dd38d90724
This compiles and links, but hasn't been tested on a board yet and even if it was run, it doesn't currently do anything.
1249 lines
50 KiB
C
1249 lines
50 KiB
C
/**
|
|
******************************************************************************
|
|
* @file stm32f4xx_hal_rcc.c
|
|
* @author MCD Application Team
|
|
* @version V1.0.0
|
|
* @date 18-February-2014
|
|
* @brief RCC HAL module driver.
|
|
* This file provides firmware functions to manage the following
|
|
* functionalities of the Reset and Clock Control (RCC) peripheral:
|
|
* + Initialization and de-initialization functions
|
|
* + Peripheral Control functions
|
|
*
|
|
@verbatim
|
|
==============================================================================
|
|
##### RCC specific features #####
|
|
==============================================================================
|
|
[..]
|
|
After reset the device is running from Internal High Speed oscillator
|
|
(HSI 16MHz) with Flash 0 wait state, Flash prefetch buffer, D-Cache
|
|
and I-Cache are disabled, and all peripherals are off except internal
|
|
SRAM, Flash and JTAG.
|
|
(+) There is no prescaler on High speed (AHB) and Low speed (APB) busses;
|
|
all peripherals mapped on these busses are running at HSI speed.
|
|
(+) The clock for all peripherals is switched off, except the SRAM and FLASH.
|
|
(+) All GPIOs are in input floating state, except the JTAG pins which
|
|
are assigned to be used for debug purpose.
|
|
|
|
[..]
|
|
Once the device started from reset, the user application has to:
|
|
(+) Configure the clock source to be used to drive the System clock
|
|
(if the application needs higher frequency/performance)
|
|
(+) Configure the System clock frequency and Flash settings
|
|
(+) Configure the AHB and APB busses prescalers
|
|
(+) Enable the clock for the peripheral(s) to be used
|
|
(+) Configure the clock source(s) for peripherals which clocks are not
|
|
derived from the System clock (I2S, RTC, ADC, USB OTG FS/SDIO/RNG)
|
|
|
|
@endverbatim
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* <h2><center>© COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. Neither the name of STMicroelectronics nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "stm32f4xx_hal.h"
|
|
|
|
/** @addtogroup STM32F4xx_HAL_Driver
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup RCC
|
|
* @brief RCC HAL module driver
|
|
* @{
|
|
*/
|
|
|
|
#ifdef HAL_RCC_MODULE_ENABLED
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
#define HSE_TIMEOUT_VALUE HSE_STARTUP_TIMEOUT
|
|
#define HSI_TIMEOUT_VALUE ((uint32_t)100) /* 100 ms */
|
|
#define LSI_TIMEOUT_VALUE ((uint32_t)100) /* 100 ms */
|
|
#define PLL_TIMEOUT_VALUE ((uint32_t)100) /* 100 ms */
|
|
#define CLOCKSWITCH_TIMEOUT_VALUE ((uint32_t)5000) /* 5 s */
|
|
|
|
/* Private macro -------------------------------------------------------------*/
|
|
#define __MCO1_CLK_ENABLE() __GPIOA_CLK_ENABLE()
|
|
#define MCO1_GPIO_PORT GPIOA
|
|
#define MCO1_PIN GPIO_PIN_8
|
|
|
|
#define __MCO2_CLK_ENABLE() __GPIOC_CLK_ENABLE()
|
|
#define MCO2_GPIO_PORT GPIOC
|
|
#define MCO2_PIN GPIO_PIN_9
|
|
|
|
/* Private variables ---------------------------------------------------------*/
|
|
const uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
|
|
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
/* Private functions ---------------------------------------------------------*/
|
|
|
|
/** @defgroup RCC_Private_Functions
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup RCC_Group1 Initialization and de-initialization functions
|
|
* @brief Initialization and Configuration functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Initialization and de-initialization functions #####
|
|
===============================================================================
|
|
[..]
|
|
This section provide functions allowing to configure the internal/external oscillators
|
|
(HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System busses clocks (SYSCLK, AHB, APB1
|
|
and APB2).
|
|
|
|
[..] Internal/external clock and PLL configuration
|
|
(#) HSI (high-speed internal), 16 MHz factory-trimmed RC used directly or through
|
|
the PLL as System clock source.
|
|
|
|
(#) LSI (low-speed internal), 32 KHz low consumption RC used as IWDG and/or RTC
|
|
clock source.
|
|
|
|
(#) HSE (high-speed external), 4 to 26 MHz crystal oscillator used directly or
|
|
through the PLL as System clock source. Can be used also as RTC clock source.
|
|
|
|
(#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
|
|
|
|
(#) PLL (clocked by HSI or HSE), featuring two different output clocks:
|
|
(++) The first output is used to generate the high speed system clock (up to 168 MHz)
|
|
(++) The second output is used to generate the clock for the USB OTG FS (48 MHz),
|
|
the random analog generator (<=48 MHz) and the SDIO (<= 48 MHz).
