1844 lines
62 KiB
C

/*
* driver.c - CC31xx/CC32xx Host Driver Implementation
*
* Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com/
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
*
* Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*****************************************************************************/
/* Include files */
/*****************************************************************************/
#include "simplelink.h"
#include "protocol.h"
#include "driver.h"
#include "flowcont.h"
/*****************************************************************************/
/* Macro declarations */
/*****************************************************************************/
#define _SL_PENDING_RX_MSG(pDriverCB) (RxIrqCnt != (pDriverCB)->RxDoneCnt)
/* 2 LSB of the N2H_SYNC_PATTERN are for sequence number
only in SPI interface
support backward sync pattern */
#define N2H_SYNC_PATTERN_SEQ_NUM_BITS ((_u32)0x00000003) /* Bits 0..1 - use the 2 LBS for seq num */
#define N2H_SYNC_PATTERN_SEQ_NUM_EXISTS ((_u32)0x00000004) /* Bit 2 - sign that sequence number exists in the sync pattern */
#define N2H_SYNC_PATTERN_MASK ((_u32)0xFFFFFFF8) /* Bits 3..31 - constant SYNC PATTERN */
#define N2H_SYNC_SPI_BUGS_MASK ((_u32)0x7FFF7F7F) /* Bits 7,15,31 - ignore the SPI (8,16,32 bites bus) error bits */
#define BUF_SYNC_SPIM(pBuf) ((*(_u32 *)(pBuf)) & N2H_SYNC_SPI_BUGS_MASK)
_u8 _SlDrvProtectAsyncRespSetting(_u8 *pAsyncRsp, _u8 ActionID, _u8 SocketID);
#define N2H_SYNC_SPIM (N2H_SYNC_PATTERN & N2H_SYNC_SPI_BUGS_MASK)
#define N2H_SYNC_SPIM_WITH_SEQ(TxSeqNum) ((N2H_SYNC_SPIM & N2H_SYNC_PATTERN_MASK) | N2H_SYNC_PATTERN_SEQ_NUM_EXISTS | ((TxSeqNum) & (N2H_SYNC_PATTERN_SEQ_NUM_BITS)))
#define MATCH_WOUT_SEQ_NUM(pBuf) ( BUF_SYNC_SPIM(pBuf) == N2H_SYNC_SPIM )
#define MATCH_WITH_SEQ_NUM(pBuf, TxSeqNum) ( BUF_SYNC_SPIM(pBuf) == (N2H_SYNC_SPIM_WITH_SEQ(TxSeqNum)) )
#define N2H_SYNC_PATTERN_MATCH(pBuf, TxSeqNum) \
( \
( (*((_u32 *)pBuf) & N2H_SYNC_PATTERN_SEQ_NUM_EXISTS) && ( MATCH_WITH_SEQ_NUM(pBuf, TxSeqNum) ) ) || \
( !(*((_u32 *)pBuf) & N2H_SYNC_PATTERN_SEQ_NUM_EXISTS) && ( MATCH_WOUT_SEQ_NUM(pBuf ) ) ) \
)
#define OPCODE(_ptr) (((_SlResponseHeader_t *)(_ptr))->GenHeader.Opcode)
#define RSP_PAYLOAD_LEN(_ptr) (((_SlResponseHeader_t *)(_ptr))->GenHeader.Len - _SL_RESP_SPEC_HDR_SIZE)
#define SD(_ptr) (((_SocketAddrResponse_u *)(_ptr))->IpV4.sd)
/* Actual size of Recv/Recvfrom response data */
#define ACT_DATA_SIZE(_ptr) (((_SocketAddrResponse_u *)(_ptr))->IpV4.statusOrLen)
/* General Events handling*/
#if defined (EXT_LIB_REGISTERED_GENERAL_EVENTS)
typedef _SlEventPropogationStatus_e (*general_callback) (SlDeviceEvent_t *);
static const general_callback general_callbacks[] =
{
#ifdef SlExtLib1GeneralEventHandler
SlExtLib1GeneralEventHandler,
#endif
#ifdef SlExtLib2GeneralEventHandler
SlExtLib2GeneralEventHandler,
#endif
#ifdef SlExtLib3GeneralEventHandler
SlExtLib3GeneralEventHandler,
#endif
#ifdef SlExtLib4GeneralEventHandler
SlExtLib4GeneralEventHandler,
#endif
#ifdef SlExtLib5GeneralEventHandler
SlExtLib5GeneralEventHandler,
#endif
};
#undef _SlDrvHandleGeneralEvents
/********************************************************************
_SlDrvHandleGeneralEvents
Iterates through all the general(device) event handlers which are
registered by the external libs/user application.
*********************************************************************/
void _SlDrvHandleGeneralEvents(SlDeviceEvent_t *slGeneralEvent)
{
_u8 i;
/* Iterate over all the extenal libs handlers */
for ( i = 0 ; i < sizeof(general_callbacks)/sizeof(general_callbacks[0]) ; i++ )
{
if (EVENT_PROPAGATION_BLOCK == general_callbacks[i](slGeneralEvent) )
{
/* exit immediately and do not call the user specific handler as well */
return;
}
}
/* At last call the Application specific handler if registered */
#ifdef sl_GeneralEvtHdlr
sl_GeneralEvtHdlr(slGeneralEvent);
#endif
}
#endif
/* WLAN Events handling*/
#if defined (EXT_LIB_REGISTERED_WLAN_EVENTS)
typedef _SlEventPropogationStatus_e (*wlan_callback) (SlWlanEvent_t *);
static wlan_callback wlan_callbacks[] =
{
#ifdef SlExtLib1WlanEventHandler
SlExtLib1WlanEventHandler,
#endif
#ifdef SlExtLib2WlanEventHandler
SlExtLib2WlanEventHandler,
#endif
#ifdef SlExtLib3WlanEventHandler
SlExtLib3WlanEventHandler,
#endif
#ifdef SlExtLib4WlanEventHandler
SlExtLib4WlanEventHandler,
#endif
#ifdef SlExtLib5WlanEventHandler
SlExtLib5WlanEventHandler,
#endif
};
#undef _SlDrvHandleWlanEvents
/***********************************************************
_SlDrvHandleWlanEvents
Iterates through all the wlan event handlers which are
registered by the external libs/user application.
************************************************************/
void _SlDrvHandleWlanEvents(SlWlanEvent_t *slWlanEvent)
{
_u8 i;
/* Iterate over all the extenal libs handlers */
for ( i = 0 ; i < sizeof(wlan_callbacks)/sizeof(wlan_callbacks[0]) ; i++ )
{
if ( EVENT_PROPAGATION_BLOCK == wlan_callbacks[i](slWlanEvent) )
{
/* exit immediately and do not call the user specific handler as well */
return;
}
}
/* At last call the Application specific handler if registered */
#ifdef sl_WlanEvtHdlr
sl_WlanEvtHdlr(slWlanEvent);
#endif
}
#endif
/* NetApp Events handling */
#if defined (EXT_LIB_REGISTERED_NETAPP_EVENTS)
typedef _SlEventPropogationStatus_e (*netApp_callback) (SlNetAppEvent_t *);
static const netApp_callback netApp_callbacks[] =
{
#ifdef SlExtLib1NetAppEventHandler
SlExtLib1NetAppEventHandler,
#endif
#ifdef SlExtLib2NetAppEventHandler
SlExtLib2NetAppEventHandler,
#endif
#ifdef SlExtLib3NetAppEventHandler
SlExtLib3NetAppEventHandler,
#endif
#ifdef SlExtLib4NetAppEventHandler
SlExtLib4NetAppEventHandler,
#endif
#ifdef SlExtLib5NetAppEventHandler
SlExtLib5NetAppEventHandler,
#endif
};
#undef _SlDrvHandleNetAppEvents
/************************************************************
_SlDrvHandleNetAppEvents
Iterates through all the net app event handlers which are
registered by the external libs/user application.
************************************************************/
void _SlDrvHandleNetAppEvents(SlNetAppEvent_t *slNetAppEvent)
{
_u8 i;
/* Iterate over all the extenal libs handlers */
for ( i = 0 ; i < sizeof(netApp_callbacks)/sizeof(netApp_callbacks[0]) ; i++ )
{
if (EVENT_PROPAGATION_BLOCK == netApp_callbacks[i](slNetAppEvent) )
{
/* exit immediately and do not call the user specific handler as well */
return;
}
}
/* At last call the Application specific handler if registered */
#ifdef sl_NetAppEvtHdlr
sl_NetAppEvtHdlr(slNetAppEvent);
#endif
}
#endif
/* Http Server Events handling */
#if defined (EXT_LIB_REGISTERED_HTTP_SERVER_EVENTS)
typedef _SlEventPropogationStatus_e (*httpServer_callback) (SlHttpServerEvent_t*, SlHttpServerResponse_t*);
static const httpServer_callback httpServer_callbacks[] =
{
#ifdef SlExtLib1HttpServerEventHandler
SlExtLib1HttpServerEventHandler,
#endif
#ifdef SlExtLib2HttpServerEventHandler
SlExtLib2HttpServerEventHandler,
#endif
#ifdef SlExtLib3HttpServerEventHandler
SlExtLib3HttpServerEventHandler,
#endif
#ifdef SlExtLib4HttpServerEventHandler
SlExtLib4HttpServerEventHandler,
#endif
#ifdef SlExtLib5HttpServerEventHandler
SlExtLib5HttpServerEventHandler,
#endif
};
#undef _SlDrvHandleHttpServerEvents
/*******************************************************************
_SlDrvHandleHttpServerEvents
Iterates through all the http server event handlers which are
registered by the external libs/user application.
