circuitpython/cc3200/mods/modwlan.c
danicampora 2c103d5200 cc3200: Rewrite the PRCM RTC functionality methods.
This allows to use the On-Chip retention registers for both the
RTC and to share notification flags between the bootloader and the
application. The two flags being shared right now are the "safe boot"
request and the WDT reset cause. we still have 2 more bits free for
future use.
2015-03-14 10:08:47 +01:00

1278 lines
45 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2015 Daniel Campora
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "std.h"
#include <stdint.h>
#include <stdbool.h>
#include "simplelink.h"
#include "py/mpconfig.h"
#include MICROPY_HAL_H
#include "py/obj.h"
#include "py/runtime.h"
#include "modnetwork.h"
#include "modwlan.h"
#include "pybioctl.h"
#include "debug.h"
#if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP)
#include "serverstask.h"
#endif
#include "mpexception.h"
#include "mpcallback.h"
#include "pybsleep.h"
/******************************************************************************
DEFINE TYPES
******************************************************************************/
// Status bits - These are used to set/reset the corresponding bits in a given variable
typedef enum{
STATUS_BIT_NWP_INIT = 0, // If this bit is set: Network Processor is
// powered up
STATUS_BIT_CONNECTION, // If this bit is set: the device is connected to
// the AP or client is connected to device (AP)
STATUS_BIT_IP_LEASED, // If this bit is set: the device has leased IP to
// any connected client
STATUS_BIT_IP_ACQUIRED, // If this bit is set: the device has acquired an IP
STATUS_BIT_SMARTCONFIG_START, // If this bit is set: the SmartConfiguration
// process is started from SmartConfig app
STATUS_BIT_P2P_DEV_FOUND, // If this bit is set: the device (P2P mode)
// found any p2p-device in scan
STATUS_BIT_P2P_REQ_RECEIVED, // If this bit is set: the device (P2P mode)
// found any p2p-negotiation request
STATUS_BIT_CONNECTION_FAILED, // If this bit is set: the device(P2P mode)
// connection to client(or reverse way) is failed
STATUS_BIT_PING_DONE // If this bit is set: the device has completed
// the ping operation
}e_StatusBits;
typedef struct _wlan_obj_t {
mp_obj_base_t base;
mp_obj_t callback;
SlWlanMode_t mode;
uint32_t status;
uint32_t ip;
uint32_t gateway;
uint32_t dns;
#if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP)
bool servers_enabled;
#endif
uint8_t security;
uint8_t mac[SL_MAC_ADDR_LEN];
uint8_t ssid[33];
uint8_t bssid[6];
} wlan_obj_t;
/******************************************************************************
DEFINE CONSTANTS
******************************************************************************/
#define CLR_STATUS_BIT_ALL(status) (status = 0)
#define SET_STATUS_BIT(status, bit) (status |= ( 1 << (bit)))
#define CLR_STATUS_BIT(status, bit) (status &= ~(1 << (bit)))
#define GET_STATUS_BIT(status, bit) (0 != (status & (1 << (bit))))
#define IS_NW_PROCSR_ON(status) GET_STATUS_BIT(status, STATUS_BIT_NWP_INIT)
#define IS_CONNECTED(status) GET_STATUS_BIT(status, STATUS_BIT_CONNECTION)
#define IS_IP_LEASED(status) GET_STATUS_BIT(status, STATUS_BIT_IP_LEASED)
#define IS_IP_ACQUIRED(status) GET_STATUS_BIT(status, STATUS_BIT_IP_ACQUIRED)
#define IS_SMART_CFG_START(status) GET_STATUS_BIT(status, STATUS_BIT_SMARTCONFIG_START)
#define IS_P2P_DEV_FOUND(status) GET_STATUS_BIT(status, STATUS_BIT_P2P_DEV_FOUND)
#define IS_P2P_REQ_RCVD(status) GET_STATUS_BIT(status, STATUS_BIT_P2P_REQ_RECEIVED)
#define IS_CONNECT_FAILED(status) GET_STATUS_BIT(status, STATUS_BIT_CONNECTION_FAILED)
#define IS_PING_DONE(status) GET_STATUS_BIT(status, STATUS_BIT_PING_DONE)
#define MODWLAN_SL_SCAN_ENABLE 1
#define MODWLAN_SL_SCAN_DISABLE 0
#define MODWLAN_SL_MAX_NETWORKS 20
#define MODWLAN_TIMEOUT_MS 5000
#define MODWLAN_MAX_NETWORKS 20
#define MODWLAN_SCAN_PERIOD_S 300 // 5 minutes
#define MODWLAN_WAIT_FOR_SCAN_MS 1050
#define ASSERT_ON_ERROR( x ) ASSERT((x) >= 0 )
#define IPV4_ADDR_STR_LEN_MAX (16)
#define WLAN_MAX_RX_SIZE 16000
#define WLAN_MAX_TX_SIZE 1476
#define MAKE_SOCKADDR(addr, ip, port) sockaddr addr; \
addr.sa_family = AF_INET; \
addr.sa_data[0] = port >> 8; \
addr.sa_data[1] = port; \
addr.sa_data[2] = ip[0]; \
addr.sa_data[3] = ip[1]; \
addr.sa_data[4] = ip[2]; \
addr.sa_data[5] = ip[3];
#define UNPACK_SOCKADDR(addr, ip, port) port = (addr.sa_data[0] << 8) | addr.sa_data[1]; \
ip[0] = addr.sa_data[2]; \
ip[1] = addr.sa_data[3]; \
ip[2] = addr.sa_data[4]; \
ip[3] = addr.sa_data[5];
/******************************************************************************
DECLARE PRIVATE DATA
******************************************************************************/
STATIC wlan_obj_t wlan_obj = {
.callback = mp_const_none,
.mode = -1,
.status = 0,
.ip = 0,
.gateway = 0,
.dns = 0,
#if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP)
.servers_enabled = false,
#endif
.security = SL_SEC_TYPE_OPEN,
.ssid = {0},
.bssid = {0},
.mac = {0},
};
STATIC const mp_cb_methods_t wlan_cb_methods;
/******************************************************************************
DECLARE PUBLIC DATA
******************************************************************************/
OsiLockObj_t wlan_LockObj;
/******************************************************************************
DECLARE PRIVATE FUNCTIONS
******************************************************************************/
STATIC void wlan_initialize_data (void);
STATIC void wlan_reenable (SlWlanMode_t mode);
STATIC void wlan_get_sl_mac (void);
STATIC modwlan_Status_t wlan_do_connect (const char* ssid, uint32_t ssid_len, const char* bssid, uint8_t sec,
const char* key, uint32_t key_len);
STATIC void wlan_lpds_callback_enable (mp_obj_t self_in);
STATIC void wlan_lpds_callback_disable (mp_obj_t self_in);
//*****************************************************************************
//
//! \brief The Function Handles WLAN Events
//!