|
|
|
|
(#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE()
|
|
and if a HSE clock failure occurs(HSE used directly or through PLL as System
|
|
clock source), the System clockis automatically switched to HSI and an interrupt
|
|
is generated if enabled. The interrupt is linked to the Cortex-M4 NMI
|
|
(Non-Maskable Interrupt) exception vector.
|
|
|
|
(#) MCO1 (microcontroller clock output), used to output HSI, LSE, HSE or PLL
|
|
clock (through a configurable prescaler) on PA8 pin.
|
|
|
|
(#) MCO2 (microcontroller clock output), used to output HSE, PLL, SYSCLK or PLLI2S
|
|
clock (through a configurable prescaler) on PC9 pin.
|
|
|
|
[..] System, AHB and APB busses clocks configuration
|
|
(#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
|
|
HSE and PLL.
|
|
The AHB clock (HCLK) is derived from System clock through configurable
|
|
prescaler and used to clock the CPU, memory and peripherals mapped
|
|
on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
|
|
from AHB clock through configurable prescalers and used to clock
|
|
the peripherals mapped on these busses. You can use
|
|
"HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
|
|
|
|
-@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
|
|
(+@) I2S: the I2S clock can be derived either from a specific PLL (PLLI2S) or
|
|
from an external clock mapped on the I2S_CKIN pin.
|
|
You have to use __HAL_RCC_PLLI2S_CONFIG() macro to configure this clock.
|
|
(+@) SAI: the SAI clock can be derived either from a specific PLL (PLLI2S) or (PLLSAI) or
|
|
from an external clock mapped on the I2S_CKIN pin.
|
|
You have to use __HAL_RCC_PLLI2S_CONFIG() macro to configure this clock.
|
|
(+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock
|
|
divided by 2 to 31. You have to use __HAL_RCC_RTC_CONFIG() and __HAL_RCC_RTC_ENABLE()
|
|
macros to configure this clock.
|
|
(+@) USB OTG FS, SDIO and RTC: USB OTG FS require a frequency equal to 48 MHz
|
|
to work correctly, while the SDIO require a frequency equal or lower than
|
|
to 48. This clock is derived of the main PLL through PLLQ divider.
|
|
(+@) IWDG clock which is always the LSI clock.
|
|
|
|
(#) For the STM32F405xx/07xx and STM32F415xx/17xx devices, the maximum
|
|
frequency of the SYSCLK and HCLK is 168 MHz, PCLK2 84 MHz and PCLK1 42 MHz.
|
|
Depending on the device voltage range, the maximum frequency should
|
|
be adapted accordingly:
|
|
+-------------------------------------------------------------------------------------+
|
|
| Latency | HCLK clock frequency (MHz) |
|
|
| |---------------------------------------------------------------------|
|
|
| | voltage range | voltage range | voltage range | voltage range |
|
|
| | 2.7 V - 3.6 V | 2.4 V - 2.7 V | 2.1 V - 2.4 V | 1.8 V - 2.1 V |
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|0WS(1CPU cycle)|0 < HCLK <= 30 |0 < HCLK <= 24 |0 < HCLK <= 22 |0 < HCLK <= 20 |
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|1WS(2CPU cycle)|30 < HCLK <= 60 |24 < HCLK <= 48 |22 < HCLK <= 44 |20 < HCLK <= 40 |
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|2WS(3CPU cycle)|60 < HCLK <= 90 |48 < HCLK <= 72 |44 < HCLK <= 66 |40 < HCLK <= 60 |
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|3WS(4CPU cycle)|90 < HCLK <= 120|72 < HCLK <= 96 |66 < HCLK <= 88 |60 < HCLK <= 80 |
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|4WS(5CPU cycle)|120< HCLK <= 150|96 < HCLK <= 120|88 < HCLK <= 110 |80 < HCLK <= 100 |
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|5WS(6CPU cycle)|150< HCLK <= 168|120< HCLK <= 144|110 < HCLK <= 132|100 < HCLK <= 120|
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|6WS(7CPU cycle)| NA |144< HCLK <= 168|132 < HCLK <= 154|120 < HCLK <= 140|
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|7WS(8CPU cycle)| NA | NA |154 < HCLK <= 168|140 < HCLK <= 160|
|
|
+-------------------------------------------------------------------------------------+
|
|
(#) For the STM32F42xxx and STM32F43xxx devices, the maximum frequency
|
|
of the SYSCLK and HCLK is 180 MHz, PCLK2 90 MHz and PCLK1 45 MHz.
