3a1c4c5bc6
As per issue #876, the network module is used to configure NICs (hardware modules) and configure routing. The usocket module is supposed to implement the normal Python socket module and selects the underlying NIC using routing logic. Right now the routing logic is brain dead: first-initialised, first-used. And the routing table is just a list of registered NICs. cc3k and wiznet5k work, but not at the same time due to C name clashes (to be fixed). Note that the usocket module has alias socket, so that one can import socket and it works as normal. But you can also override socket with your own module, using usocket at the backend.
557 lines
16 KiB
C
557 lines
16 KiB
C
/*
|
|
* This file is part of the Micro Python project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include "stm32f4xx_hal.h"
|
|
|
|
#include "mpconfig.h"
|
|
#include "misc.h"
|
|
#include "systick.h"
|
|
#include "pendsv.h"
|
|
#include "qstr.h"
|
|
#include "misc.h"
|
|
#include "nlr.h"
|
|
#include "lexer.h"
|
|
#include "parse.h"
|
|
#include "obj.h"
|
|
#include "runtime.h"
|
|
#include "stackctrl.h"
|
|
#include "gc.h"
|
|
#include "gccollect.h"
|
|
#include "readline.h"
|
|
#include "pyexec.h"
|
|
#include "i2c.h"
|
|
#include "spi.h"
|
|
#include "uart.h"
|
|
#include "timer.h"
|
|
#include "led.h"
|
|
#include "pin.h"
|
|
#include "extint.h"
|
|
#include "usrsw.h"
|
|
#include "usb.h"
|
|
#include "rtc.h"
|
|
#include "storage.h"
|
|
#include "sdcard.h"
|
|
#include "ff.h"
|
|
#include "rng.h"
|
|
#include "accel.h"
|
|
#include "servo.h"
|
|
#include "dac.h"
|
|
#include "pybwlan.h"
|
|
#include "pybstdio.h"
|
|
#include "modnetwork.h"
|
|
|
|
void SystemClock_Config(void);
|
|
|
|
static FATFS fatfs0;
|
|
#if MICROPY_HW_HAS_SDCARD
|
|
static FATFS fatfs1;
|
|
#endif
|
|
|
|
void flash_error(int n) {
|
|
for (int i = 0; i < n; i++) {
|
|
led_state(PYB_LED_R1, 1);
|
|
led_state(PYB_LED_R2, 0);
|
|
HAL_Delay(250);
|
|
led_state(PYB_LED_R1, 0);
|
|
led_state(PYB_LED_R2, 1);
|
|
HAL_Delay(250);
|
|
}
|
|
led_state(PYB_LED_R2, 0);
|
|
}
|
|
|
|
void NORETURN __fatal_error(const char *msg) {
|
|
for (volatile uint delay = 0; delay < 10000000; delay++) {
|
|
}
|
|
led_state(1, 1);
|
|
led_state(2, 1);
|
|
led_state(3, 1);
|
|
led_state(4, 1);
|
|
stdout_tx_strn("\nFATAL ERROR:\n", 14);
|
|
stdout_tx_strn(msg, strlen(msg));
|
|
for (uint i = 0;;) {
|
|
led_toggle(((i++) & 3) + 1);
|
|
for (volatile uint delay = 0; delay < 10000000; delay++) {
|
|
}
|
|
if (i >= 16) {
|
|
// to conserve power
|
|
__WFI();
|
|
}
|
|
}
|
|
}
|
|
|
|
void nlr_jump_fail(void *val) {
|
|
printf("FATAL: uncaught exception %p\n", val);
|
|
__fatal_error("");
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
|
|
(void)func;
|
|
printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
|
|
__fatal_error("");
|
|
}
|
|
#endif
|
|
|
|
STATIC mp_obj_t pyb_config_main = MP_OBJ_NULL;
|
|
STATIC mp_obj_t pyb_config_usb_mode = MP_OBJ_NULL;
|
