
|
nlr_jump(mp_obj_new_exception_msg_1_arg(MP_QSTR_ValueError, "pin %s does not exist", pin_name));
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_gpio_obj, 1, 2, pyb_gpio);
|
|
|
|
mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
|
|
mp_obj_t *items = mp_obj_get_array_fixed_n(arg, 4);
|
|
uint8_t data[4];
|
|
data[0] = mp_obj_get_int(items[0]);
|
|
data[1] = mp_obj_get_int(items[1]);
|
|
data[2] = mp_obj_get_int(items[2]);
|
|
data[3] = mp_obj_get_int(items[3]);
|
|
usb_hid_send_report(data);
|
|
return mp_const_none;
|
|
}
|
|
|
|
static void rtc_init(void) {
|
|
uint32_t rtc_clksrc;
|
|
uint32_t timeout = 1000000;
|
|
|
|
/* Enable the PWR clock */
|
|
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
|
|
|
|
/* Allow access to RTC */
|
|
PWR_BackupAccessCmd(ENABLE);
|
|
|
|
/* Enable the LSE OSC */
|
|
RCC_LSEConfig(RCC_LSE_ON);
|
|
|
|
/* Wait till LSE is ready */
|
|
while((RCC_GetFlagStatus(RCC_FLAG_LSERDY) == RESET) && (--timeout > 0)) {
|
|
}
|
|
|
|
/* If LSE timed out, use LSI instead */
|
|
if (timeout == 0) {
|
|
/* Enable the LSI OSC */
|
|
RCC_LSICmd(ENABLE);
|
|
|
|
/* Wait till LSI is ready */
|
|
while(RCC_GetFlagStatus(RCC_FLAG_LSIRDY) == RESET) {
|
|
}
|
|
|
|
/* Use LSI as the RTC Clock Source */
|
|
rtc_clksrc = RCC_RTCCLKSource_LSI;
|
|
} else {
|
|
/* Use LSE as the RTC Clock Source */
|
|
rtc_clksrc = RCC_RTCCLKSource_LSE;
|
|
}
|
|
|
|
/* Select the RTC Clock Source */
|
|
RCC_RTCCLKConfig(rtc_clksrc);
|
|
|
|
/* Note: LSI is around (32KHz), these dividers should work either way */
|
|
/* ck_spre(1Hz) = RTCCLK(LSE) /(uwAsynchPrediv + 1)*(uwSynchPrediv + 1)*/
|
|
uint32_t uwSynchPrediv = 0xFF;
|
|
uint32_t uwAsynchPrediv = 0x7F;
|
|
|
|
/* Enable the RTC Clock */
|
|
RCC_RTCCLKCmd(ENABLE);
|
|
|
|
/* Wait for RTC APB registers synchronisation */
|
|
RTC_WaitForSynchro();
|
|
|
|
/* Configure the RTC data register and RTC prescaler */
|
|
RTC_InitTypeDef RTC_InitStructure;
|
|
RTC_InitStructure.RTC_AsynchPrediv = uwAsynchPrediv;
|
|
RTC_InitStructure.RTC_SynchPrediv = uwSynchPrediv;
|
|
RTC_InitStructure.RTC_HourFormat = RTC_HourFormat_24;
|
|
RTC_Init(&RTC_InitStructure);
|
|
|
|
// Set the date (BCD)
|
|
RTC_DateTypeDef RTC_DateStructure;
|
|
RTC_DateStructure.RTC_Year = 0x13;
|
|
RTC_DateStructure.RTC_Month = RTC_Month_October;
|
|
RTC_DateStructure.RTC_Date = 0x26;
|
|
RTC_DateStructure.RTC_WeekDay = RTC_Weekday_Saturday;
|
|
RTC_SetDate(RTC_Format_BCD, &RTC_DateStructure);
|
|
|
|
// Set the time (BCD)
|
|
RTC_TimeTypeDef RTC_TimeStructure;
|
|
RTC_TimeStructure.RTC_H12 = RTC_H12_AM;
|
|
RTC_TimeStructure.RTC_Hours = 0x01;
|
|
RTC_TimeStructure.RTC_Minutes = 0x53;
|
|
RTC_TimeStructure.RTC_Seconds = 0x00;
|
|
RTC_SetTime(RTC_Format_BCD, &RTC_TimeStructure);
|
|
|
|
// Indicator for the RTC configuration
|
|
//RTC_WriteBackupRegister(RTC_BKP_DR0, 0x32F2);
|
|
}
|
|
|
|
mp_obj_t pyb_rtc_read(void) {
|
|
RTC_TimeTypeDef RTC_TimeStructure;
|
|