|
|
Depending on the device voltage range, the maximum frequency should
|
|
be adapted accordingly:
|
|
+-------------------------------------------------------------------------------------+
|
|
| Latency | HCLK clock frequency (MHz) |
|
|
| |---------------------------------------------------------------------|
|
|
| | voltage range | voltage range | voltage range | voltage range |
|
|
| | 2.7 V - 3.6 V | 2.4 V - 2.7 V | 2.1 V - 2.4 V | 1.8 V - 2.1 V |
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|0WS(1CPU cycle)|0 < HCLK <= 30 |0 < HCLK <= 24 |0 < HCLK <= 22 |0 < HCLK <= 20 |
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|1WS(2CPU cycle)|30 < HCLK <= 60 |24 < HCLK <= 48 |22 < HCLK <= 44 |20 < HCLK <= 40 |
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|2WS(3CPU cycle)|60 < HCLK <= 90 |48 < HCLK <= 72 |44 < HCLK <= 66 |40 < HCLK <= 60 |
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|3WS(4CPU cycle)|90 < HCLK <= 120|72 < HCLK <= 96 |66 < HCLK <= 88 |60 < HCLK <= 80 |
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|4WS(5CPU cycle)|120< HCLK <= 150|96 < HCLK <= 120|88 < HCLK <= 110 |80 < HCLK <= 100 |
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|5WS(6CPU cycle)|150< HCLK <= 180|120< HCLK <= 144|110 < HCLK <= 132|100 < HCLK <= 120|
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|6WS(7CPU cycle)| NA |144< HCLK <= 168|132 < HCLK <= 154|120 < HCLK <= 140|
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|7WS(8CPU cycle)| NA |168< HCLK <= 180|154 < HCLK <= 176|140 < HCLK <= 160|
|
|
|-------------------------------------------------------------------------------------|
|
|
|8WS(9CPU cycle)| NA | NA |176 < HCLK <= 180|160 < HCLK <= 180|
|
|
+-------------------------------------------------------------------------------------+
|
|
(#) For the STM32F401xx, the maximum frequency of the SYSCLK and HCLK is 84 MHz,
|
|
PCLK2 84 MHz and PCLK1 42 MHz.
|
|
Depending on the device voltage range, the maximum frequency should
|
|
be adapted accordingly:
|
|
+-------------------------------------------------------------------------------------+
|
|
| Latency | HCLK clock frequency (MHz) |
|
|
| |---------------------------------------------------------------------|
|
|
| | voltage range | voltage range | voltage range | voltage range |
|
|
| | 2.7 V - 3.6 V | 2.4 V - 2.7 V | 2.1 V - 2.4 V | 1.8 V - 2.1 V |
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|0WS(1CPU cycle)|0 < HCLK <= 30 |0 < HCLK <= 24 |0 < HCLK <= 22 |0 < HCLK <= 20 |
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|1WS(2CPU cycle)|30 < HCLK <= 60 |24 < HCLK <= 48 |22 < HCLK <= 44 |20 < HCLK <= 40 |
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|2WS(3CPU cycle)|60 < HCLK <= 84 |48 < HCLK <= 72 |44 < HCLK <= 66 |40 < HCLK <= 60 |
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|3WS(4CPU cycle)| NA |72 < HCLK <= 84 |66 < HCLK <= 84 |60 < HCLK <= 80 |
|
|
|---------------|----------------|----------------|-----------------|-----------------|
|
|
|4WS(5CPU cycle)| NA | NA | NA |80 < HCLK <= 84 |
|
|
+-------------------------------------------------------------------------------------+
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Resets the RCC clock configuration to the default reset state.
|
|
* @note The default reset state of the clock configuration is given below:
|
|
* - HSI ON and used as system clock source
|
|
* - HSE, PLL and PLLI2S OFF
|
|
* - AHB, APB1 and APB2 prescaler set to 1.
|
|
* - CSS, MCO1 and MCO2 OFF
|
|
* - All interrupts disabled
|
|
* @note This function doesn't modify the configuration of the
|
|
* - Peripheral clocks
|
|
* - LSI, LSE and RTC clocks
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_DeInit(void)
|
|
{
|
|
/* Set HSION bit */
|
|
SET_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSITRIM_4);
|
|
|
|
/* Reset CFGR register */
|
|
CLEAR_REG(RCC->CFGR);
|
|
|
|
/* Reset HSEON, CSSON, PLLON, PLLI2S */
|
|
CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_CSSON | RCC_CR_PLLON| RCC_CR_PLLI2SON);
|
|
|
|
/* Reset PLLCFGR register */
|
|
CLEAR_REG(RCC->PLLCFGR);
|
|
SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM_4 | RCC_PLLCFGR_PLLN_6 | RCC_PLLCFGR_PLLN_7 | RCC_PLLCFGR_PLLQ_2);
|
|
|
|
/* Reset PLLI2SCFGR register */
|
|
CLEAR_REG(RCC->PLLI2SCFGR);
|
|
SET_BIT(RCC->PLLI2SCFGR, RCC_PLLI2SCFGR_PLLI2SN_6 | RCC_PLLI2SCFGR_PLLI2SN_7 | RCC_PLLI2SCFGR_PLLI2SR_1);
|
|
|
|
/* Reset HSEBYP bit */
|
|
CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
|
|
|
|
/* Disable all interrupts */
|
|
CLEAR_REG(RCC->CIR);
|
|
}
|
|
|
|
/**
|
|
* @brief Initializes the RCC Oscillators according to the specified parameters in the
|
|
* RCC_OscInitTypeDef.