|
|
|
STATIC mp_obj_t pyb_main(mp_obj_t main) {
|
|
if (MP_OBJ_IS_STR(main)) {
|
|
pyb_config_main = main;
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(pyb_main_obj, pyb_main);
|
|
|
|
STATIC mp_obj_t pyb_usb_mode(mp_obj_t usb_mode) {
|
|
if (MP_OBJ_IS_STR(usb_mode)) {
|
|
pyb_config_usb_mode = usb_mode;
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(pyb_usb_mode_obj, pyb_usb_mode);
|
|
|
|
static const char fresh_boot_py[] =
|
|
"# boot.py -- run on boot-up\n"
|
|
"# can run arbitrary Python, but best to keep it minimal\n"
|
|
"\n"
|
|
"import pyb\n"
|
|
"#pyb.main('main.py') # main script to run after this one\n"
|
|
"#pyb.usb_mode('CDC+MSC') # act as a serial and a storage device\n"
|
|
"#pyb.usb_mode('CDC+HID') # act as a serial device and a mouse\n"
|
|
;
|
|
|
|
static const char fresh_main_py[] =
|
|
"# main.py -- put your code here!\n"
|
|
;
|
|
|
|
static const char fresh_pybcdc_inf[] =
|
|
#include "genhdr/pybcdc_inf.h"
|
|
;
|
|
|
|
static const char fresh_readme_txt[] =
|
|
"This is a Micro Python board\r\n"
|
|
"\r\n"
|
|
"You can get started right away by writing your Python code in 'main.py'.\r\n"
|
|
"\r\n"
|
|
"For a serial prompt:\r\n"
|
|
" - Windows: you need to go to 'Device manager', right click on the unknown device,\r\n"
|
|
" then update the driver software, using the 'pybcdc.inf' file found on this drive.\r\n"
|
|
" Then use a terminal program like Hyperterminal or putty.\r\n"
|
|
" - Mac OS X: use the command: screen /dev/tty.usbmodem*\r\n"
|
|
" - Linux: use the command: screen /dev/ttyACM0\r\n"
|
|
"\r\n"
|
|
"Please visit http://micropython.org/help/ for further help.\r\n"
|
|
;
|
|
|
|
int main(void) {
|
|
// TODO disable JTAG
|
|
|
|
// Stack limit should be less than real stack size, so we have a chance
|
|
// to recover from limit hit. (Limit is measured in bytes.)
|
|
mp_stack_set_limit((char*)&_ram_end - (char*)&_heap_end - 1024);
|
|
|
|
/* STM32F4xx HAL library initialization:
|
|
- Configure the Flash prefetch, instruction and Data caches
|
|
- Configure the Systick to generate an interrupt each 1 msec
|
|
- Set NVIC Group Priority to 4
|
|
- Global MSP (MCU Support Package) initialization
|
|
*/
|
|
HAL_Init();
|
|
|
|
// set the system clock to be HSE
|
|
SystemClock_Config();
|
|
|
|
// enable GPIO clocks
|
|
__GPIOA_CLK_ENABLE();
|
|
__GPIOB_CLK_ENABLE();
|
|
__GPIOC_CLK_ENABLE();
|
|
__GPIOD_CLK_ENABLE();
|
|
|
|
// enable the CCM RAM
|
|
__CCMDATARAMEN_CLK_ENABLE();
|
|
|
|
#if 0
|
|
#if defined(NETDUINO_PLUS_2)
|
|
{
|
|
GPIO_InitTypeDef GPIO_InitStructure;
|
|
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
|
|
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
|
|
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
|
|
|
|
#if MICROPY_HW_HAS_SDCARD
|
|
// Turn on the power enable for the sdcard (PB1)
|
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
|
|
GPIO_Init(GPIOB, &GPIO_InitStructure);
|
|
GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET);
|
|
#endif
|
|
|
|
// Turn on the power for the 5V on the expansion header (PB2)
|
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
|
|
GPIO_Init(GPIOB, &GPIO_InitStructure);
|
|
GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_SET);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
// basic sub-system init
|
|
pendsv_init();
|
|
timer_tim3_init();
|
|
led_init();
|
|
#if MICROPY_HW_HAS_SWITCH
|
|
switch_init0();
|
|
#endif
|
|
|
|
int first_soft_reset = true;
|
|
|
|
soft_reset:
|
|
|
|
// check if user switch held to select the reset mode
|
|
led_state(1, 0);
|
|
led_state(2, 1);
|
|
led_state(3, 0);
|
|
led_state(4, 0);
|
|
uint reset_mode = 1;
|
|
|
|
#if MICROPY_HW_HAS_SWITCH
|
|
if (switch_get()) {
|
|
for (uint i = 0; i < 3000; i++) {
|
|
if (!switch_get()) {
|
|
break;
|
|
}
|
|
HAL_Delay(20);
|
|
if (i % 30 == 29) {
|
|
if (++reset_mode > 3) {
|
|
reset_mode = 1;
|
|
}
|
|
led_state(2, reset_mode & 1);
|
|
led_state(3, reset_mode & 2);
|
|
led_state(4, reset_mode & 4);
|
|
}
|
|
}
|
|
// flash the selected reset mode
|
|
for (uint i = 0; i < 6; i++) {
|
|
led_state(2, 0);
|
|
led_state(3, 0);
|
|
led_state(4, 0);
|
|
HAL_Delay(50);
|
|
led_state(2, reset_mode & 1);
|
|
led_state(3, reset_mode & 2);
|
|
led_state(4, reset_mode & 4);
|
|
HAL_Delay(50);
|
|
}
|
|
HAL_Delay(400);
|
|
}
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_RTC
|
|
if (first_soft_reset) {
|
|
rtc_init();
|
|
}
|
|
#endif
|
|
|
|
// more sub-system init
|
|
#if MICROPY_HW_HAS_SDCARD
|
|
if (first_soft_reset) {
|
|
sdcard_init();
|
|
}
|
|
#endif
|
|
if (first_soft_reset) {
|
|
storage_init();
|
|
}
|
|
|
|
// GC init
|
|
gc_init(&_heap_start, &_heap_end);
|
|
|
|
// Micro Python init
|
|
mp_init();
|
|
mp_obj_list_init(mp_sys_path, 0);
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash));
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash_slash_lib));
|
|
mp_obj_list_init(mp_sys_argv, 0);
|
|
|
|
// Change #if 0 to #if 1 if you want REPL on UART_6 (or another uart)
|
|
// as well as on USB VCP
|
|
#if 0
|
|
{
|
|
mp_obj_t args[2] = {
|
|
MP_OBJ_NEW_SMALL_INT(PYB_UART_6),
|
|
MP_OBJ_NEW_SMALL_INT(115200),
|
|
};
|
|
pyb_stdio_uart = pyb_uart_type.make_new((mp_obj_t)&pyb_uart_type, MP_ARRAY_SIZE(args), 0, args);
|
|
}
|
|
#else
|
|
pyb_stdio_uart = NULL;
|
|
#endif
|
|
|
|
// Initialise low-level sub-systems. Here we need to very basic things like
|
|
// zeroing out memory and resetting any of the sub-systems. Following this
|
|
// we can run Python scripts (eg boot.py), but anything that is configurable
|
|
// by boot.py must be set after boot.py is run.
|
|
|
|
readline_init0();
|
|
pin_init0();
|
|
extint_init0();
|
|
timer_init0();
|
|
|
|
#if MICROPY_HW_ENABLE_RNG
|
|
rng_init0();
|
|
#endif
|
|
|
|
i2c_init0();
|
|
spi_init0();
|
|
pyb_usb_init0();
|
|
|
|
// Initialise the local flash filesystem.
|
|
// Create it if needed, and mount in on /flash.