//! \param[in] pWlanEvent - Pointer to WLAN Event Info
//!
//! \return None
//!
//*****************************************************************************
void SimpleLinkWlanEventHandler(SlWlanEvent_t *pWlanEvent)
{
if(!pWlanEvent) {
return;
}
switch(pWlanEvent->Event)
{
case SL_WLAN_CONNECT_EVENT:
{
SET_STATUS_BIT(wlan_obj.status, STATUS_BIT_CONNECTION);
//
// Information about the connected AP (like name, MAC etc) will be
// available in 'slWlanConnectAsyncResponse_t'-Applications
// can use it if required
//
slWlanConnectAsyncResponse_t *pEventData = &pWlanEvent->EventData.STAandP2PModeWlanConnected;
// Copy new connection SSID and BSSID to global parameters
memcpy(wlan_obj.ssid, pEventData->ssid_name, pEventData->ssid_len);
memcpy(wlan_obj.bssid, pEventData->bssid, SL_BSSID_LENGTH);
}
break;
case SL_WLAN_DISCONNECT_EVENT:
{
slWlanConnectAsyncResponse_t* pEventData = NULL;
CLR_STATUS_BIT(wlan_obj.status, STATUS_BIT_CONNECTION);
CLR_STATUS_BIT(wlan_obj.status, STATUS_BIT_IP_ACQUIRED);
pEventData = &pWlanEvent->EventData.STAandP2PModeDisconnected;
// If the user has initiated the 'Disconnect' request,
//'reason_code' is SL_USER_INITIATED_DISCONNECTION
if (SL_USER_INITIATED_DISCONNECTION == pEventData->reason_code) {
// TODO ...
}
else {
// TODO: Maybe trow an exception?
}
memset(wlan_obj.ssid, 0, sizeof(wlan_obj.ssid));
memset(wlan_obj.bssid, 0, sizeof(wlan_obj.bssid));
}
break;
case SL_WLAN_STA_CONNECTED_EVENT:
break;
case SL_WLAN_STA_DISCONNECTED_EVENT:
break;
case SL_WLAN_P2P_DEV_FOUND_EVENT:
break;
case SL_WLAN_P2P_NEG_REQ_RECEIVED_EVENT:
break;
case SL_WLAN_CONNECTION_FAILED_EVENT:
break;
default:
break;
}
}
//*****************************************************************************
//
//! \brief This function handles network events such as IP acquisition, IP
//! leased, IP released etc.
//!
//! \param[in] pNetAppEvent - Pointer to NetApp Event Info
//!
//! \return None
//!
//*****************************************************************************
void SimpleLinkNetAppEventHandler(SlNetAppEvent_t *pNetAppEvent)
{
if(!pNetAppEvent) {
return;
}
switch(pNetAppEvent->Event)
{
case SL_NETAPP_IPV4_IPACQUIRED_EVENT:
{
SlIpV4AcquiredAsync_t *pEventData = NULL;
SET_STATUS_BIT(wlan_obj.status, STATUS_BIT_IP_ACQUIRED);
// Ip Acquired Event Data
pEventData = &pNetAppEvent->EventData.ipAcquiredV4;
// Get ip, gateway and dns
wlan_obj.gateway = ntohl(pEventData->gateway);
wlan_obj.ip = ntohl(pEventData->ip);
wlan_obj.dns = ntohl(pEventData->dns);
}
break;
case SL_NETAPP_IPV6_IPACQUIRED_EVENT:
break;
case SL_NETAPP_IP_LEASED_EVENT:
break;
case SL_NETAPP_IP_RELEASED_EVENT:
break;
default:
break;
}
}
//*****************************************************************************
//
//! \brief This function handles HTTP server events
//!
//! \param[in] pServerEvent - Contains the relevant event information
//! \param[in] pServerResponse - Should be filled by the user with the
//! relevant response information
//!
//! \return None
//!
//****************************************************************************
void SimpleLinkHttpServerCallback(SlHttpServerEvent_t *pHttpEvent, SlHttpServerResponse_t *pHttpResponse)
{
if (!pHttpEvent) {
return;
}
switch (pHttpEvent->Event) {
case SL_NETAPP_HTTPGETTOKENVALUE_EVENT:
break;
case SL_NETAPP_HTTPPOSTTOKENVALUE_EVENT:
break;
default:
break;
}
}
//*****************************************************************************
//
//! \brief This function handles General Events
//!
//! \param[in] pDevEvent - Pointer to General Event Info
//!
//! \return None
//!