|
|
* @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
|
|
* contains the configuration information for the RCC Oscillators.
|
|
* @note The PLL is not disabled when used as system clock.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
|
|
{
|
|
|
|
uint32_t timeout = 0;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
|
|
/*------------------------------- HSE Configuration ------------------------*/
|
|
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
|
|
/* When the HSE is used as system clock or clock source for PLL in these cases HSE will not disabled */
|
|
if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSE) || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSE)))
|
|
{
|
|
if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState != RCC_HSE_ON))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Reset HSEON and HSEBYP bits before configuring the HSE --------------*/
|
|
__HAL_RCC_HSE_CONFIG(RCC_HSE_OFF);
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + HSE_TIMEOUT_VALUE;
|
|
|
|
/* Wait till HSE is disabled */
|
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Set the new HSE configuration ---------------------------------------*/
|
|
__HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
|
|
|
|
/* Check the HSE State */
|
|
if((RCC_OscInitStruct->HSEState) == RCC_HSE_ON)
|
|
{
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + HSE_TIMEOUT_VALUE;
|
|
|
|
/* Wait till HSE is ready */
|
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + HSE_TIMEOUT_VALUE;
|
|
|
|
/* Wait till HSE is bypassed or disabled */
|
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*----------------------------- HSI Configuration --------------------------*/
|
|
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
|
|
assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
|
|
|
|
/* When the HSI is used as system clock it will not disabled */
|
|
if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSI) || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSI)))
|
|
{
|
|
if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Check the HSI State */
|
|
if((RCC_OscInitStruct->HSIState)!= RCC_HSI_OFF)
|
|
{
|
|
/* Enable the Internal High Speed oscillator (HSI). */
|
|
__HAL_RCC_HSI_ENABLE();
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + HSI_TIMEOUT_VALUE;
|
|
|
|
/* Wait till HSI is ready */
|
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
|
|
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
|
|
}
|
|
else
|
|
{
|
|
/* Disable the Internal High Speed oscillator (HSI). */
|
|
__HAL_RCC_HSI_DISABLE();
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + HSI_TIMEOUT_VALUE;
|
|
|
|
/* Wait till HSI is ready */
|
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*------------------------------ LSI Configuration -------------------------*/
|
|
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
|
|
|
|
/* Check the LSI State */
|
|
if((RCC_OscInitStruct->LSIState)!= RCC_LSI_OFF)
|
|
{
|
|
/* Enable the Internal Low Speed oscillator (LSI). */
|
|
__HAL_RCC_LSI_ENABLE();
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + LSI_TIMEOUT_VALUE;
|
|
|
|
/* Wait till LSI is ready */
|
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Disable the Internal Low Speed oscillator (LSI). */
|
|
__HAL_RCC_LSI_DISABLE();
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + LSI_TIMEOUT_VALUE;
|
|
|
|
/* Wait till LSI is ready */
|
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*------------------------------ LSE Configuration -------------------------*/
|
|
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
|
|
|
|
/* Enable Power Clock*/
|
|
__PWR_CLK_ENABLE();
|
|
|
|
/* Enable write access to Backup domain */
|
|
PWR->CR |= PWR_CR_DBP;
|
|
|
|
/* Wait for Backup domain Write protection disable */
|
|
timeout = HAL_GetTick() + DBP_TIMEOUT_VALUE;
|
|
|
|
while((PWR->CR & PWR_CR_DBP) == RESET)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Reset LSEON and LSEBYP bits before configuring the LSE ----------------*/
|
|
__HAL_RCC_LSE_CONFIG(RCC_LSE_OFF);
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + LSE_TIMEOUT_VALUE;
|
|
|
|
/* Wait till LSE is ready */
|
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Set the new LSE configuration -----------------------------------------*/
|
|
__HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
|
|
/* Check the LSE State */
|
|
if((RCC_OscInitStruct->LSEState) == RCC_LSE_ON)
|
|
{
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + LSE_TIMEOUT_VALUE;
|
|
|
|
/* Wait till LSE is ready */
|
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + LSE_TIMEOUT_VALUE;
|
|
|
|
/* Wait till LSE is ready */
|
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*-------------------------------- PLL Configuration -----------------------*/
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
|
|
if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
|
|
{
|
|
/* Check if the PLL is used as system clock or not */
|
|
if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)
|
|
{
|
|
if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
|
|
assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM));
|
|
assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN));
|
|
assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP));
|
|
assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ));
|
|
|
|
/* Disable the main PLL. */
|
|
__HAL_RCC_PLL_DISABLE();
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + PLL_TIMEOUT_VALUE;
|
|
|
|
/* Wait till PLL is ready */
|
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Configure the main PLL clock source, multiplication and division factors. */
|
|
__HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
|
|
RCC_OscInitStruct->PLL.PLLM,
|
|
RCC_OscInitStruct->PLL.PLLN,
|
|
RCC_OscInitStruct->PLL.PLLP,
|
|
RCC_OscInitStruct->PLL.PLLQ);
|
|
/* Enable the main PLL. */