RTC_GetTime(RTC_Format_BIN, &RTC_TimeStructure);
|
|
printf("%02d:%02d:%02d\n", RTC_TimeStructure.RTC_Hours, RTC_TimeStructure.RTC_Minutes, RTC_TimeStructure.RTC_Seconds);
|
|
return mp_const_none;
|
|
}
|
|
|
|
typedef struct _pyb_file_obj_t {
|
|
mp_obj_base_t base;
|
|
FIL fp;
|
|
} pyb_file_obj_t;
|
|
|
|
void file_obj_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
|
|
printf("<file %p>", self_in);
|
|
}
|
|
|
|
mp_obj_t file_obj_read(mp_obj_t self_in, mp_obj_t arg) {
|
|
pyb_file_obj_t *self = self_in;
|
|
int n = mp_obj_get_int(arg);
|
|
char *buf = m_new(char, n);
|
|
UINT n_out;
|
|
f_read(&self->fp, buf, n, &n_out);
|
|
return mp_obj_new_str(qstr_from_strn_take(buf, n, n_out));
|
|
}
|
|
|
|
mp_obj_t file_obj_write(mp_obj_t self_in, mp_obj_t arg) {
|
|
pyb_file_obj_t *self = self_in;
|
|
const char *s = qstr_str(mp_obj_get_qstr(arg));
|
|
UINT n_out;
|
|
FRESULT res = f_write(&self->fp, s, strlen(s), &n_out);
|
|
if (res != FR_OK) {
|
|
printf("File error: could not write to file; error code %d\n", res);
|
|
} else if (n_out != strlen(s)) {
|
|
printf("File error: could not write all data to file; wrote %d / %d bytes\n", n_out, strlen(s));
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
|
|
mp_obj_t file_obj_close(mp_obj_t self_in) {
|
|
pyb_file_obj_t *self = self_in;
|
|
f_close(&self->fp);
|
|
return mp_const_none;
|
|
}
|
|
|
|
static MP_DEFINE_CONST_FUN_OBJ_2(file_obj_read_obj, file_obj_read);
|
|
static MP_DEFINE_CONST_FUN_OBJ_2(file_obj_write_obj, file_obj_write);
|
|
static MP_DEFINE_CONST_FUN_OBJ_1(file_obj_close_obj, file_obj_close);
|
|
|
|
// TODO gc hook to close the file if not already closed
|
|
|
|
static const mp_method_t file_methods[] = {
|
|
{ "read", &file_obj_read_obj },
|
|
{ "write", &file_obj_write_obj },
|
|
{ "close", &file_obj_close_obj },
|
|
{NULL, NULL},
|
|
};
|
|
|
|
static const mp_obj_type_t file_obj_type = {
|
|
{ &mp_const_type },
|
|
"File",
|
|
.print = file_obj_print,
|
|
.methods = file_methods,
|
|
};
|
|
|
|
mp_obj_t pyb_io_open(mp_obj_t o_filename, mp_obj_t o_mode) {
|
|
const char *filename = qstr_str(mp_obj_get_qstr(o_filename));
|
|
const char *mode = qstr_str(mp_obj_get_qstr(o_mode));
|
|
pyb_file_obj_t *self = m_new_obj(pyb_file_obj_t);
|
|
self->base.type = &file_obj_type;
|
|
if (mode[0] == 'r') {
|
|
// open for reading
|
|
FRESULT res = f_open(&self->fp, filename, FA_READ);
|
|
if (res != FR_OK) {
|
|
printf("FileNotFoundError: [Errno 2] No such file or directory: '%s'\n", filename);
|
|
return mp_const_none;
|
|
}
|
|
} else if (mode[0] == 'w') {
|
|
// open for writing, truncate the file first
|
|
FRESULT res = f_open(&self->fp, filename, FA_WRITE | FA_CREATE_ALWAYS);
|
|
if (res != FR_OK) {
|
|
printf("?FileError: could not create file: '%s'\n", filename);
|
|
return mp_const_none;
|
|
}
|
|
} else {
|
|
printf("ValueError: invalid mode: '%s'\n", mode);
|
|
return mp_const_none;
|
|
}
|
|
return self;
|
|
}
|
|