********************************************************************/
void _SlDrvHandleHttpServerEvents(SlHttpServerEvent_t *slHttpServerEvent, SlHttpServerResponse_t *slHttpServerResponse)
{
_u8 i;
/* Iterate over all the external libs handlers */
for ( i = 0 ; i < sizeof(httpServer_callbacks)/sizeof(httpServer_callbacks[0]) ; i++ )
{
if ( EVENT_PROPAGATION_BLOCK == httpServer_callbacks[i](slHttpServerEvent, slHttpServerResponse) )
{
/* exit immediately and do not call the user specific handler as well */
return;
}
}
/* At last call the Application specific handler if registered */
#ifdef sl_HttpServerCallback
sl_HttpServerCallback(slHttpServerEvent, slHttpServerResponse);
#endif
}
#endif
/* Socket Events */
#if defined (EXT_LIB_REGISTERED_SOCK_EVENTS)
typedef _SlEventPropogationStatus_e (*sock_callback) (SlSockEvent_t *);
static const sock_callback sock_callbacks[] =
{
#ifdef SlExtLib1SockEventHandler
SlExtLib1SockEventHandler,
#endif
#ifdef SlExtLib2SockEventHandler
SlExtLib2SockEventHandler,
#endif
#ifdef SlExtLib3SockEventHandler
SlExtLib3SockEventHandler,
#endif
#ifdef SlExtLib4SockEventHandler
SlExtLib4SockEventHandler,
#endif
#ifdef SlExtLib5SockEventHandler
SlExtLib5SockEventHandler,
#endif
};
/*************************************************************
_SlDrvHandleSockEvents
Iterates through all the socket event handlers which are
registered by the external libs/user application.
**************************************************************/
void _SlDrvHandleSockEvents(SlSockEvent_t *slSockEvent)
{
_u8 i;
/* Iterate over all the external libs handlers */
for ( i = 0 ; i < sizeof(sock_callbacks)/sizeof(sock_callbacks[0]) ; i++ )
{
if ( EVENT_PROPAGATION_BLOCK == sock_callbacks[i](slSockEvent) )
{
/* exit immediately and do not call the user specific handler as well */
return;
}
}
/* At last call the Application specific handler if registered */
#ifdef sl_SockEvtHdlr
sl_SockEvtHdlr(slSockEvent);
#endif
}
#endif
#if (SL_MEMORY_MGMT != SL_MEMORY_MGMT_DYNAMIC)
typedef struct
{
_u32 Align;
_SlDriverCb_t DriverCB;
_u8 AsyncRespBuf[SL_ASYNC_MAX_MSG_LEN];
}_SlStatMem_t;
_SlStatMem_t g_StatMem;
#endif
_u8 _SlDrvProtectAsyncRespSetting(_u8 *pAsyncRsp, _u8 ActionID, _u8 SocketID)
{
_u8 ObjIdx;
/* Use Obj to issue the command, if not available try later */
ObjIdx = _SlDrvWaitForPoolObj(ActionID, SocketID);
if (MAX_CONCURRENT_ACTIONS != ObjIdx)
{
_SlDrvProtectionObjLockWaitForever();
g_pCB->ObjPool[ObjIdx].pRespArgs = pAsyncRsp;
_SlDrvProtectionObjUnLock();
}
return ObjIdx;
}
/*****************************************************************************/
/* Variables */
/*****************************************************************************/
const _SlSyncPattern_t g_H2NSyncPattern = H2N_SYNC_PATTERN;
const _SlSyncPattern_t g_H2NCnysPattern = H2N_CNYS_PATTERN;
_volatile _u8 RxIrqCnt;
#ifndef SL_TINY_EXT
const _SlActionLookup_t _SlActionLookupTable[] =
{
{ACCEPT_ID, SL_OPCODE_SOCKET_ACCEPTASYNCRESPONSE, (_SlSpawnEntryFunc_t)_sl_HandleAsync_Accept},
{CONNECT_ID, SL_OPCODE_SOCKET_CONNECTASYNCRESPONSE,(_SlSpawnEntryFunc_t)_sl_HandleAsync_Connect},
{SELECT_ID, SL_OPCODE_SOCKET_SELECTASYNCRESPONSE,(_SlSpawnEntryFunc_t)_sl_HandleAsync_Select},
{GETHOSYBYNAME_ID, SL_OPCODE_NETAPP_DNSGETHOSTBYNAMEASYNCRESPONSE,(_SlSpawnEntryFunc_t)_sl_HandleAsync_DnsGetHostByName},
{GETHOSYBYSERVICE_ID, SL_OPCODE_NETAPP_MDNSGETHOSTBYSERVICEASYNCRESPONSE,(_SlSpawnEntryFunc_t)_sl_HandleAsync_DnsGetHostByService},
{PING_ID, SL_OPCODE_NETAPP_PINGREPORTREQUESTRESPONSE, (_SlSpawnEntryFunc_t)_sl_HandleAsync_PingResponse},
{START_STOP_ID, SL_OPCODE_DEVICE_STOP_ASYNC_RESPONSE,(_SlSpawnEntryFunc_t)_sl_HandleAsync_Stop}
};
#else
const _SlActionLookup_t _SlActionLookupTable[] =
{
{CONNECT_ID, SL_OPCODE_SOCKET_CONNECTASYNCRESPONSE,(_SlSpawnEntryFunc_t)_sl_HandleAsync_Connect},
{GETHOSYBYNAME_ID, SL_OPCODE_NETAPP_DNSGETHOSTBYNAMEASYNCRESPONSE,(_SlSpawnEntryFunc_t)_sl_HandleAsync_DnsGetHostByName},
{START_STOP_ID, SL_OPCODE_DEVICE_STOP_ASYNC_RESPONSE,(_SlSpawnEntryFunc_t)_sl_HandleAsync_Stop}
};
#endif
typedef struct
{
_u16 opcode;
_u8 event;
} OpcodeKeyVal_t;
/* The table translates opcode to user's event type */
const OpcodeKeyVal_t OpcodeTranslateTable[] =
{
{SL_OPCODE_WLAN_SMART_CONFIG_START_ASYNC_RESPONSE, SL_WLAN_SMART_CONFIG_COMPLETE_EVENT},
{SL_OPCODE_WLAN_SMART_CONFIG_STOP_ASYNC_RESPONSE,SL_WLAN_SMART_CONFIG_STOP_EVENT},
{SL_OPCODE_WLAN_STA_CONNECTED, SL_WLAN_STA_CONNECTED_EVENT},
{SL_OPCODE_WLAN_STA_DISCONNECTED,SL_WLAN_STA_DISCONNECTED_EVENT},
{SL_OPCODE_WLAN_P2P_DEV_FOUND,SL_WLAN_P2P_DEV_FOUND_EVENT},
{SL_OPCODE_WLAN_P2P_NEG_REQ_RECEIVED, SL_WLAN_P2P_NEG_REQ_RECEIVED_EVENT},
{SL_OPCODE_WLAN_CONNECTION_FAILED, SL_WLAN_CONNECTION_FAILED_EVENT},
{SL_OPCODE_WLAN_WLANASYNCCONNECTEDRESPONSE, SL_WLAN_CONNECT_EVENT},
{SL_OPCODE_WLAN_WLANASYNCDISCONNECTEDRESPONSE, SL_WLAN_DISCONNECT_EVENT},
{SL_OPCODE_NETAPP_IPACQUIRED, SL_NETAPP_IPV4_IPACQUIRED_EVENT},
{SL_OPCODE_NETAPP_IPACQUIRED_V6, SL_NETAPP_IPV6_IPACQUIRED_EVENT},
{SL_OPCODE_NETAPP_IP_LEASED, SL_NETAPP_IP_LEASED_EVENT},
{SL_OPCODE_NETAPP_IP_RELEASED, SL_NETAPP_IP_RELEASED_EVENT},
{SL_OPCODE_SOCKET_TXFAILEDASYNCRESPONSE, SL_SOCKET_TX_FAILED_EVENT},
{SL_OPCODE_SOCKET_SOCKETASYNCEVENT, SL_SOCKET_ASYNC_EVENT}
};
_SlDriverCb_t* g_pCB = NULL;
P_SL_DEV_PING_CALLBACK pPingCallBackFunc = NULL;
_u8 gFirstCmdMode = 0;
/*****************************************************************************/
/* Function prototypes */
/*****************************************************************************/
_SlReturnVal_t _SlDrvMsgRead(void);
_SlReturnVal_t _SlDrvMsgWrite(_SlCmdCtrl_t *pCmdCtrl,_SlCmdExt_t *pCmdExt, _u8 *pTxRxDescBuff);
_SlReturnVal_t _SlDrvMsgReadCmdCtx(void);
_SlReturnVal_t _SlDrvMsgReadSpawnCtx(void *pValue);
void _SlDrvClassifyRxMsg(_SlOpcode_t Opcode );
_SlReturnVal_t _SlDrvRxHdrRead(_u8 *pBuf, _u8 *pAlignSize);
void _SlDrvShiftDWord(_u8 *pBuf);
void _SlDrvDriverCBInit(void);
void _SlAsyncEventGenericHandler(void);
_u8 _SlDrvWaitForPoolObj(_u8 ActionID, _u8 SocketID);
void _SlDrvReleasePoolObj(_u8 pObj);
void _SlRemoveFromList(_u8* ListIndex, _u8 ItemIndex);
_SlReturnVal_t _SlFindAndSetActiveObj(_SlOpcode_t Opcode, _u8 Sd);
/*****************************************************************************/
/* Internal functions */
/*****************************************************************************/
/*****************************************************************************
_SlDrvDriverCBInit - init Driver Control Block
*****************************************************************************/
void _SlDrvDriverCBInit(void)
{
_u8 Idx =0;
#if (SL_MEMORY_MGMT == SL_MEMORY_MGMT_DYNAMIC)