//*****************************************************************************
void SimpleLinkGeneralEventHandler(SlDeviceEvent_t *pDevEvent)
{
if (!pDevEvent) {
return;
}
ASSERT (false);
}
//*****************************************************************************
//
//! This function handles socket events indication
//!
//! \param[in] pSock - Pointer to Socket Event Info
//!
//! \return None
//!
//*****************************************************************************
void SimpleLinkSockEventHandler(SlSockEvent_t *pSock)
{
if (!pSock) {
return;
}
switch( pSock->Event ) {
case SL_SOCKET_TX_FAILED_EVENT:
break;
default:
break;
}
}
//*****************************************************************************
// SimpleLink Asynchronous Event Handlers -- End
//*****************************************************************************
void wlan_init0 (void) {
// create the wlan lock
ASSERT(OSI_OK == sl_LockObjCreate(&wlan_LockObj, "WlanLock"));
}
void wlan_first_start (void) {
// clear wlan data after checking any of the status flags
wlan_initialize_data();
if (wlan_obj.mode < 0) {
wlan_obj.mode = sl_Start(0, 0, 0);
sl_LockObjUnlock (&wlan_LockObj);
}
// get the mac address
wlan_get_sl_mac();
}
modwlan_Status_t wlan_sl_enable (SlWlanMode_t mode, const char *ssid, uint8_t ssid_len, uint8_t sec,
const char *key, uint8_t key_len, uint8_t channel) {
if (mode == ROLE_STA || mode == ROLE_AP || mode == ROLE_P2P) {
#if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP)
// Stop all other processes using the wlan engine
if ((wlan_obj.servers_enabled = servers_are_enabled())) {
wlan_stop_servers();
}
#endif
// do a basic start fisrt
wlan_first_start();
// Device in station-mode. Disconnect previous connection if any
// The function returns 0 if 'Disconnected done', negative number if already
// disconnected Wait for 'disconnection' event if 0 is returned, Ignore
// other return-codes
if (0 == sl_WlanDisconnect()) {
while (IS_CONNECTED (wlan_obj.status)) {
#ifndef SL_PLATFORM_MULTI_THREADED
_SlTaskEntry();
#endif
HAL_Delay (5);
}
}
// Remove all profiles
ASSERT_ON_ERROR(sl_WlanProfileDel(0xFF));
// Enable the DHCP client
uint8_t value = 1;
ASSERT_ON_ERROR(sl_NetCfgSet(SL_IPV4_STA_P2P_CL_DHCP_ENABLE, 1, 1, &value));
// Set PM policy to normal
ASSERT_ON_ERROR(sl_WlanPolicySet(SL_POLICY_PM, SL_NORMAL_POLICY, NULL, 0));
// Unregister mDNS services
ASSERT_ON_ERROR(sl_NetAppMDNSUnRegisterService(0, 0));
// Remove all 64 filters (8 * 8)
_WlanRxFilterOperationCommandBuff_t RxFilterIdMask;
memset ((void *)&RxFilterIdMask, 0 ,sizeof(RxFilterIdMask));
memset(RxFilterIdMask.FilterIdMask, 0xFF, 8);
ASSERT_ON_ERROR(sl_WlanRxFilterSet(SL_REMOVE_RX_FILTER, (_u8 *)&RxFilterIdMask, sizeof(_WlanRxFilterOperationCommandBuff_t)));
// Set Tx power level for station or AP mode
// Number between 0-15, as dB offset from max power - 0 will set max power
uint8_t ucPower = 0;
if (mode == ROLE_AP) {
// Switch to AP mode
ASSERT_ON_ERROR(sl_WlanSetMode(mode));
ASSERT (ssid != NULL && key != NULL);
ASSERT_ON_ERROR(sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, WLAN_GENERAL_PARAM_OPT_AP_TX_POWER, sizeof(ucPower),
(unsigned char *)&ucPower));
ASSERT_ON_ERROR(sl_WlanSet(SL_WLAN_CFG_AP_ID, WLAN_AP_OPT_SSID, ssid_len, (unsigned char *)ssid));
memcpy(wlan_obj.ssid, (unsigned char *)ssid, ssid_len);
ASSERT_ON_ERROR(sl_WlanSet(SL_WLAN_CFG_AP_ID, WLAN_AP_OPT_SECURITY_TYPE, sizeof(uint8_t), &sec));
ASSERT_ON_ERROR(sl_WlanSet(SL_WLAN_CFG_AP_ID, WLAN_AP_OPT_PASSWORD, key_len, (unsigned char *)key));
_u8* country = (_u8*)"EU";
ASSERT_ON_ERROR(sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, WLAN_GENERAL_PARAM_OPT_COUNTRY_CODE, 2, country));
ASSERT_ON_ERROR(sl_WlanSet(SL_WLAN_CFG_AP_ID, WLAN_AP_OPT_CHANNEL, 1, (_u8 *)&channel));
// Stop and start again
wlan_reenable(mode);
ASSERT (wlan_obj.mode == mode);
SlNetAppDhcpServerBasicOpt_t dhcpParams;
dhcpParams.lease_time = 4096; // lease time (in seconds) of the IP Address
dhcpParams.ipv4_addr_start = SL_IPV4_VAL(192,168,1,2); // first IP Address for allocation.
dhcpParams.ipv4_addr_last = SL_IPV4_VAL(192,168,1,254); // last IP Address for allocation.