|
|
{
|
|
// try to mount the flash
|
|
FRESULT res = f_mount(&fatfs0, "/flash", 1);
|
|
if (reset_mode == 3 || res == FR_NO_FILESYSTEM) {
|
|
// no filesystem, or asked to reset it, so create a fresh one
|
|
|
|
// LED on to indicate creation of LFS
|
|
led_state(PYB_LED_R2, 1);
|
|
uint32_t start_tick = HAL_GetTick();
|
|
|
|
res = f_mkfs("/flash", 0, 0);
|
|
if (res == FR_OK) {
|
|
// success creating fresh LFS
|
|
} else {
|
|
__fatal_error("could not create LFS");
|
|
}
|
|
|
|
// set label
|
|
f_setlabel("/flash/pybflash");
|
|
|
|
// create empty main.py
|
|
FIL fp;
|
|
f_open(&fp, "/flash/main.py", FA_WRITE | FA_CREATE_ALWAYS);
|
|
UINT n;
|
|
f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n);
|
|
// TODO check we could write n bytes
|
|
f_close(&fp);
|
|
|
|
// create .inf driver file
|
|
f_open(&fp, "/flash/pybcdc.inf", FA_WRITE | FA_CREATE_ALWAYS);
|
|
f_write(&fp, fresh_pybcdc_inf, sizeof(fresh_pybcdc_inf) - 1 /* don't count null terminator */, &n);
|
|
f_close(&fp);
|
|
|
|
// create readme file
|
|
f_open(&fp, "/flash/README.txt", FA_WRITE | FA_CREATE_ALWAYS);
|
|
f_write(&fp, fresh_readme_txt, sizeof(fresh_readme_txt) - 1 /* don't count null terminator */, &n);
|
|
f_close(&fp);
|
|
|
|
// keep LED on for at least 200ms
|
|
sys_tick_wait_at_least(start_tick, 200);
|
|
led_state(PYB_LED_R2, 0);
|
|
} else if (res == FR_OK) {
|
|
// mount sucessful
|
|
} else {
|
|
__fatal_error("could not access LFS");
|
|
}
|
|
}
|
|
|
|
// The current directory is used as the boot up directory.
|
|
// It is set to the internal flash filesystem by default.
|
|
f_chdrive("/flash");
|
|
|
|
// Make sure we have a /flash/boot.py. Create it if needed.
|
|
{
|
|
FILINFO fno;
|
|
#if _USE_LFN
|
|
fno.lfname = NULL;
|
|
fno.lfsize = 0;
|
|
#endif
|
|
FRESULT res = f_stat("/flash/boot.py", &fno);
|
|
if (res == FR_OK) {
|
|
if (fno.fattrib & AM_DIR) {
|
|
// exists as a directory
|
|
// TODO handle this case
|
|
// see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation
|
|
} else {
|
|
// exists as a file, good!