|
|
mp_obj_t pyb_rng_get(void) {
|
|
return mp_obj_new_int(RNG_GetRandomNumber() >> 16);
|
|
}
|
|
|
|
int main(void) {
|
|
// TODO disable JTAG
|
|
|
|
// update the SystemCoreClock variable
|
|
SystemCoreClockUpdate();
|
|
|
|
// set interrupt priority config to use all 4 bits for pre-empting
|
|
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);
|
|
|
|
// enable the CCM RAM and the GPIO's
|
|
RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN
|
|
#if defined(STM32F4DISC)
|
|
| RCC_AHB1ENR_GPIODEN
|
|
#endif
|
|
;
|
|
|
|
// configure SDIO pins to be high to start with (apparently makes it more robust)
|
|
{
|
|
GPIO_InitTypeDef GPIO_InitStructure;
|
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12;
|
|
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
|
|
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
|
|
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
|
|
GPIO_Init(GPIOC, &GPIO_InitStructure);
|
|
|
|
// Configure PD.02 CMD line
|
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
|
|
GPIO_Init(GPIOD, &GPIO_InitStructure);
|
|
}
|
|
|
|
// basic sub-system init
|
|
sys_tick_init();
|
|
led_init();
|
|
rtc_init();
|
|
|
|
// turn on LED to indicate bootup
|
|
led_state(PYB_LED_G1, 1);
|
|
|
|
// more sub-system init
|
|
switch_init();
|
|
storage_init();
|
|
|
|
// uncomment these 2 lines if you want REPL on USART_6 (or another usart) as well as on USB VCP
|
|
//pyb_usart_global_debug = PYB_USART_6;
|
|
//usart_init(pyb_usart_global_debug, 115200);
|
|
|
|
int first_soft_reset = true;
|
|
|
|
soft_reset:
|
|
|
|
// GC init
|
|
gc_init(&_heap_start, (void*)HEAP_END);
|
|
|
|
// Micro Python init
|
|
qstr_init();
|
|
rt_init();
|
|
|
|
// LCD init
|
|
//lcd_init(); disabled while servos on PA0 PA1
|
|
|
|
// servo
|
|
servo_init();
|
|
|
|
// audio
|
|
//audio_init();
|
|
|
|
// timer
|
|
timer_init();
|
|
|
|
// RNG
|
|
if (1) {
|
|
RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_RNG, ENABLE);
|
|
RNG_Cmd(ENABLE);
|
|
}
|
|
|
|
// add some functions to the python namespace
|
|
{
|
|
rt_store_name(MP_QSTR_help, rt_make_function_n(0, pyb_help));
|
|
|
|
mp_obj_t m = mp_obj_new_module(MP_QSTR_pyb);
|
|
rt_store_attr(m, MP_QSTR_info, rt_make_function_n(0, pyb_info));
|
|
rt_store_attr(m, MP_QSTR_sd_test, rt_make_function_n(0, pyb_sd_test));
|
|
rt_store_attr(m, MP_QSTR_stop, rt_make_function_n(0, pyb_stop));
|
|
rt_store_attr(m, MP_QSTR_standby, rt_make_function_n(0, pyb_standby));
|
|
rt_store_attr(m, MP_QSTR_source_dir, rt_make_function_n(1, pyb_source_dir));
|
|
rt_store_attr(m, MP_QSTR_main, rt_make_function_n(1, pyb_main));
|
|
rt_store_attr(m, MP_QSTR_sync, rt_make_function_n(0, pyb_sync));
|
|
rt_store_attr(m, MP_QSTR_gc, rt_make_function_n(0, pyb_gc));
|
|
rt_store_attr(m, MP_QSTR_delay, rt_make_function_n(1, pyb_delay));
|
|
rt_store_attr(m, MP_QSTR_switch, (mp_obj_t)&pyb_switch_obj);
|
|
rt_store_attr(m, MP_QSTR_servo, rt_make_function_n(2, pyb_servo_set));