ASSERT_ON_ERROR(sl_NetAppStop(SL_NET_APP_DHCP_SERVER_ID)); // Stop DHCP server before settings
ASSERT_ON_ERROR(sl_NetAppSet(SL_NET_APP_DHCP_SERVER_ID, NETAPP_SET_DHCP_SRV_BASIC_OPT,
sizeof(SlNetAppDhcpServerBasicOpt_t), (_u8* )&dhcpParams)); // set parameters
ASSERT_ON_ERROR(sl_NetAppStart(SL_NET_APP_DHCP_SERVER_ID)); // Start DHCP server with new settings
SlNetCfgIpV4Args_t ipV4;
ipV4.ipV4 = (_u32)SL_IPV4_VAL(192,168,1,1); // _u32 IP address
ipV4.ipV4Mask = (_u32)SL_IPV4_VAL(255,255,255,0); // _u32 Subnet mask for this AP
ipV4.ipV4Gateway = (_u32)SL_IPV4_VAL(192,168,1,1); // _u32 Default gateway address
ipV4.ipV4DnsServer = (_u32)SL_IPV4_VAL(192,168,1,1); // _u32 DNS server address
ASSERT_ON_ERROR(sl_NetCfgSet(SL_IPV4_AP_P2P_GO_STATIC_ENABLE, IPCONFIG_MODE_ENABLE_IPV4,
sizeof(SlNetCfgIpV4Args_t), (_u8 *)&ipV4));
// Stop and start again
wlan_reenable(mode);
// save the security type
wlan_obj.security = sec;
}
// STA and P2P modes
else {
ASSERT_ON_ERROR(sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, WLAN_GENERAL_PARAM_OPT_STA_TX_POWER,
sizeof(ucPower), (unsigned char *)&ucPower));
ASSERT_ON_ERROR(sl_WlanSetMode(mode));
// stop and start again
wlan_reenable(mode);
// set connection policy to Auto + SmartConfig (Device's default connection policy)
ASSERT_ON_ERROR(sl_WlanPolicySet(SL_POLICY_CONNECTION, SL_CONNECTION_POLICY(1, 0, 0, 0, 1), NULL, 0));
}
#if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP)
// Start the servers again
if (wlan_obj.servers_enabled) {
servers_enable();
}
#endif
return MODWLAN_OK;
}
return MODWLAN_ERROR_INVALID_PARAMS;
}
void wlan_update(void) {
#ifndef SL_PLATFORM_MULTI_THREADED
_SlTaskEntry();
#endif
}
// call this function to disable the complete WLAN subsystem before a system reset
void wlan_stop (void) {
if (wlan_obj.mode >= 0) {
#if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP)
// Stop all other processes using the wlan engine
if ((wlan_obj.servers_enabled = servers_are_enabled())) {
wlan_stop_servers();
}
#endif
sl_LockObjLock (&wlan_LockObj, SL_OS_WAIT_FOREVER);
wlan_obj.mode = -1;
sl_Stop(SL_STOP_TIMEOUT);
}
}
void wlan_get_mac (uint8_t *macAddress) {
if (macAddress) {
memcpy (macAddress, wlan_obj.mac, SL_MAC_ADDR_LEN);
}
}
void wlan_get_ip (uint32_t *ip) {
if (ip) {
*ip = IS_IP_ACQUIRED(wlan_obj.status) ? wlan_obj.ip : 0;
}
}
void wlan_stop_servers (void) {
#if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP)
servers_disable();
do {
HAL_Delay (5);
} while (servers_are_enabled());
#endif
}
//*****************************************************************************
// DEFINE STATIC FUNCTIONS
//*****************************************************************************
STATIC void wlan_initialize_data (void) {
wlan_obj.status = 0;
wlan_obj.dns = 0;
wlan_obj.gateway = 0;
wlan_obj.ip = 0;
wlan_obj.security = SL_SEC_TYPE_OPEN;
memset(wlan_obj.ssid, 0, sizeof(wlan_obj.ssid));
memset(wlan_obj.bssid, 0, sizeof(wlan_obj.bssid));
}
STATIC void wlan_reenable (SlWlanMode_t mode) {
// Stop and start again
wlan_obj.mode = -1;
sl_LockObjLock (&wlan_LockObj, SL_OS_WAIT_FOREVER);
sl_Stop(SL_STOP_TIMEOUT);
wlan_obj.mode = sl_Start(0, 0, 0);
sl_LockObjUnlock (&wlan_LockObj);
ASSERT (wlan_obj.mode == mode);
}
STATIC modwlan_Status_t wlan_do_connect (const char* ssid, uint32_t ssid_len, const char* bssid, uint8_t sec,
const char* key, uint32_t key_len) {
SlSecParams_t secParams;
secParams.Key = (_i8*)key;
secParams.KeyLen = ((key != NULL) ? key_len : 0);
secParams.Type = sec;
if (0 == sl_WlanConnect((_i8*)ssid, ssid_len, (_u8*)bssid, &secParams, NULL)) {
// Wait for the WLAN Event
uint32_t waitForConnectionMs = 0;
while (!IS_CONNECTED(wlan_obj.status)) {
#ifndef SL_PLATFORM_MULTI_THREADED
_SlTaskEntry();
#endif
HAL_Delay (5);
if (++waitForConnectionMs >= MODWLAN_TIMEOUT_MS) {
return MODWLAN_ERROR_TIMEOUT;
}
}
return MODWLAN_OK;
}
return MODWLAN_ERROR_INVALID_PARAMS;
}
STATIC void wlan_get_sl_mac (void) {
// Get the MAC address
uint8_t macAddrLen = SL_MAC_ADDR_LEN;
sl_NetCfgGet(SL_MAC_ADDRESS_GET, NULL, &macAddrLen, wlan_obj.mac);
}
/// \method init(mode, ssid=myWlan, security=wlan.WPA_WPA2, key=myWlanKey)
///
/// Initialise the UART bus with the given parameters:
///
/// - `mode` can be ROLE_AP, ROLE_STA and ROLE_P2P.