g_pCB = sl_Malloc(sizeof(_SlDriverCb_t));
#else
g_pCB = &(g_StatMem.DriverCB);
#endif
MALLOC_OK_CHECK(g_pCB);
_SlDrvMemZero(g_pCB, sizeof(_SlDriverCb_t));
RxIrqCnt = 0;
OSI_RET_OK_CHECK( sl_SyncObjCreate(&g_pCB->CmdSyncObj, "CmdSyncObj") );
sl_SyncObjClear(&g_pCB->CmdSyncObj);
OSI_RET_OK_CHECK( sl_LockObjCreate(&g_pCB->GlobalLockObj, "GlobalLockObj") );
OSI_RET_OK_CHECK( sl_LockObjCreate(&g_pCB->ProtectionLockObj, "ProtectionLockObj") );
/* Init Drv object */
_SlDrvMemZero(&g_pCB->ObjPool[0], MAX_CONCURRENT_ACTIONS*sizeof(_SlPoolObj_t));
/* place all Obj in the free list*/
g_pCB->FreePoolIdx = 0;
for (Idx = 0 ; Idx < MAX_CONCURRENT_ACTIONS ; Idx++)
{
g_pCB->ObjPool[Idx].NextIndex = Idx + 1;
g_pCB->ObjPool[Idx].AdditionalData = SL_MAX_SOCKETS;
OSI_RET_OK_CHECK( sl_SyncObjCreate(&g_pCB->ObjPool[Idx].SyncObj, "SyncObj"));
sl_SyncObjClear(&g_pCB->ObjPool[Idx].SyncObj);
}
g_pCB->ActivePoolIdx = MAX_CONCURRENT_ACTIONS;
g_pCB->PendingPoolIdx = MAX_CONCURRENT_ACTIONS;
/* Flow control init */
g_pCB->FlowContCB.TxPoolCnt = FLOW_CONT_MIN;
OSI_RET_OK_CHECK(sl_LockObjCreate(&g_pCB->FlowContCB.TxLockObj, "TxLockObj"));
OSI_RET_OK_CHECK(sl_SyncObjCreate(&g_pCB->FlowContCB.TxSyncObj, "TxSyncObj"));
gFirstCmdMode = 0;
}
/*****************************************************************************
_SlDrvDriverCBDeinit - De init Driver Control Block
*****************************************************************************/
void _SlDrvDriverCBDeinit()
{
_u8 Idx =0;
/* Flow control de-init */
g_pCB->FlowContCB.TxPoolCnt = 0;
OSI_RET_OK_CHECK(sl_LockObjDelete(&g_pCB->FlowContCB.TxLockObj));
OSI_RET_OK_CHECK(sl_SyncObjDelete(&g_pCB->FlowContCB.TxSyncObj));
OSI_RET_OK_CHECK( sl_SyncObjDelete(&g_pCB->CmdSyncObj) );
OSI_RET_OK_CHECK( sl_LockObjDelete(&g_pCB->GlobalLockObj) );
OSI_RET_OK_CHECK( sl_LockObjDelete(&g_pCB->ProtectionLockObj) );
#ifndef SL_TINY_EXT
for (Idx = 0; Idx < MAX_CONCURRENT_ACTIONS; Idx++)
#endif
{
OSI_RET_OK_CHECK( sl_SyncObjDelete(&g_pCB->ObjPool[Idx].SyncObj) );
}
g_pCB->FreePoolIdx = 0;
g_pCB->PendingPoolIdx = MAX_CONCURRENT_ACTIONS;
g_pCB->ActivePoolIdx = MAX_CONCURRENT_ACTIONS;
#if (SL_MEMORY_MGMT == SL_MEMORY_MGMT_DYNAMIC)
sl_Free(g_pCB);
#else
g_pCB = NULL;
#endif
g_pCB = NULL;
}
/*****************************************************************************
_SlDrvRxIrqHandler - Interrupt handler
*****************************************************************************/
void _SlDrvRxIrqHandler(void *pValue)
{
sl_IfMaskIntHdlr();
RxIrqCnt++;
if (TRUE == g_pCB->IsCmdRespWaited)
{
OSI_RET_OK_CHECK( sl_SyncObjSignalFromIRQ(&g_pCB->CmdSyncObj) );
}
else
{
sl_Spawn((_SlSpawnEntryFunc_t)_SlDrvMsgReadSpawnCtx, NULL, 0);
}
}
/*****************************************************************************
_SlDrvCmdOp
*****************************************************************************/
_SlReturnVal_t _SlDrvCmdOp(
_SlCmdCtrl_t *pCmdCtrl ,
void *pTxRxDescBuff ,
_SlCmdExt_t *pCmdExt)
{
_SlReturnVal_t RetVal;
_SlDrvObjLockWaitForever(&g_pCB->GlobalLockObj);
g_pCB->IsCmdRespWaited = TRUE;
SL_TRACE0(DBG_MSG, MSG_312, "_SlDrvCmdOp: call _SlDrvMsgWrite");
/* send the message */
RetVal = _SlDrvMsgWrite(pCmdCtrl, pCmdExt, pTxRxDescBuff);
if(SL_OS_RET_CODE_OK == RetVal)
{
#ifndef SL_IF_TYPE_UART
/* Waiting for SPI to stabilize after first command */
if( 0 == gFirstCmdMode )
{
volatile _u32 CountVal = 0;
gFirstCmdMode = 1;
CountVal = CPU_FREQ_IN_MHZ*USEC_DELAY;
while( CountVal-- );
}
#endif
/* wait for respond */
RetVal = _SlDrvMsgReadCmdCtx(); /* will free global lock */
SL_TRACE0(DBG_MSG, MSG_314, "_SlDrvCmdOp: exited _SlDrvMsgReadCmdCtx");
}
else
{
_SlDrvObjUnLock(&g_pCB->GlobalLockObj);
}
return RetVal;
}
/*****************************************************************************
_SlDrvDataReadOp
*****************************************************************************/
_SlReturnVal_t _SlDrvDataReadOp(
_SlSd_t Sd,
_SlCmdCtrl_t *pCmdCtrl ,
void *pTxRxDescBuff ,
_SlCmdExt_t *pCmdExt)
{
_SlReturnVal_t RetVal;
_u8 ObjIdx = MAX_CONCURRENT_ACTIONS;
_SlArgsData_t pArgsData;
/* Validate input arguments */
VERIFY_PROTOCOL(NULL != pCmdExt->pRxPayload);
/* If zero bytes is requested, return error. */
/* This allows us not to fill remote socket's IP address in return arguments */
VERIFY_PROTOCOL(0 != pCmdExt->RxPayloadLen);
/* Validate socket */
if((Sd & BSD_SOCKET_ID_MASK) >= SL_MAX_SOCKETS)
{
return SL_EBADF;
}
/*Use Obj to issue the command, if not available try later*/
ObjIdx = (_u8)_SlDrvWaitForPoolObj(RECV_ID, Sd & BSD_SOCKET_ID_MASK);
if (MAX_CONCURRENT_ACTIONS == ObjIdx)
{
return SL_POOL_IS_EMPTY;
}
_SlDrvProtectionObjLockWaitForever();
pArgsData.pData = pCmdExt->pRxPayload;
pArgsData.pArgs = (_u8 *)pTxRxDescBuff;
g_pCB->ObjPool[ObjIdx].pRespArgs = (_u8 *)&pArgsData;
_SlDrvProtectionObjUnLock();
/* Do Flow Control check/update for DataWrite operation */
_SlDrvObjLockWaitForever(&g_pCB->FlowContCB.TxLockObj);
/* Clear SyncObj for the case it was signalled before TxPoolCnt */
/* dropped below '1' (last Data buffer was taken) */
/* OSI_RET_OK_CHECK( sl_SyncObjClear(&g_pCB->FlowContCB.TxSyncObj) ); */
sl_SyncObjClear(&g_pCB->FlowContCB.TxSyncObj);
if(g_pCB->FlowContCB.TxPoolCnt <= FLOW_CONT_MIN)
{
/* If TxPoolCnt was increased by other thread at this moment,
TxSyncObj won't wait here */
_SlDrvSyncObjWaitForever(&g_pCB->FlowContCB.TxSyncObj);
}
_SlDrvObjLockWaitForever(&g_pCB->GlobalLockObj);
VERIFY_PROTOCOL(g_pCB->FlowContCB.TxPoolCnt > FLOW_CONT_MIN);
g_pCB->FlowContCB.TxPoolCnt--;
_SlDrvObjUnLock(&g_pCB->FlowContCB.TxLockObj);
/* send the message */
RetVal = _SlDrvMsgWrite(pCmdCtrl, pCmdExt, (_u8 *)pTxRxDescBuff);
_SlDrvObjUnLock(&g_pCB->GlobalLockObj);
if(SL_OS_RET_CODE_OK == RetVal)
{
/* Wait for response message. Will be signaled by _SlDrvMsgRead. */
_SlDrvSyncObjWaitForever(&g_pCB->ObjPool[ObjIdx].SyncObj);
}
_SlDrvReleasePoolObj(ObjIdx);
return RetVal;
}
/* ******************************************************************************/
/* _SlDrvDataWriteOp */
/* ******************************************************************************/
_SlReturnVal_t _SlDrvDataWriteOp(
_SlSd_t Sd,
_SlCmdCtrl_t *pCmdCtrl ,
void *pTxRxDescBuff ,
_SlCmdExt_t *pCmdExt)
{
_SlReturnVal_t RetVal = SL_EAGAIN; /* initiated as SL_EAGAIN for the non blocking mode */
while( 1 )
{
/* Do Flow Control check/update for DataWrite operation */
_SlDrvObjLockWaitForever(&g_pCB->FlowContCB.TxLockObj);
/* Clear SyncObj for the case it was signalled before TxPoolCnt */
/* dropped below '1' (last Data buffer was taken) */
/* OSI_RET_OK_CHECK( sl_SyncObjClear(&g_pCB->FlowContCB.TxSyncObj) ); */