|
|
rt_store_attr(m, MP_QSTR_pwm, rt_make_function_n(2, pyb_pwm_set));
|
|
#if BOARD_HAS_MMA7660
|
|
rt_store_attr(m, MP_QSTR_accel, (mp_obj_t)&pyb_mma_read_obj);
|
|
rt_store_attr(m, MP_QSTR_mma_read, (mp_obj_t)&pyb_mma_read_all_obj);
|
|
rt_store_attr(m, MP_QSTR_mma_mode, (mp_obj_t)&pyb_mma_write_mode_obj);
|
|
#endif
|
|
rt_store_attr(m, MP_QSTR_hid, rt_make_function_n(1, pyb_hid_send_report));
|
|
rt_store_attr(m, MP_QSTR_time, rt_make_function_n(0, pyb_rtc_read));
|
|
rt_store_attr(m, MP_QSTR_rand, rt_make_function_n(0, pyb_rng_get));
|
|
rt_store_attr(m, MP_QSTR_Led, (mp_obj_t)&pyb_Led_obj);
|
|
rt_store_attr(m, MP_QSTR_Servo, rt_make_function_n(1, pyb_Servo));
|
|
rt_store_attr(m, MP_QSTR_I2C, rt_make_function_n(2, pyb_I2C));
|
|
rt_store_attr(m, MP_QSTR_gpio, (mp_obj_t)&pyb_gpio_obj);
|
|
rt_store_attr(m, MP_QSTR_Usart, rt_make_function_n(2, pyb_Usart));
|
|
rt_store_attr(m, MP_QSTR_ADC, rt_make_function_n(1, pyb_ADC));
|
|
rt_store_name(MP_QSTR_pyb, m);
|
|
|
|
rt_store_name(MP_QSTR_open, rt_make_function_n(2, pyb_io_open));
|
|
}
|
|
|
|
// print a message to the LCD
|
|
lcd_print_str(" micro py board\n");
|
|
|
|
// check if user switch held (initiates reset of filesystem)
|
|
bool reset_filesystem = false;
|
|
if (switch_get()) {
|
|
reset_filesystem = true;
|
|
for (int i = 0; i < 50; i++) {
|
|
if (!switch_get()) {
|
|
reset_filesystem = false;
|
|
break;
|
|
}
|
|
sys_tick_delay_ms(10);
|
|
}
|
|
}
|
|
|
|
// local filesystem init
|
|
{
|
|
// try to mount the flash
|
|
FRESULT res = f_mount(&fatfs0, "0:", 1);
|
|
if (!reset_filesystem && res == FR_OK) {
|
|
// mount sucessful
|
|
} else if (reset_filesystem || res == FR_NO_FILESYSTEM) {
|
|
// no filesystem, so create a fresh one
|
|
// TODO doesn't seem to work correctly when reset_filesystem is true...
|
|
|
|
// LED on to indicate creation of LFS
|
|
led_state(PYB_LED_R2, 1);
|
|
uint32_t stc = sys_tick_counter;
|
|
|
|
res = f_mkfs("0:", 0, 0);
|
|
if (res == FR_OK) {
|
|
// success creating fresh LFS
|
|
} else {
|
|
__fatal_error("could not create LFS");
|
|
}
|
|
|
|
// create src directory
|
|
res = f_mkdir("0:/src");
|
|
// ignore result from mkdir
|
|
|
|
// create empty main.py
|
|
FIL fp;
|
|
f_open(&fp, "0:/src/main.py", FA_WRITE | FA_CREATE_ALWAYS);
|
|
UINT n;
|
|
f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n);
|
|
// TODO check we could write n bytes
|
|
f_close(&fp);
|
|
|
|
// keep LED on for at least 200ms
|
|
sys_tick_wait_at_least(stc, 200);
|
|
led_state(PYB_LED_R2, 0);
|
|
} else {
|
|
__fatal_error("could not access LFS");
|
|
}
|
|
}
|
|
|
|
// make sure we have a /boot.py
|
|
{
|
|
FILINFO fno;
|
|
FRESULT res = f_stat("0:/boot.py", &fno);
|
|
if (res == FR_OK) {
|
|
if (fno.fattrib & AM_DIR) {
|
|
// exists as a directory
|
|
// TODO handle this case
|
|
// see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation
|
|
} else {
|
|
// exists as a file, good!