/// - `ssid` is the network ssid in case of AP mode
/// - `security` is the security type for AP mode
/// - `key` is the key when in AP mode
/// - `channel` is the channel to use for the AP network
STATIC const mp_arg_t wlan_init_args[] = {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = ROLE_STA} },
{ MP_QSTR_ssid, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_security, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SL_SEC_TYPE_OPEN} },
{ MP_QSTR_key, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_channel, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5} },
};
STATIC mp_obj_t wlan_init_helper(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(wlan_init_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(wlan_init_args), wlan_init_args, args);
// get the ssid
mp_uint_t ssid_len;
const char *ssid = mp_obj_str_get_data(args[1].u_obj, &ssid_len);
// get the key
mp_uint_t key_len;
const char *key = mp_obj_str_get_data(args[3].u_obj, &key_len);
if (key_len < 8) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
// Force the channel to be between 1-11
uint8_t channel = args[4].u_int > 0 ? args[4].u_int % 12 : 1;
if (MODWLAN_OK != wlan_sl_enable (args[0].u_int, ssid, ssid_len, args[2].u_int, key, key_len, channel)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_operation_failed));
}
return mp_const_none;
}
STATIC void wlan_lpds_callback_enable (mp_obj_t self_in) {
pybsleep_set_wlan_lpds_callback (wlan_obj.callback);
}
STATIC void wlan_lpds_callback_disable (mp_obj_t self_in) {
pybsleep_set_wlan_lpds_callback (NULL);
}
/******************************************************************************/
// Micro Python bindings; WLAN class
/// \class WLAN - driver for the WLAN functionality of the SoC
/// \classmethod \constructor()
/// Create a wlan obecjt and initialise the simplelink engine
//
STATIC mp_obj_t wlan_make_new (mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, MP_ARRAY_SIZE(wlan_init_args), true);
if (n_args > 0) {
// Get the mode
SlWlanMode_t mode = mp_obj_get_int(args[0]);
if (mode == ROLE_AP) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
wlan_init_helper(n_args, args, &kw_args);
}
// TODO: Only STA mode supported for the moment. What if P2P?
else if (n_args == 1) {
if (MODWLAN_OK != wlan_sl_enable (mode, NULL, 0, 0, NULL, 0, 0)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_operation_failed));
}
}
else {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, mpexception_num_type_invalid_arguments));
}
} else if (wlan_obj.mode < 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, mpexception_num_type_invalid_arguments));
}
wlan_obj.base.type = (mp_obj_type_t*)&mod_network_nic_type_wlan;
// register with the network module
mod_network_register_nic(&wlan_obj);
return &wlan_obj;
}
STATIC void wlan_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
wlan_obj_t *self = self_in;
print(env, "<WLAN, mode=%u", self->mode);
// only print the bssid if in station mode
if (self->mode != ROLE_AP && GET_STATUS_BIT(self->status, STATUS_BIT_CONNECTION)) {
print(env, ", connected to: ssid=%s, bssid=%02x:%02x:%02x:%02x:%02x:%02x", self->ssid,
self->bssid[0], self->bssid[1], self->bssid[2], self->bssid[3], self->bssid[4], self->bssid[5]);
}
else {
print(env, ", ssid=%s", self->ssid);
}
print(env, ", security=%u>", self->security);
}
/// \method connect(ssid, security=OPEN, key=None, bssid=None)
// if security is WPA/WPA2, the key must be a string
/// if security is WEP, the key must be binary
STATIC mp_obj_t wlan_connect(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
STATIC const mp_arg_t allowed_args[] = {
{ MP_QSTR_ssid, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_security, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SL_SEC_TYPE_OPEN} },
{ MP_QSTR_key, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_bssid, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
};
// check for correct wlan mode
if (wlan_obj.mode != ROLE_STA && wlan_obj.mode != ROLE_P2P) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_request_not_possible));
}
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get the ssid
mp_uint_t ssid_len;
const char *ssid = mp_obj_str_get_data(args[0].u_obj, &ssid_len);
// get the security type
mp_uint_t sec = args[1].u_int;
// get key and its len
mp_uint_t key_len = 0;
const char *key = NULL;
mp_buffer_info_t wepkey;
if (args[2].u_obj != mp_const_none) {
// wep key must be given as raw bytes
if (sec == SL_SEC_TYPE_WEP) {
mp_get_buffer_raise(args[2].u_obj, &wepkey, MP_BUFFER_READ);
key = wepkey.buf;
key_len = wepkey.len;
}
else {
key = mp_obj_str_get_data(args[2].u_obj, &key_len);
}
}
// get bssid
const char *bssid = NULL;
if (args[3].u_obj != mp_const_none) {
bssid = mp_obj_str_get_str(args[3].u_obj);
}
if (GET_STATUS_BIT(wlan_obj.status, STATUS_BIT_CONNECTION)) {
if (0 == sl_WlanDisconnect()) {
while (IS_CONNECTED(wlan_obj.status)) {
#ifndef SL_PLATFORM_MULTI_THREADED
_SlTaskEntry();
#endif
HAL_Delay (5);
}
}
}
// connect to the requested access point
modwlan_Status_t status;
status = wlan_do_connect (ssid, ssid_len, bssid, sec, key, key_len);
if (status == MODWLAN_ERROR_TIMEOUT) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_operation_failed));
}
else if (status == MODWLAN_ERROR_INVALID_PARAMS) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
wlan_obj.security = sec;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(wlan_connect_obj, 1, wlan_connect);
/// \method wlan_disconnect()
/// Closes the current WLAN connection
///
STATIC mp_obj_t wlan_disconnect(mp_obj_t self_in) {
sl_WlanDisconnect();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(wlan_disconnect_obj, wlan_disconnect);
/// \method is_connected()
/// Returns true if connected to the AP and an IP address has been assigned. False otherwise.