sl_SyncObjClear(&g_pCB->FlowContCB.TxSyncObj);
/* we have indication that the last send has failed - socket is no longer valid for operations */
if(g_pCB->SocketTXFailure & (1<<(Sd & BSD_SOCKET_ID_MASK)))
{
_SlDrvObjUnLock(&g_pCB->FlowContCB.TxLockObj);
return SL_SOC_ERROR;
}
if(g_pCB->FlowContCB.TxPoolCnt <= FLOW_CONT_MIN + 1)
{
/* we have indication that this socket is set as blocking and we try to */
/* unblock it - return an error */
if( g_pCB->SocketNonBlocking & (1<< (Sd & BSD_SOCKET_ID_MASK)))
{
_SlDrvObjUnLock(&g_pCB->FlowContCB.TxLockObj);
return RetVal;
}
/* If TxPoolCnt was increased by other thread at this moment, */
/* TxSyncObj won't wait here */
_SlDrvSyncObjWaitForever(&g_pCB->FlowContCB.TxSyncObj);
}
if(g_pCB->FlowContCB.TxPoolCnt > FLOW_CONT_MIN + 1 )
{
break;
}
else
{
_SlDrvObjUnLock(&g_pCB->FlowContCB.TxLockObj);
}
}
_SlDrvObjLockWaitForever(&g_pCB->GlobalLockObj);
VERIFY_PROTOCOL(g_pCB->FlowContCB.TxPoolCnt > FLOW_CONT_MIN + 1 );
g_pCB->FlowContCB.TxPoolCnt--;
_SlDrvObjUnLock(&g_pCB->FlowContCB.TxLockObj);
/* send the message */
RetVal = _SlDrvMsgWrite(pCmdCtrl, pCmdExt, pTxRxDescBuff);
_SlDrvObjUnLock(&g_pCB->GlobalLockObj);
return RetVal;
}
/* ******************************************************************************/
/* _SlDrvMsgWrite */
/* ******************************************************************************/
_SlReturnVal_t _SlDrvMsgWrite(_SlCmdCtrl_t *pCmdCtrl,_SlCmdExt_t *pCmdExt, _u8 *pTxRxDescBuff)
{
_u8 sendRxPayload = FALSE;
VERIFY_PROTOCOL(NULL != pCmdCtrl);
g_pCB->FunctionParams.pCmdCtrl = pCmdCtrl;
g_pCB->FunctionParams.pTxRxDescBuff = pTxRxDescBuff;
g_pCB->FunctionParams.pCmdExt = pCmdExt;
g_pCB->TempProtocolHeader.Opcode = pCmdCtrl->Opcode;
g_pCB->TempProtocolHeader.Len = _SL_PROTOCOL_CALC_LEN(pCmdCtrl, pCmdExt);
if (pCmdExt && pCmdExt->RxPayloadLen < 0 && pCmdExt->TxPayloadLen)
{
pCmdExt->RxPayloadLen = pCmdExt->RxPayloadLen * (-1); /* change sign */
sendRxPayload = TRUE;
g_pCB->TempProtocolHeader.Len = g_pCB->TempProtocolHeader.Len + pCmdExt->RxPayloadLen;
}
#ifdef SL_START_WRITE_STAT
sl_IfStartWriteSequence(g_pCB->FD);
#endif
#ifdef SL_IF_TYPE_UART
/* Write long sync pattern */
NWP_IF_WRITE_CHECK(g_pCB->FD, (_u8 *)&g_H2NSyncPattern.Long, 2*SYNC_PATTERN_LEN);
#else
/* Write short sync pattern */
NWP_IF_WRITE_CHECK(g_pCB->FD, (_u8 *)&g_H2NSyncPattern.Short, SYNC_PATTERN_LEN);
#endif
/* Header */
NWP_IF_WRITE_CHECK(g_pCB->FD, (_u8 *)&g_pCB->TempProtocolHeader, _SL_CMD_HDR_SIZE);
/* Descriptors */
if (pTxRxDescBuff && pCmdCtrl->TxDescLen > 0)
{
NWP_IF_WRITE_CHECK(g_pCB->FD, pTxRxDescBuff,
_SL_PROTOCOL_ALIGN_SIZE(pCmdCtrl->TxDescLen));
}
/* A special mode where Rx payload and Rx length are used as Tx as well */
/* This mode requires no Rx payload on the response and currently used by fs_Close and sl_Send on */
/* transceiver mode */
if (sendRxPayload == TRUE )
{
NWP_IF_WRITE_CHECK(g_pCB->FD, pCmdExt->pRxPayload,
_SL_PROTOCOL_ALIGN_SIZE(pCmdExt->RxPayloadLen));
}
/* Payload */
if (pCmdExt && pCmdExt->TxPayloadLen > 0)
{
/* If the message has payload, it is mandatory that the message's arguments are protocol aligned. */
/* Otherwise the aligning of arguments will create a gap between arguments and payload. */
VERIFY_PROTOCOL(_SL_IS_PROTOCOL_ALIGNED_SIZE(pCmdCtrl->TxDescLen));
NWP_IF_WRITE_CHECK(g_pCB->FD, pCmdExt->pTxPayload,
_SL_PROTOCOL_ALIGN_SIZE(pCmdExt->TxPayloadLen));
}
_SL_DBG_CNT_INC(MsgCnt.Write);
#ifdef SL_START_WRITE_STAT
sl_IfEndWriteSequence(g_pCB->FD);
#endif
return SL_OS_RET_CODE_OK;
}
/* ******************************************************************************/
/* _SlDrvMsgRead */
/* ******************************************************************************/
_SlReturnVal_t _SlDrvMsgRead(void)
{
/* alignment for small memory models */
union
{
_u8 TempBuf[_SL_RESP_HDR_SIZE];
_u32 DummyBuf[2];
} uBuf;
_u8 TailBuffer[4];
_u16 LengthToCopy;
_u16 AlignedLengthRecv;
_u8 AlignSize;
_u8 *pAsyncBuf = NULL;
_u16 OpCode;
_u16 RespPayloadLen;
_u8 sd = SL_MAX_SOCKETS;
_SlRxMsgClass_e RxMsgClass;
/* save params in global CB */
g_pCB->FunctionParams.AsyncExt.pAsyncBuf = NULL;
g_pCB->FunctionParams.AsyncExt.AsyncEvtHandler= NULL;
VERIFY_RET_OK(_SlDrvRxHdrRead((_u8*)(uBuf.TempBuf), &AlignSize));
OpCode = OPCODE(uBuf.TempBuf);
RespPayloadLen = RSP_PAYLOAD_LEN(uBuf.TempBuf);
/* 'Init Compelete' message bears no valid FlowControl info */
if(SL_OPCODE_DEVICE_INITCOMPLETE != OpCode)
{
g_pCB->FlowContCB.TxPoolCnt = ((_SlResponseHeader_t *)uBuf.TempBuf)->TxPoolCnt;
g_pCB->SocketNonBlocking = ((_SlResponseHeader_t *)uBuf.TempBuf)->SocketNonBlocking;
g_pCB->SocketTXFailure = ((_SlResponseHeader_t *)uBuf.TempBuf)->SocketTXFailure;
if(g_pCB->FlowContCB.TxPoolCnt > FLOW_CONT_MIN)
{
_SlDrvSyncObjSignal(&g_pCB->FlowContCB.TxSyncObj);
}
}
/* Find the RX messaage class and set its async event handler */
_SlDrvClassifyRxMsg(OpCode);
RxMsgClass = g_pCB->FunctionParams.AsyncExt.RxMsgClass;
switch(RxMsgClass)
{
case ASYNC_EVT_CLASS:
VERIFY_PROTOCOL(NULL == pAsyncBuf);
#if (SL_MEMORY_MGMT == SL_MEMORY_MGMT_DYNAMIC)
g_pCB->FunctionParams.AsyncExt.pAsyncBuf = sl_Malloc(SL_ASYNC_MAX_MSG_LEN);
#else
g_pCB->FunctionParams.AsyncExt.pAsyncBuf = g_StatMem.AsyncRespBuf;
#endif
/* set the local pointer to the allocated one */
pAsyncBuf = g_pCB->FunctionParams.AsyncExt.pAsyncBuf;
/* clear the async buffer */
_SlDrvMemZero(pAsyncBuf, SL_ASYNC_MAX_MSG_LEN);
MALLOC_OK_CHECK(pAsyncBuf);
sl_Memcpy(pAsyncBuf, uBuf.TempBuf, _SL_RESP_HDR_SIZE);
if (_SL_PROTOCOL_ALIGN_SIZE(RespPayloadLen) <= SL_ASYNC_MAX_PAYLOAD_LEN)
{
AlignedLengthRecv = _SL_PROTOCOL_ALIGN_SIZE(RespPayloadLen);
}
else
{
AlignedLengthRecv = _SL_PROTOCOL_ALIGN_SIZE(SL_ASYNC_MAX_PAYLOAD_LEN);
}
if (RespPayloadLen > 0)
{
NWP_IF_READ_CHECK(g_pCB->FD,
pAsyncBuf + _SL_RESP_HDR_SIZE,
AlignedLengthRecv);
}
/* In case ASYNC RX buffer length is smaller then the received data length, dump the rest */
if ((_SL_PROTOCOL_ALIGN_SIZE(RespPayloadLen) > SL_ASYNC_MAX_PAYLOAD_LEN))
{
AlignedLengthRecv = _SL_PROTOCOL_ALIGN_SIZE(RespPayloadLen) - SL_ASYNC_MAX_PAYLOAD_LEN;
while (AlignedLengthRecv > 0)
{
NWP_IF_READ_CHECK(g_pCB->FD,TailBuffer,4);
AlignedLengthRecv = AlignedLengthRecv - 4;
}
}
_SlDrvProtectionObjLockWaitForever();
if (
#ifndef SL_TINY_EXT
(SL_OPCODE_SOCKET_ACCEPTASYNCRESPONSE == OpCode) ||
(SL_OPCODE_SOCKET_ACCEPTASYNCRESPONSE_V6 == OpCode) ||
#endif
(SL_OPCODE_SOCKET_CONNECTASYNCRESPONSE == OpCode)
)
{
/* go over the active list if exist to find obj waiting for this Async event */
sd = ((((_SocketResponse_t *)(pAsyncBuf + _SL_RESP_HDR_SIZE))->sd) & BSD_SOCKET_ID_MASK);
}
_SlFindAndSetActiveObj(OpCode, sd);
_SlDrvProtectionObjUnLock();
break;