|
|
__HAL_RCC_PLL_ENABLE();
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + PLL_TIMEOUT_VALUE;
|
|
|
|
/* Wait till PLL is ready */
|
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Disable the main PLL. */
|
|
__HAL_RCC_PLL_DISABLE();
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + PLL_TIMEOUT_VALUE;
|
|
|
|
/* Wait till PLL is ready */
|
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initializes the CPU, AHB and APB busses clocks according to the specified
|
|
* parameters in the RCC_ClkInitStruct.
|
|
* @param RCC_ClkInitStruct: pointer to an RCC_OscInitTypeDef structure that
|
|
* contains the configuration information for the RCC peripheral.
|
|
* @param FLatency: FLASH Latency, this parameter depend on device selected
|
|
*
|
|
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
|
|
* and updated by HAL_RCC_GetHCLKFreq() function called within this function
|
|
*
|
|
* @note The HSI is used (enabled by hardware) as system clock source after
|
|
* startup from Reset, wake-up from STOP and STANDBY mode, or in case
|
|
* of failure of the HSE used directly or indirectly as system clock
|
|
* (if the Clock Security System CSS is enabled).
|
|
*
|
|
* @note A switch from one clock source to another occurs only if the target
|
|
* clock source is ready (clock stable after startup delay or PLL locked).
|
|
* If a clock source which is not yet ready is selected, the switch will
|
|
* occur when the clock source will be ready.
|
|
*
|
|
* @note Depending on the device voltage range, the software has to set correctly
|
|
* HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency
|
|
* (for more details refer to section above "Initialization/de-initialization functions")
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
|
|
{
|
|
|
|
uint32_t timeout = 0;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
|
|
assert_param(IS_FLASH_LATENCY(FLatency));
|
|
|
|
/* To correctly read data from FLASH memory, the number of wait states (LATENCY)
|
|
must be correctly programmed according to the frequency of the CPU clock
|
|
(HCLK) and the supply voltage of the device. */
|
|
|
|
/* Increasing the CPU frequency */
|
|
if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY))
|
|
{
|
|
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
|
|
__HAL_FLASH_SET_LATENCY(FLatency);
|
|
|
|
/* Check that the new number of wait states is taken into account to access the Flash
|
|
memory by reading the FLASH_ACR register */
|
|
if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/*------------------------- SYSCLK Configuration ---------------------------*/
|
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
|
|
{
|
|
assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
|
|
|
|
/* HSE is selected as System Clock Source */
|
|
if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
|
|
{
|
|
/* Check the HSE ready flag */
|
|
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* PLL is selected as System Clock Source */
|
|
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
|
|
{
|
|
/* Check the PLL ready flag */
|
|
if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* HSI is selected as System Clock Source */
|
|
else
|
|
{
|
|
/* Check the HSI ready flag */
|
|
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource);
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + CLOCKSWITCH_TIMEOUT_VALUE;
|
|
|
|
if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
|
|
{
|
|
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_HSE)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
|
|
{
|
|
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_HSI)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Decreasing the CPU frequency */
|
|
else
|
|
{
|
|
/*------------------------- SYSCLK Configuration ---------------------------*/
|
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
|
|
{
|
|
assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
|
|
|
|
/* HSE is selected as System Clock Source */
|
|
if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
|
|
{
|
|
/* Check the HSE ready flag */
|
|
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* PLL is selected as System Clock Source */
|
|
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
|
|
{
|
|
/* Check the PLL ready flag */
|
|
if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/* HSI is selected as System Clock Source */
|
|
else
|
|
{
|
|
/* Check the HSI ready flag */
|
|
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource);
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + CLOCKSWITCH_TIMEOUT_VALUE;
|
|
|
|
if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
|
|
{
|
|
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_HSE)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
|
|
{
|
|
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_HSI)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
|
|
__HAL_FLASH_SET_LATENCY(FLatency);
|
|
|
|
/* Check that the new number of wait states is taken into account to access the Flash
|
|
memory by reading the FLASH_ACR register */
|
|
if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
/*-------------------------- HCLK Configuration ----------------------------*/
|
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
|
|
{
|
|
assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
|
|
}
|
|
|
|
/*-------------------------- PCLK1 Configuration ---------------------------*/
|
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
|
|
{
|
|
assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider);
|
|
}
|
|
|
|
/*-------------------------- PCLK2 Configuration ---------------------------*/
|
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
|
|
{
|
|
assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider));
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3));
|
|
}
|
|
|
|
/* Setup SysTick Timer for 1 msec interrupts.