///
STATIC mp_obj_t wlan_isconnected(mp_obj_t self_in) {
if (GET_STATUS_BIT(wlan_obj.status, STATUS_BIT_CONNECTION) &&
GET_STATUS_BIT(wlan_obj.status, STATUS_BIT_IP_ACQUIRED)) {
return mp_const_true;
}
return mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(wlan_isconnected_obj, wlan_isconnected);
STATIC mp_obj_t wlan_ifconfig (mp_obj_t self_in) {
unsigned char len = sizeof(SlNetCfgIpV4Args_t);
unsigned char dhcpIsOn;
SlNetCfgIpV4Args_t ipV4;
sl_NetCfgGet(SL_IPV4_STA_P2P_CL_GET_INFO, &dhcpIsOn, &len, (uint8_t *)&ipV4);
// shift byte order
ipV4.ipV4Mask = ntohl(ipV4.ipV4Mask);
mp_obj_t ifconfig = mp_obj_new_dict(0);
mp_obj_dict_store (ifconfig, mp_obj_new_str("ip", strlen("ip"), false), mod_network_format_ipv4_addr((uint8_t *)&wlan_obj.ip));
mp_obj_dict_store (ifconfig, mp_obj_new_str("subnet", strlen("subnet"), false), mod_network_format_ipv4_addr((uint8_t *)&ipV4.ipV4Mask));
mp_obj_dict_store (ifconfig, mp_obj_new_str("gateway", strlen("gateway"), false), mod_network_format_ipv4_addr((uint8_t *)&wlan_obj.gateway));
mp_obj_dict_store (ifconfig, mp_obj_new_str("dns", strlen("dns"), false), mod_network_format_ipv4_addr((uint8_t *)&wlan_obj.dns));
char mac_str[18];
mp_uint_t mac_len = snprintf(mac_str, sizeof(mac_str), "%02x:%02x:%02x:%02x:%02x:%02x", wlan_obj.mac[0], wlan_obj.mac[1], wlan_obj.mac[2],
wlan_obj.mac[3], wlan_obj.mac[4], wlan_obj.mac[5]);
mp_obj_dict_store (ifconfig, mp_obj_new_str("mac", strlen("mac"), false), mp_obj_new_str(mac_str, mac_len, false));
char *mode_str;
if (wlan_obj.mode == ROLE_STA) {
mode_str = "station";
}
else if (wlan_obj.mode == ROLE_AP) {
mode_str = "ap";
}
else {
mode_str = "p2p";
}
mp_obj_dict_store (ifconfig, mp_obj_new_str("mode", strlen("mode"), false), mp_obj_new_str(mode_str, strlen(mode_str), false));
mp_obj_dict_store (ifconfig, mp_obj_new_str("ssid", strlen("ssid"), false), mp_obj_new_str((const char *)wlan_obj.ssid, strlen((const char *)wlan_obj.ssid), false));
return ifconfig;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(wlan_ifconfig_obj, wlan_ifconfig);
STATIC mp_obj_t wlan_urn (uint n_args, const mp_obj_t *args) {
char urn[MAX_DEVICE_URN_LEN];
uint8_t len = MAX_DEVICE_URN_LEN;
// an URN is given, so set it
if (n_args == 2) {
const char *p = mp_obj_str_get_str(args[1]);
uint8_t len = strlen(p);
// the call to sl_NetAppSet corrupts the input string URN=args[1], so we copy into a local buffer
if (len > MAX_DEVICE_URN_LEN) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
strcpy(urn, p);
if (sl_NetAppSet(SL_NET_APP_DEVICE_CONFIG_ID, NETAPP_SET_GET_DEV_CONF_OPT_DEVICE_URN, len, (unsigned char *)urn) < 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_operation_failed));
}
}
else {
// get the URN
if (sl_NetAppGet(SL_NET_APP_DEVICE_CONFIG_ID, NETAPP_SET_GET_DEV_CONF_OPT_DEVICE_URN, &len, (uint8_t *)urn) < 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_operation_failed));
}
return mp_obj_new_str(urn, (len - 1), false);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(wlan_urn_obj, 1, 2, wlan_urn);
/// \method wlan_netlist()
/// Returns a list of tuples with all the acces points within range
STATIC mp_obj_t wlan_scan(mp_obj_t self_in) {
Sl_WlanNetworkEntry_t wlanEntry;
uint8_t _index = 0;
mp_obj_t nets = NULL;
// trigger a new newtork scanning
uint32_t scanSeconds = MODWLAN_SCAN_PERIOD_S;
ASSERT_ON_ERROR(sl_WlanPolicySet(SL_POLICY_SCAN , MODWLAN_SL_SCAN_ENABLE, (_u8 *)&scanSeconds, sizeof(scanSeconds)));
// wait for the scan to be completed
HAL_Delay (MODWLAN_WAIT_FOR_SCAN_MS);
do {
if (sl_WlanGetNetworkList(_index++, 1, &wlanEntry) <= 0) {
break;
}
mp_obj_t tuple[4];
tuple[0] = mp_obj_new_str((const char *)wlanEntry.ssid, wlanEntry.ssid_len, false);
tuple[1] = mp_obj_new_str((const char *)wlanEntry.bssid, SL_BSSID_LENGTH, false);
// 'Normalize' the security type
if (wlanEntry.sec_type > 2) {
wlanEntry.sec_type = 2;
}
tuple[2] = mp_obj_new_int(wlanEntry.sec_type);
tuple[3] = mp_obj_new_int(wlanEntry.rssi);
if (_index == 1) {
// Initialize the set
nets = mp_obj_new_set(0, NULL);
}
// Add the network found to the list if it's unique
mp_obj_set_store(nets, mp_obj_new_tuple(4, tuple));
} while (_index < MODWLAN_SL_MAX_NETWORKS);
return (nets != NULL) ? nets : mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(wlan_scan_obj, wlan_scan);
/// \method callback(handler, intmode, value, priority, pwrmode)
/// Creates a callback object associated with WLAN
/// min num of arguments is 1 (pwrmode)
STATIC mp_obj_t wlan_callback (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