case RECV_RESP_CLASS:
{
_u8 ExpArgSize; /* Expected size of Recv/Recvfrom arguments */
switch(OpCode)
{
case SL_OPCODE_SOCKET_RECVFROMASYNCRESPONSE:
ExpArgSize = RECVFROM_IPV4_ARGS_SIZE;
break;
#ifndef SL_TINY_EXT
case SL_OPCODE_SOCKET_RECVFROMASYNCRESPONSE_V6:
ExpArgSize = RECVFROM_IPV6_ARGS_SIZE;
break;
#endif
default:
/* SL_OPCODE_SOCKET_RECVASYNCRESPONSE: */
ExpArgSize = RECV_ARGS_SIZE;
}
/* Read first 4 bytes of Recv/Recvfrom response to get SocketId and actual */
/* response data length */
NWP_IF_READ_CHECK(g_pCB->FD, &uBuf.TempBuf[4], RECV_ARGS_SIZE);
/* Validate Socket ID and Received Length value. */
VERIFY_PROTOCOL((SD(&uBuf.TempBuf[4])& BSD_SOCKET_ID_MASK) < SL_MAX_SOCKETS);
_SlDrvProtectionObjLockWaitForever();
/* go over the active list if exist to find obj waiting for this Async event */
VERIFY_RET_OK(_SlFindAndSetActiveObj(OpCode,SD(&uBuf.TempBuf[4]) & BSD_SOCKET_ID_MASK));
/* Verify data is waited on this socket. The pArgs should have been set by _SlDrvDataReadOp(). */
VERIFY_SOCKET_CB(NULL != ((_SlArgsData_t *)(g_pCB->ObjPool[g_pCB->FunctionParams.AsyncExt.ActionIndex].pData))->pArgs);
sl_Memcpy( ((_SlArgsData_t *)(g_pCB->ObjPool[g_pCB->FunctionParams.AsyncExt.ActionIndex].pRespArgs))->pArgs, &uBuf.TempBuf[4], RECV_ARGS_SIZE);
if(ExpArgSize > RECV_ARGS_SIZE)
{
NWP_IF_READ_CHECK(g_pCB->FD,
((_SlArgsData_t *)(g_pCB->ObjPool[g_pCB->FunctionParams.AsyncExt.ActionIndex].pRespArgs))->pArgs + RECV_ARGS_SIZE,
ExpArgSize - RECV_ARGS_SIZE);
}
/* Here g_pCB->ObjPool[g_pCB->FunctionParams.AsyncExt.ActionIndex].pData contains requested(expected) Recv/Recvfrom DataSize. */
/* Overwrite requested DataSize with actual one. */
/* If error is received, this information will be read from arguments. */
if(ACT_DATA_SIZE(&uBuf.TempBuf[4]) > 0)
{
VERIFY_SOCKET_CB(NULL != ((_SlArgsData_t *)(g_pCB->ObjPool[g_pCB->FunctionParams.AsyncExt.ActionIndex].pRespArgs))->pData);
/* Read 4 bytes aligned from interface */
/* therefore check the requested length and read only */
/* 4 bytes aligned data. The rest unaligned (if any) will be read */
/* and copied to a TailBuffer */
LengthToCopy = ACT_DATA_SIZE(&uBuf.TempBuf[4]) & (3);
AlignedLengthRecv = ACT_DATA_SIZE(&uBuf.TempBuf[4]) & (~3);
if( AlignedLengthRecv >= 4)
{
NWP_IF_READ_CHECK(g_pCB->FD,((_SlArgsData_t *)(g_pCB->ObjPool[g_pCB->FunctionParams.AsyncExt.ActionIndex].pRespArgs))->pData,AlignedLengthRecv );
}
/* copy the unaligned part, if any */
if( LengthToCopy > 0)
{
NWP_IF_READ_CHECK(g_pCB->FD,TailBuffer,4);
/* copy TailBuffer unaligned part (1/2/3 bytes) */
sl_Memcpy(((_SlArgsData_t *)(g_pCB->ObjPool[g_pCB->FunctionParams.AsyncExt.ActionIndex].pRespArgs))->pData + AlignedLengthRecv,TailBuffer,LengthToCopy);
}
}
_SlDrvSyncObjSignal(&g_pCB->ObjPool[g_pCB->FunctionParams.AsyncExt.ActionIndex].SyncObj);
_SlDrvProtectionObjUnLock();
}
break;
case CMD_RESP_CLASS:
/* Some commands pass a maximum arguments size. */
/* In this case Driver will send extra dummy patterns to NWP if */
/* the response message is smaller than maximum. */
/* When RxDescLen is not exact, using RxPayloadLen is forbidden! */
/* If such case cannot be avoided - parse message here to detect */
/* arguments/payload border. */
NWP_IF_READ_CHECK(g_pCB->FD,
g_pCB->FunctionParams.pTxRxDescBuff,
_SL_PROTOCOL_ALIGN_SIZE(g_pCB->FunctionParams.pCmdCtrl->RxDescLen));
if((NULL != g_pCB->FunctionParams.pCmdExt) && (0 != g_pCB->FunctionParams.pCmdExt->RxPayloadLen))
{
/* Actual size of command's response payload: <msg_payload_len> - <rsp_args_len> */
_i16 ActDataSize = RSP_PAYLOAD_LEN(uBuf.TempBuf) - g_pCB->FunctionParams.pCmdCtrl->RxDescLen;
g_pCB->FunctionParams.pCmdExt->ActualRxPayloadLen = ActDataSize;
/* Check that the space prepared by user for the response data is sufficient. */
if(ActDataSize <= 0)
{
g_pCB->FunctionParams.pCmdExt->RxPayloadLen = 0;
}
else
{
/* In case the user supplied Rx buffer length which is smaller then the received data length, copy according to user length */
if (ActDataSize > g_pCB->FunctionParams.pCmdExt->RxPayloadLen)
{
LengthToCopy = g_pCB->FunctionParams.pCmdExt->RxPayloadLen & (3);
AlignedLengthRecv = g_pCB->FunctionParams.pCmdExt->RxPayloadLen & (~3);
}
else
{
LengthToCopy = ActDataSize & (3);
AlignedLengthRecv = ActDataSize & (~3);
}
/* Read 4 bytes aligned from interface */
/* therefore check the requested length and read only */
/* 4 bytes aligned data. The rest unaligned (if any) will be read */
/* and copied to a TailBuffer */
if( AlignedLengthRecv >= 4)
{
NWP_IF_READ_CHECK(g_pCB->FD,
g_pCB->FunctionParams.pCmdExt->pRxPayload,
AlignedLengthRecv );
}
/* copy the unaligned part, if any */
if( LengthToCopy > 0)
{
NWP_IF_READ_CHECK(g_pCB->FD,TailBuffer,4);
/* copy TailBuffer unaligned part (1/2/3 bytes) */
sl_Memcpy(g_pCB->FunctionParams.pCmdExt->pRxPayload + AlignedLengthRecv,
TailBuffer,
LengthToCopy);
ActDataSize = ActDataSize-4;
}
/* In case the user supplied Rx buffer length which is smaller then the received data length, dump the rest */
if (ActDataSize > g_pCB->FunctionParams.pCmdExt->RxPayloadLen)
{
/* calculate the rest of the data size to dump */
AlignedLengthRecv = ActDataSize - (g_pCB->FunctionParams.pCmdExt->RxPayloadLen & (~3));
while( AlignedLengthRecv > 0)
{
NWP_IF_READ_CHECK(g_pCB->FD,TailBuffer, 4 );
AlignedLengthRecv = AlignedLengthRecv - 4;
}
}
}
}
break;
default:
/* DUMMY_MSG_CLASS: Flow control message has no payload. */
break;
}
if(AlignSize > 0)
{
NWP_IF_READ_CHECK(g_pCB->FD, uBuf.TempBuf, AlignSize);
}
_SL_DBG_CNT_INC(MsgCnt.Read);
/* Unmask Interrupt call */
sl_IfUnMaskIntHdlr();
return SL_OS_RET_CODE_OK;
}
/* ******************************************************************************/
/* _SlAsyncEventGenericHandler */
/* ******************************************************************************/
void _SlAsyncEventGenericHandler(void)
{
_u32 SlAsyncEvent = 0;
_u8 OpcodeFound = FALSE;
_u8 i;
_u32* pEventLocation = NULL; /* This pointer will override the async buffer with the translated event type */
_SlResponseHeader_t *pHdr = (_SlResponseHeader_t *)g_pCB->FunctionParams.AsyncExt.pAsyncBuf;
/* if no async event registered nothing to do..*/
if (g_pCB->FunctionParams.AsyncExt.AsyncEvtHandler == NULL)
return;
/* Iterate through all the opcode in the table */
for (i=0; i< (sizeof(OpcodeTranslateTable) / sizeof(OpcodeKeyVal_t)); i++)
{
if (OpcodeTranslateTable[i].opcode == pHdr->GenHeader.Opcode)
{
SlAsyncEvent = OpcodeTranslateTable[i].event;
OpcodeFound = TRUE;
break;
}
}
/* No Async event found in the table */
if (OpcodeFound == FALSE)
{
/* This case handles all the async events handlers of the DEVICE & SOCK Silos which are handled internally.