|
|
------------------------------------------
|
|
The SysTick_Config() function is a CMSIS function which configure:
|
|
- The SysTick Reload register with value passed as function parameter.
|
|
- Configure the SysTick IRQ priority to the lowest value (0x0F).
|
|
- Reset the SysTick Counter register.
|
|
- Configure the SysTick Counter clock source to be Core Clock Source (HCLK).
|
|
- Enable the SysTick Interrupt.
|
|
- Start the SysTick Counter.*/
|
|
SysTick_Config(HAL_RCC_GetHCLKFreq() / 1000);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup RCC_Group2 Peripheral Control functions
|
|
* @brief RCC clocks control functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Peripheral Control functions #####
|
|
===============================================================================
|
|
[..]
|
|
This subsection provides a set of functions allowing to control the RCC Clocks
|
|
frequencies.
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Selects the clock source to output on MCO1 pin(PA8) or on MCO2 pin(PC9).
|
|
* @note PA8/PC9 should be configured in alternate function mode.
|
|
* @param RCC_MCOx: specifies the output direction for the clock source.
|
|
* This parameter can be one of the following values:
|
|
* @arg RCC_MCO1: Clock source to output on MCO1 pin(PA8).
|
|
* @arg RCC_MCO2: Clock source to output on MCO2 pin(PC9).
|
|
* @param RCC_MCOSource: specifies the clock source to output.
|
|
* This parameter can be one of the following values:
|
|
* @arg RCC_MCO1SOURCE_HSI: HSI clock selected as MCO1 source
|
|
* @arg RCC_MCO1SOURCE_LSE: LSE clock selected as MCO1 source
|
|
* @arg RCC_MCO1SOURCE_HSE: HSE clock selected as MCO1 source
|
|
* @arg RCC_MCO1SOURCE_PLLCLK: main PLL clock selected as MCO1 source
|
|
* @arg RCC_MCO2SOURCE_SYSCLK: System clock (SYSCLK) selected as MCO2 source
|
|
* @arg RCC_MCO2SOURCE_PLLI2SCLK: PLLI2S clock selected as MCO2 source
|
|
* @arg RCC_MCO2SOURCE_HSE: HSE clock selected as MCO2 source
|
|
* @arg RCC_MCO2SOURCE_PLLCLK: main PLL clock selected as MCO2 source
|
|
* @param RCC_MCODiv: specifies the MCOx prescaler.
|
|
* This parameter can be one of the following values:
|
|
* @arg RCC_MCODIV_1: no division applied to MCOx clock
|
|
* @arg RCC_MCODIV_2: division by 2 applied to MCOx clock
|
|
* @arg RCC_MCODIV_3: division by 3 applied to MCOx clock
|
|
* @arg RCC_MCODIV_4: division by 4 applied to MCOx clock
|
|
* @arg RCC_MCODIV_5: division by 5 applied to MCOx clock
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
|
|
{
|
|
GPIO_InitTypeDef GPIO_InitStruct;
|
|
/* Check the parameters */
|
|
assert_param(IS_RCC_MCO(RCC_MCOx));
|
|
assert_param(IS_RCC_MCODIV(RCC_MCODiv));
|
|
/* RCC_MCO1 */
|
|
if(RCC_MCOx == RCC_MCO1)
|
|
{
|
|
assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
|
|
|
|
/* MCO1 Clock Enable */
|
|
__MCO1_CLK_ENABLE();
|
|
|
|
/* Configue the MCO1 pin in alternate function mode */
|
|
GPIO_InitStruct.Pin = MCO1_PIN;
|
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
|
|
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
|
GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
|
|
HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct);
|
|
|
|
/* Mask MCO1 and MCO1PRE[2:0] bits then Select MCO1 clock source and prescaler */
|
|
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO1 | RCC_CFGR_MCO1PRE), (RCC_MCOSource | RCC_MCODiv));
|
|
}
|
|
else
|
|
{
|
|
assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource));
|
|
|
|
/* MCO2 Clock Enable */
|
|
__MCO2_CLK_ENABLE();
|
|
|
|
/* Configue the MCO2 pin in alternate function mode */
|
|
GPIO_InitStruct.Pin = MCO2_PIN;
|
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
|
|
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
|
GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
|
|
HAL_GPIO_Init(MCO2_GPIO_PORT, &GPIO_InitStruct);
|
|
|
|
/* Mask MCO2 and MCO2PRE[2:0] bits then Select MCO2 clock source and prescaler */
|
|
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO2 | RCC_CFGR_MCO2PRE), (RCC_MCOSource | (RCC_MCODiv << 3)));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Enables the Clock Security System.