mp_arg_val_t args[mpcallback_INIT_NUM_ARGS];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, mpcallback_INIT_NUM_ARGS, mpcallback_init_args, args);
wlan_obj_t *self = pos_args[0];
// check if any parameters were passed
if (kw_args->used > 0) {
// check the power mode
if (args[4].u_int != PYB_PWR_MODE_LPDS) {
// throw an exception since WLAN only supports LPDS mode
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
// create the callback
self->callback = mpcallback_new (self, args[1].u_obj, &wlan_cb_methods);
// enable network wakeup
pybsleep_set_wlan_lpds_callback (self->callback);
}
return self->callback;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(wlan_callback_obj, 1, wlan_callback);
#if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP)
STATIC mp_obj_t wlan_serversstart(mp_obj_t self_in) {
servers_enable();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(wlan_serversstart_obj, wlan_serversstart);
STATIC mp_obj_t wlan_serversstop(mp_obj_t self_in) {
wlan_stop_servers();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(wlan_serversstop_obj, wlan_serversstop);
STATIC mp_obj_t wlan_serversenabled(mp_obj_t self_in) {
return MP_BOOL(servers_are_enabled());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(wlan_serversenabled_obj, wlan_serversenabled);
STATIC mp_obj_t wlan_serversuserpass(mp_obj_t self_in, mp_obj_t user, mp_obj_t pass) {
const char *_user = mp_obj_str_get_str(user);
const char *_pass = mp_obj_str_get_str(pass);
servers_set_user_pass((char *)_user, (char *)_pass);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(wlan_serversuserpass_obj, wlan_serversuserpass);
#endif
STATIC const mp_map_elem_t wlan_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_connect), (mp_obj_t)&wlan_connect_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_scan), (mp_obj_t)&wlan_scan_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_disconnect), (mp_obj_t)&wlan_disconnect_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_isconnected), (mp_obj_t)&wlan_isconnected_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ifconfig), (mp_obj_t)&wlan_ifconfig_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_urn), (mp_obj_t)&wlan_urn_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&wlan_callback_obj },
#if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP)
{ MP_OBJ_NEW_QSTR(MP_QSTR_start_servers), (mp_obj_t)&wlan_serversstart_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_stop_servers), (mp_obj_t)&wlan_serversstop_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_servers_enabled), (mp_obj_t)&wlan_serversenabled_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_servers_userpass), (mp_obj_t)&wlan_serversuserpass_obj },
#endif
// class constants
{ MP_OBJ_NEW_QSTR(MP_QSTR_OPEN), MP_OBJ_NEW_SMALL_INT(SL_SEC_TYPE_OPEN) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_WEP), MP_OBJ_NEW_SMALL_INT(SL_SEC_TYPE_WEP) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_WPA_WPA2), MP_OBJ_NEW_SMALL_INT(SL_SEC_TYPE_WPA_WPA2) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_WPA_ENT), MP_OBJ_NEW_SMALL_INT(SL_SEC_TYPE_WPA_ENT) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_WPS_PBC), MP_OBJ_NEW_SMALL_INT(SL_SEC_TYPE_WPS_PBC) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_WPS_PIN), MP_OBJ_NEW_SMALL_INT(SL_SEC_TYPE_WPS_PIN) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_STA), MP_OBJ_NEW_SMALL_INT(ROLE_STA) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_AP), MP_OBJ_NEW_SMALL_INT(ROLE_AP) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_P2P), MP_OBJ_NEW_SMALL_INT(ROLE_P2P) },
};
STATIC MP_DEFINE_CONST_DICT(wlan_locals_dict, wlan_locals_dict_table);
STATIC const mp_cb_methods_t wlan_cb_methods = {
.init = wlan_callback,
.enable = wlan_lpds_callback_enable,
.disable = wlan_lpds_callback_disable,
};
/******************************************************************************/
// Micro Python bindings; WLAN socket
STATIC int wlan_gethostbyname(mp_obj_t nic, const char *name, mp_uint_t len, uint8_t *out_ip, uint8_t family) {
uint32_t ip;
int result = sl_NetAppDnsGetHostByName((_i8 *)name, (_u16)len, (_u32*)&ip, (_u8)family);
out_ip[0] = ip >> 24;
out_ip[1] = ip >> 16;
out_ip[2] = ip >> 8;
out_ip[3] = ip;
return result;
}
STATIC int wlan_socket_socket(struct _mod_network_socket_obj_t *s, int *_errno) {
// open the socket
int16_t sd = sl_Socket(s->u_param.domain, s->u_param.type, s->u_param.proto);
if (s->sd < 0) {
*_errno = s->sd;
return -1;
}
// mark the socket not closed