For these cases we send the async even buffer as is */
g_pCB->FunctionParams.AsyncExt.AsyncEvtHandler(g_pCB->FunctionParams.AsyncExt.pAsyncBuf);
}
else
{
/* calculate the event type location to be filled in the async buffer */
pEventLocation = (_u32*)(g_pCB->FunctionParams.AsyncExt.pAsyncBuf + sizeof (_SlResponseHeader_t) - sizeof(SlAsyncEvent) );
/* Override the async buffer (before the data starts ) with our event type */
*pEventLocation = SlAsyncEvent;
/* call the event handler registered by the user with our async buffer which now holds
the User's event type and its related data */
g_pCB->FunctionParams.AsyncExt.AsyncEvtHandler(pEventLocation);
}
}
/* ******************************************************************************/
/* _SlDrvMsgReadCmdCtx */
/* ******************************************************************************/
_SlReturnVal_t _SlDrvMsgReadCmdCtx(void)
{
/* after command response is received and isCmdRespWaited */
/* flag is set FALSE, it is necessary to read out all */
/* Async messages in Commands context, because ssiDma_IsrHandleSignalFromSlave */
/* could have dispatched some Async messages to g_NwpIf.CmdSyncObj */
/* after command response but before this response has been processed */
/* by spi_singleRead and isCmdRespWaited was set FALSE. */
while (TRUE == g_pCB->IsCmdRespWaited)
{
if(_SL_PENDING_RX_MSG(g_pCB))
{
VERIFY_RET_OK(_SlDrvMsgRead());
g_pCB->RxDoneCnt++;
if (CMD_RESP_CLASS == g_pCB->FunctionParams.AsyncExt.RxMsgClass)
{
g_pCB->IsCmdRespWaited = FALSE;
/* In case CmdResp has been read without waiting on CmdSyncObj - that */
/* Sync object. That to prevent old signal to be processed. */
sl_SyncObjClear(&g_pCB->CmdSyncObj);
}
else if (ASYNC_EVT_CLASS == g_pCB->FunctionParams.AsyncExt.RxMsgClass)
{
/* If Async event has been read in CmdResp context, check whether */
/* there is a handler for this event. If there is, spawn specific */
/* handler. Otherwise free the event's buffer. */
/* This way there will be no "dry shots" from CmdResp context to */
/* temporary context, i.e less waste of CPU and faster buffer */
/* release. */
_SlAsyncEventGenericHandler();
#if (SL_MEMORY_MGMT == SL_MEMORY_MGMT_DYNAMIC)
sl_Free(g_pCB->FunctionParams.AsyncExt.pAsyncBuf);
#else
g_pCB->FunctionParams.AsyncExt.pAsyncBuf = NULL;
#endif
}
}
else
{
/* CmdSyncObj will be signaled by IRQ */
_SlDrvSyncObjWaitForever(&g_pCB->CmdSyncObj);
}
}
/* If there are more pending Rx Msgs after CmdResp is received, */
/* that means that these are Async, Dummy or Read Data Msgs. */
/* Spawn _SlDrvMsgReadSpawnCtx to trigger reading these messages from */
/* Temporary context. */
/* sl_Spawn is activated, using a different context */
_SlDrvObjUnLock(&g_pCB->GlobalLockObj);
if(_SL_PENDING_RX_MSG(g_pCB))
{
sl_Spawn((_SlSpawnEntryFunc_t)_SlDrvMsgReadSpawnCtx, NULL, 0);
}
return SL_OS_RET_CODE_OK;
}
/* ******************************************************************************/
/* _SlDrvMsgReadSpawnCtx */
/* ******************************************************************************/
_SlReturnVal_t _SlDrvMsgReadSpawnCtx(void *pValue)
{
#ifdef SL_POLLING_MODE_USED
_i16 retCode = OSI_OK;
/* for polling based systems */
do
{
retCode = sl_LockObjLock(&g_pCB->GlobalLockObj, 0);
if ( OSI_OK != retCode )
{
if (TRUE == g_pCB->IsCmdRespWaited)
{
_SlDrvSyncObjSignal(&g_pCB->CmdSyncObj);
return SL_RET_CODE_OK;
}
}
}
while (OSI_OK != retCode);
#else
_SlDrvObjLockWaitForever(&g_pCB->GlobalLockObj);
#endif
/* Messages might have been read by CmdResp context. Therefore after */
/* getting LockObj, check again where the Pending Rx Msg is still present. */
if(FALSE == (_SL_PENDING_RX_MSG(g_pCB)))
{
_SlDrvObjUnLock(&g_pCB->GlobalLockObj);
return SL_RET_CODE_OK;
}
VERIFY_RET_OK(_SlDrvMsgRead());
g_pCB->RxDoneCnt++;
switch(g_pCB->FunctionParams.AsyncExt.RxMsgClass)
{
case ASYNC_EVT_CLASS:
/* If got here and protected by LockObj a message is waiting */
/* to be read */
VERIFY_PROTOCOL(NULL != g_pCB->FunctionParams.AsyncExt.pAsyncBuf);
_SlAsyncEventGenericHandler();
#if (SL_MEMORY_MGMT == SL_MEMORY_MGMT_DYNAMIC)
sl_Free(g_pCB->FunctionParams.AsyncExt.pAsyncBuf);
#else
g_pCB->FunctionParams.AsyncExt.pAsyncBuf = NULL;
#endif
break;
case DUMMY_MSG_CLASS:
case RECV_RESP_CLASS:
/* These types are legal in this context. Do nothing */
break;
case CMD_RESP_CLASS:
/* Command response is illegal in this context. */
/* No 'break' here: Assert! */
default:
VERIFY_PROTOCOL(0);
}
_SlDrvObjUnLock(&g_pCB->GlobalLockObj);
return(SL_RET_CODE_OK);
}
/*
#define SL_OPCODE_SILO_DEVICE ( 0x0 << SL_OPCODE_SILO_OFFSET )
#define SL_OPCODE_SILO_WLAN ( 0x1 << SL_OPCODE_SILO_OFFSET )
#define SL_OPCODE_SILO_SOCKET ( 0x2 << SL_OPCODE_SILO_OFFSET )
#define SL_OPCODE_SILO_NETAPP ( 0x3 << SL_OPCODE_SILO_OFFSET )
#define SL_OPCODE_SILO_NVMEM ( 0x4 << SL_OPCODE_SILO_OFFSET )
#define SL_OPCODE_SILO_NETCFG ( 0x5 << SL_OPCODE_SILO_OFFSET )
*/
/* The Lookup table below holds the event handlers to be called according to the incoming
RX message SILO type */
const _SlSpawnEntryFunc_t RxMsgClassLUT[] = {
(_SlSpawnEntryFunc_t)_SlDrvDeviceEventHandler, /* SL_OPCODE_SILO_DEVICE */
#if defined(sl_WlanEvtHdlr) || defined(EXT_LIB_REGISTERED_WLAN_EVENTS)
(_SlSpawnEntryFunc_t)_SlDrvHandleWlanEvents, /* SL_OPCODE_SILO_WLAN */
#else
NULL,
#endif
#if defined (sl_SockEvtHdlr) || defined(EXT_LIB_REGISTERED_SOCK_EVENTS)
(_SlSpawnEntryFunc_t)_SlDrvHandleSockEvents, /* SL_OPCODE_SILO_SOCKET */
#else
NULL,
#endif
#if defined(sl_NetAppEvtHdlr) || defined(EXT_LIB_REGISTERED_NETAPP_EVENTS)
(_SlSpawnEntryFunc_t)_SlDrvHandleNetAppEvents, /* SL_OPCODE_SILO_NETAPP */
#else
NULL,
#endif
NULL, /* SL_OPCODE_SILO_NVMEM */
NULL, /* SL_OPCODE_SILO_NETCFG */
NULL,
NULL
};
/* ******************************************************************************/
/* _SlDrvClassifyRxMsg */
/* ******************************************************************************/
void _SlDrvClassifyRxMsg(
_SlOpcode_t Opcode)
{
_SlSpawnEntryFunc_t AsyncEvtHandler = NULL;
_SlRxMsgClass_e RxMsgClass = CMD_RESP_CLASS;
_u8 Silo;
if (0 == (SL_OPCODE_SYNC & Opcode))
{ /* Async event has received */
if (SL_OPCODE_DEVICE_DEVICEASYNCDUMMY == Opcode)
{
RxMsgClass = DUMMY_MSG_CLASS;
}
else if ( (SL_OPCODE_SOCKET_RECVASYNCRESPONSE == Opcode) || (SL_OPCODE_SOCKET_RECVFROMASYNCRESPONSE == Opcode)
#ifndef SL_TINY_EXT