|
|
}
|
|
} else {
|
|
// doesn't exist, create fresh file
|
|
|
|
// LED on to indicate creation of boot.py
|
|
led_state(PYB_LED_R2, 1);
|
|
uint32_t stc = sys_tick_counter;
|
|
|
|
FIL fp;
|
|
f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
|
|
UINT n;
|
|
f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
|
|
// TODO check we could write n bytes
|
|
f_close(&fp);
|
|
|
|
// keep LED on for at least 200ms
|
|
sys_tick_wait_at_least(stc, 200);
|
|
led_state(PYB_LED_R2, 0);
|
|
}
|
|
}
|
|
|
|
// run /boot.py
|
|
if (!do_file("0:/boot.py")) {
|
|
flash_error(4);
|
|
}
|
|
|
|
// USB
|
|
usb_init();
|
|
|
|
// USB host; not working!
|
|
//pyb_usbh_init();
|
|
|
|
if (first_soft_reset) {
|
|
#if BOARD_HAS_MMA7660
|
|
// MMA: init and reset address to zero
|
|
mma_init();
|
|
#endif
|
|
}
|
|
|
|
// turn boot-up LED off
|
|
led_state(PYB_LED_G1, 0);
|
|
|
|
// run main script
|
|
{
|
|
vstr_t *vstr = vstr_new();
|
|
vstr_add_str(vstr, "0:/");
|
|
if (pyb_config_source_dir == 0) {
|
|
vstr_add_str(vstr, "src");
|
|
} else {
|
|
vstr_add_str(vstr, qstr_str(pyb_config_source_dir));
|
|
}
|
|
vstr_add_char(vstr, '/');
|
|
if (pyb_config_main == 0) {
|
|
vstr_add_str(vstr, "main.py");
|
|
} else {
|
|
vstr_add_str(vstr, qstr_str(pyb_config_main));
|
|
}
|
|
if (!do_file(vstr_str(vstr))) {
|
|
flash_error(3);
|
|
}
|
|
vstr_free(vstr);
|
|
}
|
|
|
|
|
|
#if BOARD_HAS_MMA7660
|
|
// HID example
|
|
if (0) {
|
|
uint8_t data[4];
|
|
data[0] = 0;
|
|
data[1] = 1;
|
|
data[2] = -2;
|
|
data[3] = 0;
|
|
for (;;) {
|
|
if (switch_get()) {
|
|
data[0] = 0x01; // 0x04 is middle, 0x02 is right
|
|
} else {
|
|
data[0] = 0x00;
|
|
}
|
|
mma_start(0x4c /* MMA_ADDR */, 1);
|
|
mma_send_byte(0);
|
|
mma_restart(0x4c /* MMA_ADDR */, 0);
|
|
for (int i = 0; i <= 1; i++) {
|
|
int v = mma_read_ack() & 0x3f;
|
|
if (v & 0x20) {
|
|
v |= ~0x1f;
|
|
}
|
|
data[1 + i] = v;
|
|
}
|
|
mma_read_nack();
|
|
usb_hid_send_report(data);
|
|
sys_tick_delay_ms(15);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// wifi
|
|
//pyb_wlan_init();
|
|
//pyb_wlan_start();
|
|
|
|
do_repl();
|
|
|
|
printf("PYB: sync filesystems\n");
|
|
pyb_sync();
|
|
|
|
printf("PYB: soft reboot\n");
|
|
|
|
first_soft_reset = false;
|
|
goto soft_reset;
|
|
}
|
|
|
|
// these 2 functions seem to actually work... no idea why
|
|
// replacing with libgcc does not work (probably due to wrong calling conventions)
|
|
double __aeabi_f2d(float x) {
|
|
// TODO
|
|
return 0.0;
|
|
}
|
|
|
|
float __aeabi_d2f(double x) {
|
|
// TODO
|
|
return 0.0;
|
|
}
|
|
|
|
double sqrt(double x) {
|
|
// TODO
|
|
return 0.0;
|
|
}
|
|
|
|
machine_float_t machine_sqrt(machine_float_t x) {
|
|
// TODO
|
|
return x;
|
|
}
|