|
|
* @note If a failure is detected on the HSE oscillator clock, this oscillator
|
|
* is automatically disabled and an interrupt is generated to inform the
|
|
* software about the failure (Clock Security System Interrupt, CSSI),
|
|
* allowing the MCU to perform rescue operations. The CSSI is linked to
|
|
* the Cortex-M4 NMI (Non-Maskable Interrupt) exception vector.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_EnableCSS(void)
|
|
{
|
|
*(__IO uint32_t *) CR_CSSON_BB = (uint32_t)ENABLE;
|
|
}
|
|
|
|
/**
|
|
* @brief Disables the Clock Security System.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_DisableCSS(void)
|
|
{
|
|
*(__IO uint32_t *) CR_CSSON_BB = (uint32_t)DISABLE;
|
|
}
|
|
|
|
/**
|
|
* @brief Returns the SYSCLK frequency
|
|
*
|
|
* @note The system frequency computed by this function is not the real
|
|
* frequency in the chip. It is calculated based on the predefined
|
|
* constant and the selected clock source:
|
|
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
|
|
* @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
|
|
* @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**)
|
|
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
|
|
* @note (*) HSI_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value
|
|
* 16 MHz) but the real value may vary depending on the variations
|
|
* in voltage and temperature.
|
|
* @note (**) HSE_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value
|
|
* 25 MHz), user has to ensure that HSE_VALUE is same as the real
|
|
* frequency of the crystal used. Otherwise, this function may
|
|
* have wrong result.
|
|
*
|
|
* @note The result of this function could be not correct when using fractional
|
|
* value for HSE crystal.
|
|
*
|
|
* @note This function can be used by the user application to compute the
|
|
* baudrate for the communication peripherals or configure other parameters.
|
|
*
|
|
* @note Each time SYSCLK changes, this function must be called to update the
|
|
* right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
|
|
*
|
|
*
|
|
* @param None
|
|
* @retval SYSCLK frequency
|
|
*/
|
|
uint32_t HAL_RCC_GetSysClockFreq(void)
|
|
{
|
|
uint32_t pllm = 0, pllvco = 0, pllp = 0;
|
|
uint32_t sysclockfreq = 0;
|
|
|
|
/* Get SYSCLK source -------------------------------------------------------*/
|
|
switch (RCC->CFGR & RCC_CFGR_SWS)
|
|
{
|
|
case RCC_CFGR_SWS_HSI: /* HSI used as system clock source */
|
|
{
|
|
sysclockfreq = HSI_VALUE;
|
|
break;
|
|
}
|
|
case RCC_CFGR_SWS_HSE: /* HSE used as system clock source */
|
|
{
|
|
sysclockfreq = HSE_VALUE;
|
|
break;
|
|
}
|
|
case RCC_CFGR_SWS_PLL: /* PLL used as system clock source */
|
|
{
|
|
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
|
|
SYSCLK = PLL_VCO / PLLP */
|
|
pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM;
|
|
if (__RCC_PLLSRC() != 0)
|
|
{
|
|
/* HSE used as PLL clock source */
|
|
pllvco = ((HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN)));
|
|
}
|
|
else
|
|
{
|
|
/* HSI used as PLL clock source */
|
|
pllvco = ((HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN)));
|
|
}
|
|
pllp = ((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >> POSITION_VAL(RCC_PLLCFGR_PLLP)) + 1 ) *2);
|
|
|
|
sysclockfreq = pllvco/pllp;
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
sysclockfreq = HSI_VALUE;
|
|
break;
|
|
}
|
|
}
|
|
return sysclockfreq;
|
|
}
|
|
|
|
/**
|
|
* @brief Returns the HCLK frequency
|
|
* @note Each time HCLK changes, this function must be called to update the
|
|
* right HCLK value. Otherwise, any configuration based on this function will be incorrect.