|| (SL_OPCODE_SOCKET_RECVFROMASYNCRESPONSE_V6 == Opcode)
#endif
)
{
RxMsgClass = RECV_RESP_CLASS;
}
else
{
/* This is Async Event class message */
RxMsgClass = ASYNC_EVT_CLASS;
/* Despite the fact that 4 bits are allocated in the SILO field, we actually have only 6 SILOs
So we can use the 8 options of SILO in look up table */
Silo = ((Opcode >> SL_OPCODE_SILO_OFFSET) & 0x7);
VERIFY_PROTOCOL(Silo < (sizeof(RxMsgClassLUT)/sizeof(_SlSpawnEntryFunc_t)));
/* Set the async event hander according to the LUT */
AsyncEvtHandler = RxMsgClassLUT[Silo];
if ((SL_OPCODE_NETAPP_HTTPGETTOKENVALUE == Opcode) || (SL_OPCODE_NETAPP_HTTPPOSTTOKENVALUE == Opcode))
{
AsyncEvtHandler = _SlDrvNetAppEventHandler;
}
#ifndef SL_TINY_EXT
else if (SL_OPCODE_NETAPP_PINGREPORTREQUESTRESPONSE == Opcode)
{
AsyncEvtHandler = (_SlSpawnEntryFunc_t)_sl_HandleAsync_PingResponse;
}
#endif
}
}
g_pCB->FunctionParams.AsyncExt.RxMsgClass = RxMsgClass;
g_pCB->FunctionParams.AsyncExt.AsyncEvtHandler = AsyncEvtHandler;
}
/* ******************************************************************************/
/* _SlDrvRxHdrRead */
/* ******************************************************************************/
_SlReturnVal_t _SlDrvRxHdrRead(_u8 *pBuf, _u8 *pAlignSize)
{
_u32 SyncCnt = 0;
_u8 ShiftIdx;
#ifndef SL_IF_TYPE_UART
/* 1. Write CNYS pattern to NWP when working in SPI mode only */
NWP_IF_WRITE_CHECK(g_pCB->FD, (_u8 *)&g_H2NCnysPattern.Short, SYNC_PATTERN_LEN);
#endif
/* 2. Read 4 bytes (protocol aligned) */
NWP_IF_READ_CHECK(g_pCB->FD, &pBuf[0], 4);
_SL_DBG_SYNC_LOG(SyncCnt,pBuf);
/* Wait for SYNC_PATTERN_LEN from the device */
while ( ! N2H_SYNC_PATTERN_MATCH(pBuf, g_pCB->TxSeqNum) )
{
/* 3. Debug limit of scan */
VERIFY_PROTOCOL(SyncCnt < SL_SYNC_SCAN_THRESHOLD);
/* 4. Read next 4 bytes to Low 4 bytes of buffer */
if(0 == (SyncCnt % (_u32)SYNC_PATTERN_LEN))
{
NWP_IF_READ_CHECK(g_pCB->FD, &pBuf[4], 4);
_SL_DBG_SYNC_LOG(SyncCnt,pBuf);
}
/* 5. Shift Buffer Up for checking if the sync is shifted */
for(ShiftIdx = 0; ShiftIdx< 7; ShiftIdx++)
{
pBuf[ShiftIdx] = pBuf[ShiftIdx+1];
}
pBuf[7] = 0;
SyncCnt++;
}
/* 5. Sync pattern found. If needed, complete number of read bytes to multiple of 4 (protocol align) */
SyncCnt %= SYNC_PATTERN_LEN;
if(SyncCnt > 0)
{
*(_u32 *)&pBuf[0] = *(_u32 *)&pBuf[4];
NWP_IF_READ_CHECK(g_pCB->FD, &pBuf[SYNC_PATTERN_LEN - SyncCnt], (_u16)SyncCnt);
}
else
{
NWP_IF_READ_CHECK(g_pCB->FD, &pBuf[0], 4);
}
/* 6. Scan for Double pattern. */
while ( N2H_SYNC_PATTERN_MATCH(pBuf, g_pCB->TxSeqNum) )
{
_SL_DBG_CNT_INC(Work.DoubleSyncPattern);
NWP_IF_READ_CHECK(g_pCB->FD, &pBuf[0], SYNC_PATTERN_LEN);
}
g_pCB->TxSeqNum++;
/* 7. Here we've read Generic Header (4 bytes). Read the Resp Specific header (4 more bytes). */
NWP_IF_READ_CHECK(g_pCB->FD, &pBuf[SYNC_PATTERN_LEN], _SL_RESP_SPEC_HDR_SIZE);
/* 8. Here we've read the entire Resp Header. */
/* Return number bytes needed to be sent after read for NWP Rx 4-byte alignment (protocol alignment) */
*pAlignSize = (_u8)((SyncCnt > 0) ? (SYNC_PATTERN_LEN - SyncCnt) : 0);
return SL_RET_CODE_OK;
}
/* ***************************************************************************** */
/* _SlDrvBasicCmd */
/* ***************************************************************************** */
typedef union
{
_BasicResponse_t Rsp;
}_SlBasicCmdMsg_u;
#ifndef SL_TINY_EXT
_i16 _SlDrvBasicCmd(_SlOpcode_t Opcode)
{
_SlBasicCmdMsg_u Msg = {{0, 0}};
_SlCmdCtrl_t CmdCtrl;
CmdCtrl.Opcode = Opcode;
CmdCtrl.TxDescLen = 0;
CmdCtrl.RxDescLen = sizeof(_BasicResponse_t);
VERIFY_RET_OK(_SlDrvCmdOp((_SlCmdCtrl_t *)&CmdCtrl, &Msg, NULL));
return (_i16)Msg.Rsp.status;
}
/*****************************************************************************
_SlDrvCmdSend
Send SL command without waiting for command response
This function is unprotected and the caller should make
sure global lock is active
*****************************************************************************/
_SlReturnVal_t _SlDrvCmdSend(
_SlCmdCtrl_t *pCmdCtrl ,
void *pTxRxDescBuff ,
_SlCmdExt_t *pCmdExt)
{
_SlReturnVal_t RetVal;
_u8 IsCmdRespWaitedOriginalVal;
_SlFunctionParams_t originalFuncParms;
/* save the current RespWait flag before clearing it */
IsCmdRespWaitedOriginalVal = g_pCB->IsCmdRespWaited;
/* save the current command parameters */
sl_Memcpy(&originalFuncParms, &g_pCB->FunctionParams, sizeof(_SlFunctionParams_t));
g_pCB->IsCmdRespWaited = FALSE;
SL_TRACE0(DBG_MSG, MSG_312, "_SlDrvCmdSend: call _SlDrvMsgWrite");
/* send the message */
RetVal = _SlDrvMsgWrite(pCmdCtrl, pCmdExt, pTxRxDescBuff);
/* restore the original RespWait flag */
g_pCB->IsCmdRespWaited = IsCmdRespWaitedOriginalVal;
/* restore the original command parameters */
sl_Memcpy(&g_pCB->FunctionParams, &originalFuncParms, sizeof(_SlFunctionParams_t));
return RetVal;
}
#endif
/* ***************************************************************************** */
/* _SlDrvWaitForPoolObj */
/* ***************************************************************************** */
_u8 _SlDrvWaitForPoolObj(_u8 ActionID, _u8 SocketID)
{
_u8 CurrObjIndex = MAX_CONCURRENT_ACTIONS;
/* Get free object */
_SlDrvProtectionObjLockWaitForever();
if (MAX_CONCURRENT_ACTIONS > g_pCB->FreePoolIdx)
{
/* save the current obj index */
CurrObjIndex = g_pCB->FreePoolIdx;
/* set the new free index */
#ifndef SL_TINY_EXT
if (MAX_CONCURRENT_ACTIONS > g_pCB->ObjPool[CurrObjIndex].NextIndex)
{
g_pCB->FreePoolIdx = g_pCB->ObjPool[CurrObjIndex].NextIndex;
}
else
#endif
{
/* No further free actions available */
g_pCB->FreePoolIdx = MAX_CONCURRENT_ACTIONS;
}
}
else
{
_SlDrvProtectionObjUnLock();
return CurrObjIndex;
}
g_pCB->ObjPool[CurrObjIndex].ActionID = (_u8)ActionID;
if (SL_MAX_SOCKETS > SocketID)
{
g_pCB->ObjPool[CurrObjIndex].AdditionalData = SocketID;
}
#ifndef SL_TINY_EXT
/*In case this action is socket related, SocketID bit will be on
In case SocketID is set to SL_MAX_SOCKETS, the socket is not relevant to the action. In that case ActionID bit will be on */
while ( ( (SL_MAX_SOCKETS > SocketID) && (g_pCB->ActiveActionsBitmap & (1<<SocketID)) ) ||
( (g_pCB->ActiveActionsBitmap & (1<<ActionID)) && (SL_MAX_SOCKETS == SocketID) ) )
{
/* action in progress - move to pending list */
g_pCB->ObjPool[CurrObjIndex].NextIndex = g_pCB->PendingPoolIdx;
g_pCB->PendingPoolIdx = CurrObjIndex;
_SlDrvProtectionObjUnLock();
/* wait for action to be free */
