circuitpython/ports/atmel-samd/common-hal/imagecapture/ParallelImageCapture.c

196 lines
7.3 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Jeff Epler for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/obj.h"
#include "py/runtime.h"
#include "shared/runtime/context_manager_helpers.h"
#include "shared/runtime/interrupt_char.h"
#include "shared-bindings/imagecapture/ParallelImageCapture.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "common-hal/imagecapture/ParallelImageCapture.h"
#include "hal/include/hal_gpio.h"
#include "atmel_start_pins.h"
#include "audio_dma.h"
#include "samd/clocks.h"
#include "samd/events.h"
#define GPIO_PIN_FUNCTION_PCC (GPIO_PIN_FUNCTION_K)
#define PIN_PCC_D0 (PIN_PA16)
#define PIN_PCC_DEN1 (PIN_PA12)
#define PIN_PCC_DEN2 (PIN_PA13)
#define PIN_PCC_CLK (PIN_PA14)
void common_hal_imagecapture_parallelimagecapture_construct(imagecapture_parallelimagecapture_obj_t *self,
const uint8_t data_pins[],
uint8_t data_count,
const mcu_pin_obj_t *data_clock,
const mcu_pin_obj_t *vertical_sync,
const mcu_pin_obj_t *horizontal_reference) {
for (int i = 0; i < data_count; i++) {
if (data_pins[i] != PIN_PCC_D0 + i) {
mp_raise_ValueError_varg(MP_ERROR_TEXT("Invalid data_pins[%d]"), i);
}
}
// The peripheral supports 8, 10, 12, or 14 data bits, but the code only supports 8 at present
if (data_count != 8) {
mp_arg_error_invalid(MP_QSTR_datacount);
}
if (vertical_sync && vertical_sync->number != PIN_PCC_DEN1) {
raise_ValueError_invalid_pin_name(MP_QSTR_vsync);
}
if (horizontal_reference && horizontal_reference->number != PIN_PCC_DEN2) {
raise_ValueError_invalid_pin_name(MP_QSTR_href);
}
if (data_clock->number != PIN_PCC_CLK) {
raise_ValueError_invalid_pin_name(MP_QSTR_data_clock);
}
// technically, 0 was validated as free already but check again
for (int i = 0; i < data_count; i++) {
if (!pin_number_is_free(data_pins[i])) {
mp_raise_ValueError_varg(MP_ERROR_TEXT("data pin #%d in use"), i);
}
}
PCC->MR.bit.PCEN = 0; // Make sure PCC is disabled before setting MR reg
PCC->IDR.reg = 0b1111; // Disable all PCC interrupts
MCLK->APBDMASK.bit.PCC_ = 1; // Enable PCC clock
// Accumulate 4 bytes into RHR register (two 16-bit pixels)
PCC->MR.reg = PCC_MR_CID(0x1) | // Clear on falling DEN1 (VSYNC)
PCC_MR_ISIZE(0x0) | // Input data bus is 8 bits
PCC_MR_DSIZE(0x2); // "4 data" at a time (accumulate in RHR)
PCC->MR.bit.PCEN = 1; // Enable PCC
// Now we know we can allocate all pins
self->data_count = data_count;
self->vertical_sync = vertical_sync ? vertical_sync->number : NO_PIN;
self->horizontal_reference = horizontal_reference ? horizontal_reference->number : NO_PIN;
gpio_set_pin_direction(PIN_PCC_CLK, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(PIN_PCC_CLK, GPIO_PULL_OFF);
gpio_set_pin_function(PIN_PCC_CLK, GPIO_PIN_FUNCTION_PCC);
// claim_pin_number(PIN_PCC_CLK);
if (vertical_sync) {
gpio_set_pin_direction(PIN_PCC_DEN1, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(PIN_PCC_DEN1, GPIO_PULL_OFF);
gpio_set_pin_function(PIN_PCC_DEN1, GPIO_PIN_FUNCTION_PCC); // VSYNC
// claim_pin_number(PIN_PCC_DEN1);
}
if (horizontal_reference) {
gpio_set_pin_direction(PIN_PCC_DEN2, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(PIN_PCC_DEN2, GPIO_PULL_OFF);
gpio_set_pin_function(PIN_PCC_DEN2, GPIO_PIN_FUNCTION_PCC); // HSYNC
// claim_pin_number(PIN_PCC_DEN2);
}
for (int i = 0; i < data_count; i++) {
gpio_set_pin_direction(PIN_PCC_D0 + i, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(PIN_PCC_D0 + i, GPIO_PULL_OFF);
gpio_set_pin_function(PIN_PCC_D0 + i, GPIO_PIN_FUNCTION_PCC);
// claim_pin_number(PIN_PCC_D0+i);
}
}
void common_hal_imagecapture_parallelimagecapture_deinit(imagecapture_parallelimagecapture_obj_t *self) {
if (common_hal_imagecapture_parallelimagecapture_deinited(self)) {
return;
}
reset_pin_number(self->vertical_sync);
reset_pin_number(self->horizontal_reference);
reset_pin_number(PIN_PCC_CLK);
for (int i = 0; i < self->data_count; i++) {
reset_pin_number(PIN_PCC_D0 + i);
}
self->data_count = 0;
}
bool common_hal_imagecapture_parallelimagecapture_deinited(imagecapture_parallelimagecapture_obj_t *self) {
return self->data_count == 0;
}
static void setup_dma(DmacDescriptor *descriptor, size_t count, uint32_t *buffer) {
descriptor->BTCTRL.reg = DMAC_BTCTRL_VALID |
DMAC_BTCTRL_BLOCKACT_NOACT |
DMAC_BTCTRL_EVOSEL_BLOCK |
DMAC_BTCTRL_DSTINC |
DMAC_BTCTRL_BEATSIZE_WORD;
descriptor->BTCNT.reg = count;
descriptor->DSTADDR.reg = (uint32_t)buffer + 4 * count;
descriptor->SRCADDR.reg = (uint32_t)&PCC->RHR.reg;
descriptor->DESCADDR.reg = 0;
}
void common_hal_imagecapture_parallelimagecapture_singleshot_capture(imagecapture_parallelimagecapture_obj_t *self, mp_obj_t buffer) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buffer, &bufinfo, MP_BUFFER_RW);
uint8_t dma_channel = dma_allocate_channel();
uint32_t *dest = bufinfo.buf;
size_t count = bufinfo.len / 4; // PCC receives 4 bytes (2 pixels) at a time
turn_on_event_system();
setup_dma(dma_descriptor(dma_channel), count, dest);
dma_configure(dma_channel, PCC_DMAC_ID_RX, true);
if (self->vertical_sync) {
const volatile uint32_t *vsync_reg = &PORT->Group[(self->vertical_sync / 32)].IN.reg;
uint32_t vsync_bit = 1 << (self->vertical_sync % 32);
while (*vsync_reg & vsync_bit) {
// Wait for VSYNC low (frame end)
RUN_BACKGROUND_TASKS;
// Allow user to break out of a timeout with a KeyboardInterrupt.
if (mp_hal_is_interrupted()) {
dma_free_channel(dma_channel);
return;
}
}
}
dma_enable_channel(dma_channel);
while (DMAC->Channel[dma_channel].CHCTRLA.bit.ENABLE) {
RUN_BACKGROUND_TASKS;
if (mp_hal_is_interrupted()) {
break;
}
}
dma_disable_channel(dma_channel);
dma_free_channel(dma_channel);
}