|
|
*
|
|
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
|
|
* and updated within this function
|
|
* @param None
|
|
* @retval HCLK frequency
|
|
*/
|
|
uint32_t HAL_RCC_GetHCLKFreq(void)
|
|
{
|
|
SystemCoreClock = HAL_RCC_GetSysClockFreq() >> APBAHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> POSITION_VAL(RCC_CFGR_HPRE)];
|
|
return SystemCoreClock;
|
|
}
|
|
|
|
/**
|
|
* @brief Returns the PCLK1 frequency
|
|
* @note Each time PCLK1 changes, this function must be called to update the
|
|
* right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
|
|
* @param None
|
|
* @retval PCLK1 frequency
|
|
*/
|
|
uint32_t HAL_RCC_GetPCLK1Freq(void)
|
|
{
|
|
/* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
|
|
return (HAL_RCC_GetHCLKFreq() >> APBAHBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1)>> POSITION_VAL(RCC_CFGR_PPRE1)]);
|
|
}
|
|
|
|
/**
|
|
* @brief Returns the PCLK2 frequency
|
|
* @note Each time PCLK2 changes, this function must be called to update the
|
|
* right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
|
|
* @param None
|
|
* @retval PCLK2 frequency
|
|
*/
|
|
uint32_t HAL_RCC_GetPCLK2Freq(void)
|
|
{
|
|
/* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
|
|
return (HAL_RCC_GetHCLKFreq()>> APBAHBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2)>> POSITION_VAL(RCC_CFGR_PPRE2)]);
|
|
}
|
|
|
|
/**
|
|
* @brief Configures the RCC_OscInitStruct according to the internal
|
|
* RCC configuration registers.
|
|
* @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
|
|
* will be configured.
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
|
|
{
|
|
/* Set all possible values for the Oscillator type parameter ---------------*/
|
|
RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;
|
|
|
|
/* Get the HSE configuration -----------------------------------------------*/
|
|
if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
|
|
}
|
|
else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON)
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
|
|
}
|
|
|
|
/* Get the HSI configuration -----------------------------------------------*/
|
|
if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION)
|
|
{
|
|
RCC_OscInitStruct->HSIState = RCC_HSI_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
|
|
}
|
|
|
|
RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR &RCC_CR_HSITRIM) >> POSITION_VAL(RCC_CR_HSITRIM));
|
|
|
|
/* Get the LSE configuration -----------------------------------------------*/
|
|
if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
|
|
}
|
|
else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
|
|
}
|
|
|
|
/* Get the LSI configuration -----------------------------------------------*/
|
|
if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION)
|
|
{
|
|
RCC_OscInitStruct->LSIState = RCC_LSI_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
|
|
}
|
|
|
|
/* Get the PLL configuration -----------------------------------------------*/
|
|
if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON)
|
|
{
|
|
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
|
|
}
|
|
else
|
|
{
|
|
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
|
|
}
|
|
RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
|
|
RCC_OscInitStruct->PLL.PLLM = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM);
|
|
RCC_OscInitStruct->PLL.PLLN = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN));
|
|
RCC_OscInitStruct->PLL.PLLP = (uint32_t)((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) + RCC_PLLCFGR_PLLP_0) << 1) >> POSITION_VAL(RCC_PLLCFGR_PLLP));
|
|
RCC_OscInitStruct->PLL.PLLQ = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLQ) >> POSITION_VAL(RCC_PLLCFGR_PLLQ));
|
|
}
|
|
|
|
/**
|
|
* @brief Configures the RCC_ClkInitStruct according to the internal
|
|
* RCC configuration registers.
|
|
* @param RCC_OscInitStruct: pointer to an RCC_ClkInitTypeDef structure that
|
|
* will be configured.
|
|
* @param pFLatency: Pointer on the Flash Latency.
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
|
|
{
|
|
/* Set all possible values for the Clock type parameter --------------------*/
|
|
RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
|
|
|
|
/* Get the SYSCLK configuration --------------------------------------------*/
|
|
RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
|
|
|
|
/* Get the HCLK configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
|
|
|
|
/* Get the APB1 configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1);
|
|
|
|
/* Get the APB2 configuration ----------------------------------------------*/
|
|
RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3);
|
|
|
|
/* Get the Flash Wait State (Latency) configuration ------------------------*/
|
|
*pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles the RCC CSS interrupt request.
|
|
* @note This API should be called under the NMI_Handler().
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void HAL_RCC_NMI_IRQHandler(void)
|
|
{
|
|
/* Check RCC CSSF flag */
|
|
if(__HAL_RCC_GET_IT(RCC_IT_CSS))
|
|
{
|
|
/* RCC Clock Security System interrupt user callback */
|
|
HAL_RCC_CCSCallback();
|
|
|
|
/* Clear RCC CSS pending bit */
|
|
__HAL_RCC_CLEAR_IT(RCC_IT_CSS);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief RCC Clock Security System interrupt callback
|
|
* @param none
|
|
* @retval none
|
|
*/
|
|
__weak void HAL_RCC_CCSCallback(void)
|
|
{
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_RCC_CCSCallback could be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
#endif /* HAL_RCC_MODULE_ENABLED */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|