_SlDrvSyncObjWaitForever(&g_pCB->ObjPool[CurrObjIndex].SyncObj);
/* set params and move to active (remove from pending list at _SlDrvReleasePoolObj) */
_SlDrvProtectionObjLockWaitForever();
}
#endif
/* mark as active. Set socket as active if action is on socket, otherwise mark action as active */
if (SL_MAX_SOCKETS > SocketID)
{
g_pCB->ActiveActionsBitmap |= (1<<SocketID);
}
else
{
g_pCB->ActiveActionsBitmap |= (1<<ActionID);
}
/* move to active list */
g_pCB->ObjPool[CurrObjIndex].NextIndex = g_pCB->ActivePoolIdx;
g_pCB->ActivePoolIdx = CurrObjIndex;
/* unlock */
_SlDrvProtectionObjUnLock();
return CurrObjIndex;
}
/* ******************************************************************************/
/* _SlDrvReleasePoolObj */
/* ******************************************************************************/
void _SlDrvReleasePoolObj(_u8 ObjIdx)
{
#ifndef SL_TINY_EXT
_u8 PendingIndex;
#endif
_SlDrvProtectionObjLockWaitForever();
/* In Tiny mode, there is only one object pool so no pending actions are available */
#ifndef SL_TINY_EXT
/* go over the pending list and release other pending action if needed */
PendingIndex = g_pCB->PendingPoolIdx;
while(MAX_CONCURRENT_ACTIONS > PendingIndex)
{
/* In case this action is socket related, SocketID is in use, otherwise will be set to SL_MAX_SOCKETS */
if ( (g_pCB->ObjPool[PendingIndex].ActionID == g_pCB->ObjPool[ObjIdx].ActionID) &&
( (SL_MAX_SOCKETS == (g_pCB->ObjPool[PendingIndex].AdditionalData & BSD_SOCKET_ID_MASK)) ||
((SL_MAX_SOCKETS > (g_pCB->ObjPool[ObjIdx].AdditionalData & BSD_SOCKET_ID_MASK)) && ( (g_pCB->ObjPool[PendingIndex].AdditionalData & BSD_SOCKET_ID_MASK) == (g_pCB->ObjPool[ObjIdx].AdditionalData & BSD_SOCKET_ID_MASK) ))) )
{
/* remove from pending list */
_SlRemoveFromList(&g_pCB->PendingPoolIdx, PendingIndex);
_SlDrvSyncObjSignal(&g_pCB->ObjPool[PendingIndex].SyncObj);
break;
}
PendingIndex = g_pCB->ObjPool[PendingIndex].NextIndex;
}
#endif
if (SL_MAX_SOCKETS > (g_pCB->ObjPool[ObjIdx].AdditionalData & BSD_SOCKET_ID_MASK))
{
/* unset socketID */
g_pCB->ActiveActionsBitmap &= ~(1<<(g_pCB->ObjPool[ObjIdx].AdditionalData & BSD_SOCKET_ID_MASK));
}
else
{
/* unset actionID */
g_pCB->ActiveActionsBitmap &= ~(1<<g_pCB->ObjPool[ObjIdx].ActionID);
}
/* delete old data */
g_pCB->ObjPool[ObjIdx].pRespArgs = NULL;
g_pCB->ObjPool[ObjIdx].ActionID = 0;
g_pCB->ObjPool[ObjIdx].AdditionalData = SL_MAX_SOCKETS;
/* remove from active list */
_SlRemoveFromList(&g_pCB->ActivePoolIdx, ObjIdx);
/* move to free list */
g_pCB->ObjPool[ObjIdx].NextIndex = g_pCB->FreePoolIdx;
g_pCB->FreePoolIdx = ObjIdx;
_SlDrvProtectionObjUnLock();
}
/* ******************************************************************************/
/* _SlRemoveFromList */
/* ******************************************************************************/
void _SlRemoveFromList(_u8 *ListIndex, _u8 ItemIndex)
{
#ifndef SL_TINY_EXT
_u8 Idx;
#endif
if (MAX_CONCURRENT_ACTIONS == g_pCB->ObjPool[*ListIndex].NextIndex)
{
*ListIndex = MAX_CONCURRENT_ACTIONS;
}
/* As MAX_CONCURRENT_ACTIONS is equal to 1 in Tiny mode */
#ifndef SL_TINY_EXT
/* need to remove the first item in the list and therefore update the global which holds this index */
else if (*ListIndex == ItemIndex)
{
*ListIndex = g_pCB->ObjPool[ItemIndex].NextIndex;
}
else
{
Idx = *ListIndex;
while(MAX_CONCURRENT_ACTIONS > Idx)
{
/* remove from list */
if (g_pCB->ObjPool[Idx].NextIndex == ItemIndex)
{
g_pCB->ObjPool[Idx].NextIndex = g_pCB->ObjPool[ItemIndex].NextIndex;
break;
}
Idx = g_pCB->ObjPool[Idx].NextIndex;
}
}
#endif
}
/* ******************************************************************************/
/* _SlFindAndSetActiveObj */
/* ******************************************************************************/
_SlReturnVal_t _SlFindAndSetActiveObj(_SlOpcode_t Opcode, _u8 Sd)
{
_u8 ActiveIndex;
ActiveIndex = g_pCB->ActivePoolIdx;
/* go over the active list if exist to find obj waiting for this Async event */
#ifndef SL_TINY_EXT
while (MAX_CONCURRENT_ACTIONS > ActiveIndex)
#else
/* Only one Active action is availabe in tiny mode, so we can replace the loop with if condition */
if (MAX_CONCURRENT_ACTIONS > ActiveIndex)
#endif
{
/* unset the Ipv4\IPv6 bit in the opcode if family bit was set */
if (g_pCB->ObjPool[ActiveIndex].AdditionalData & SL_NETAPP_FAMILY_MASK)
{
Opcode &= ~SL_OPCODE_IPV6;
}
if ((g_pCB->ObjPool[ActiveIndex].ActionID == RECV_ID) && (Sd == g_pCB->ObjPool[ActiveIndex].AdditionalData) &&
( (SL_OPCODE_SOCKET_RECVASYNCRESPONSE == Opcode) || (SL_OPCODE_SOCKET_RECVFROMASYNCRESPONSE == Opcode)
#ifndef SL_TINY_EXT
|| (SL_OPCODE_SOCKET_RECVFROMASYNCRESPONSE_V6 == Opcode)
#endif
)
)
{
g_pCB->FunctionParams.AsyncExt.ActionIndex = ActiveIndex;
return SL_RET_CODE_OK;
}
/* In case this action is socket related, SocketID is in use, otherwise will be set to SL_MAX_SOCKETS */
if ( (_SlActionLookupTable[ g_pCB->ObjPool[ActiveIndex].ActionID - MAX_SOCKET_ENUM_IDX].ActionAsyncOpcode == Opcode) &&
( ((Sd == (g_pCB->ObjPool[ActiveIndex].AdditionalData & BSD_SOCKET_ID_MASK) ) && (SL_MAX_SOCKETS > Sd)) || (SL_MAX_SOCKETS == (g_pCB->ObjPool[ActiveIndex].AdditionalData & BSD_SOCKET_ID_MASK)) ) )
{
/* set handler */
g_pCB->FunctionParams.AsyncExt.AsyncEvtHandler = _SlActionLookupTable[ g_pCB->ObjPool[ActiveIndex].ActionID - MAX_SOCKET_ENUM_IDX].AsyncEventHandler;
g_pCB->FunctionParams.AsyncExt.ActionIndex = ActiveIndex;
return SL_RET_CODE_OK;
}
ActiveIndex = g_pCB->ObjPool[ActiveIndex].NextIndex;
}
return SL_RET_CODE_SELF_ERROR;
}
/* Wrappers for the object functions */
void _SlDrvSyncObjWaitForever(_SlSyncObj_t *pSyncObj)
{
OSI_RET_OK_CHECK(sl_SyncObjWait(pSyncObj, SL_OS_WAIT_FOREVER));
}
void _SlDrvSyncObjSignal(_SlSyncObj_t *pSyncObj)
{
OSI_RET_OK_CHECK(sl_SyncObjSignal(pSyncObj));
}
void _SlDrvObjLockWaitForever(_SlLockObj_t *pLockObj)
{
OSI_RET_OK_CHECK(sl_LockObjLock(pLockObj, SL_OS_WAIT_FOREVER));
}
void _SlDrvProtectionObjLockWaitForever()
{
OSI_RET_OK_CHECK(sl_LockObjLock(&g_pCB->ProtectionLockObj, SL_OS_WAIT_FOREVER));
}
void _SlDrvObjUnLock(_SlLockObj_t *pLockObj)
{
OSI_RET_OK_CHECK(sl_LockObjUnlock(pLockObj));
}
void _SlDrvProtectionObjUnLock()
{
OSI_RET_OK_CHECK(sl_LockObjUnlock(&g_pCB->ProtectionLockObj));
}
void _SlDrvMemZero(void* Addr, _u16 size)
{
sl_Memset(Addr, 0, size);
}
void _SlDrvResetCmdExt(_SlCmdExt_t* pCmdExt)
{
_SlDrvMemZero(pCmdExt, sizeof (_SlCmdExt_t));
}