|
|
}
|
|
} else {
|
|
// doesn't exist, create fresh file
|
|
|
|
// LED on to indicate creation of boot.py
|
|
led_state(PYB_LED_R2, 1);
|
|
uint32_t start_tick = HAL_GetTick();
|
|
|
|
FIL fp;
|
|
f_open(&fp, "/flash/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
|
|
UINT n;
|
|
f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
|
|
// TODO check we could write n bytes
|
|
f_close(&fp);
|
|
|
|
// keep LED on for at least 200ms
|
|
sys_tick_wait_at_least(start_tick, 200);
|
|
led_state(PYB_LED_R2, 0);
|
|
}
|
|
}
|
|
|
|
#if defined(USE_DEVICE_MODE)
|
|
usb_storage_medium_t usb_medium = USB_STORAGE_MEDIUM_FLASH;
|
|
#endif
|
|
|
|
#if MICROPY_HW_HAS_SDCARD
|
|
// if an SD card is present then mount it on /sd/
|
|
if (sdcard_is_present()) {
|
|
FRESULT res = f_mount(&fatfs1, "/sd", 1);
|
|
if (res != FR_OK) {
|
|
printf("[SD] could not mount SD card\n");
|
|
} else {
|
|
// use SD card as current directory
|
|
f_chdrive("/sd");
|
|
|
|
// TODO these should go before the /flash entries in the path
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd));
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd_slash_lib));
|
|
|
|
if (first_soft_reset) {
|
|
// use SD card as medium for the USB MSD
|
|
#if defined(USE_DEVICE_MODE)
|
|
usb_medium = USB_STORAGE_MEDIUM_SDCARD;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// reset config variables; they should be set by boot.py
|
|
pyb_config_main = MP_OBJ_NULL;
|
|
pyb_config_usb_mode = MP_OBJ_NULL;
|
|
|
|
// run boot.py, if it exists
|
|
// TODO perhaps have pyb.reboot([bootpy]) function to soft-reboot and execute custom boot.py
|
|
if (reset_mode == 1) {
|
|
const char *boot_py = "boot.py";
|
|
FRESULT res = f_stat(boot_py, NULL);
|
|
if (res == FR_OK) {
|
|
if (!pyexec_file(boot_py)) {
|
|
flash_error(4);
|
|
}
|
|
}
|
|
}
|
|
|
|
// turn boot-up LEDs off
|
|
led_state(2, 0);
|
|
led_state(3, 0);
|
|
led_state(4, 0);
|
|
|
|
// Now we initialise sub-systems that need configuration from boot.py,
|
|
// or whose initialisation can be safely deferred until after running
|
|
// boot.py.
|
|
|
|
#if defined(USE_HOST_MODE)
|
|
// USB host
|
|
pyb_usb_host_init();
|
|
#elif defined(USE_DEVICE_MODE)
|
|
// USB device
|
|
usb_device_mode_t usb_mode = USB_DEVICE_MODE_CDC_MSC;
|
|
// if we are not in reset_mode==1, this config variable will always be NULL
|
|
if (pyb_config_usb_mode != MP_OBJ_NULL) {
|
|
if (strcmp(mp_obj_str_get_str(pyb_config_usb_mode), "CDC+HID") == 0) {
|
|
usb_mode = USB_DEVICE_MODE_CDC_HID;
|
|
}
|
|
}
|
|
pyb_usb_dev_init(usb_mode, usb_medium);
|
|
#endif
|
|
|
|
#if MICROPY_HW_HAS_MMA7660
|
|
// MMA accel: init and reset
|
|
accel_init();
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_SERVO
|
|
// servo
|
|
servo_init();
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_DAC
|
|
// DAC
|
|
dac_init();
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_CC3K
|
|
// wifi using the CC3000 driver
|
|
pyb_wlan_init();
|
|
pyb_wlan_start();
|
|
#endif
|
|
|
|
mod_network_init();
|
|
|
|
// At this point everything is fully configured and initialised.
|
|
|
|
// Run the main script from the current directory.
|
|
if (reset_mode == 1 && pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
|
|
const char *main_py;
|
|
if (pyb_config_main == MP_OBJ_NULL) {
|
|
main_py = "main.py";
|
|
} else {
|
|
main_py = mp_obj_str_get_str(pyb_config_main);
|
|
}
|
|
FRESULT res = f_stat(main_py, NULL);
|
|
if (res == FR_OK) {
|
|
if (!pyexec_file(main_py)) {
|
|
flash_error(3);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Main script is finished, so now go into REPL mode.
|
|
// The REPL mode can change, or it can request a soft reset.
|
|
for (;;) {
|
|
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
|
|
if (pyexec_raw_repl() != 0) {
|
|
break;
|
|
}
|
|
} else {
|
|
if (pyexec_friendly_repl() != 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// soft reset
|
|
|
|
printf("PYB: sync filesystems\n");
|
|
storage_flush();
|
|
|
|
printf("PYB: soft reboot\n");
|
|
timer_deinit();
|
|
|
|
first_soft_reset = false;
|
|
goto soft_reset;
|
|
}
|