s->closed = false;
// save the socket descriptor
s->sd = sd;
// make it blocking by default
int32_t optval = 0;
sl_SetSockOpt(sd, SOL_SOCKET, SO_NONBLOCKING, &optval, (SlSocklen_t)sizeof(optval));
return 0;
}
STATIC void wlan_socket_close(mod_network_socket_obj_t *s) {
s->closed = true;
sl_Close(s->sd);
}
STATIC int wlan_socket_bind(mod_network_socket_obj_t *s, byte *ip, mp_uint_t port, int *_errno) {
MAKE_SOCKADDR(addr, ip, port)
int ret = sl_Bind(s->sd, &addr, sizeof(addr));
if (ret != 0) {
*_errno = ret;
return -1;
}
return 0;
}
STATIC int wlan_socket_listen(mod_network_socket_obj_t *s, mp_int_t backlog, int *_errno) {
int ret = sl_Listen(s->sd, backlog);
if (ret != 0) {
*_errno = ret;
return -1;
}
return 0;
}
STATIC int wlan_socket_accept(mod_network_socket_obj_t *s, mod_network_socket_obj_t *s2, byte *ip, mp_uint_t *port, int *_errno) {
// accept incoming connection
int16_t sd;
sockaddr addr;
socklen_t addr_len = sizeof(addr);
if ((sd = sl_Accept(s->sd, &addr, &addr_len)) < 0) {
*_errno = sd;
return -1;
}
// Mark the socket not closed and save the new descriptor
s2->closed = false;
s2->sd = sd;
// return ip and port
UNPACK_SOCKADDR(addr, ip, *port);
return 0;
}
STATIC int wlan_socket_connect(mod_network_socket_obj_t *s, byte *ip, mp_uint_t port, int *_errno) {
MAKE_SOCKADDR(addr, ip, port)
int ret = sl_Connect(s->sd, &addr, sizeof(addr));
if (ret != 0) {
*_errno = ret;
return -1;
}
return 0;
}
STATIC int wlan_socket_send(mod_network_socket_obj_t *s, const byte *buf, mp_uint_t len, int *_errno) {
if (s->closed) {
sl_Close (s->sd);
*_errno = EBADF;
return -1;
}
mp_int_t bytes = 0;
if (len > 0) {
bytes = sl_Send(s->sd, (const void *)buf, len, 0);
}
if (bytes <= 0) {
*_errno = bytes;
return -1;
}
return bytes;
}
STATIC int wlan_socket_recv(mod_network_socket_obj_t *s, byte *buf, mp_uint_t len, int *_errno) {
// check if the socket is open
if (s->closed) {
// socket is closed, but the CC3200 may have some data remaining in its buffer, so check
fd_set rfds;
FD_ZERO(&rfds);
FD_SET(s->sd, &rfds);
timeval tv;
tv.tv_sec = 0;
tv.tv_usec = 2;
int nfds = sl_Select(s->sd + 1, &rfds, NULL, NULL, &tv);
if (nfds == -1 || !FD_ISSET(s->sd, &rfds)) {
// no data waiting, so close socket and return 0 data
sl_Close(s->sd);
return 0;
}
}
// cap length at WLAN_MAX_RX_SIZE
len = MIN(len, WLAN_MAX_RX_SIZE);
// do the recv
int ret = sl_Recv(s->sd, buf, len, 0);
if (ret < 0) {
*_errno = ret;
return -1;
}
return ret;
}
STATIC int wlan_socket_sendto( mod_network_socket_obj_t *s, const byte *buf, mp_uint_t len, byte *ip, mp_uint_t port, int *_errno) {
MAKE_SOCKADDR(addr, ip, port)
int ret = sl_SendTo(s->sd, (byte*)buf, len, 0, (sockaddr*)&addr, sizeof(addr));
if (ret < 0) {
*_errno = ret;
return -1;
}
return ret;
}
STATIC int wlan_socket_recvfrom(mod_network_socket_obj_t *s, byte *buf, mp_uint_t len, byte *ip, mp_uint_t *port, int *_errno) {
sockaddr addr;
socklen_t addr_len = sizeof(addr);
mp_int_t ret = sl_RecvFrom(s->sd, buf, len, 0, &addr, &addr_len);
if (ret < 0) {
*_errno = ret;
return -1;
}
UNPACK_SOCKADDR(addr, ip, *port);
return ret;
}
STATIC int wlan_socket_setsockopt(mod_network_socket_obj_t *socket, mp_uint_t level, mp_uint_t opt, const void *optval, mp_uint_t optlen, int *_errno) {
int ret = sl_SetSockOpt(socket->sd, level, opt, optval, optlen);
if (ret < 0) {
*_errno = ret;
return -1;
}
return 0;
}
STATIC int wlan_socket_settimeout(mod_network_socket_obj_t *s, mp_uint_t timeout_ms, int *_errno) {
int ret;
if (timeout_ms == 0 || timeout_ms == -1) {
int optval;
if (timeout_ms == 0) {
// set non-blocking mode
optval = 1;
} else {
// set blocking mode
optval = 0;
}
ret = sl_SetSockOpt(s->sd, SOL_SOCKET, SO_NONBLOCKING, &optval, sizeof(optval));
} else {
// set timeout
ret = sl_SetSockOpt(s->sd, SOL_SOCKET, SO_RCVTIMEO, &timeout_ms, sizeof(timeout_ms));
}
if (ret != 0) {
*_errno = ret;
return -1;
}
return 0;
}
STATIC int wlan_socket_ioctl (mod_network_socket_obj_t *s, mp_uint_t request, mp_uint_t arg, int *_errno) {
mp_int_t ret;
if (request == MP_IOCTL_POLL) {
mp_uint_t flags = arg;
ret = 0;
int32_t sd = s->sd;
// init fds
fd_set rfds, wfds, xfds;
FD_ZERO(&rfds);
FD_ZERO(&wfds);
FD_ZERO(&xfds);
// set fds if needed
if (flags & MP_IOCTL_POLL_RD) {
FD_SET(sd, &rfds);
// A socked that just closed is available for reading. A call to
// recv() returns 0 which is consistent with BSD.
if (s->closed) {
ret |= MP_IOCTL_POLL_RD;
}
}
if (flags & MP_IOCTL_POLL_WR) {
FD_SET(sd, &wfds);
}
if (flags & MP_IOCTL_POLL_HUP) {
FD_SET(sd, &xfds);
}
// call simplelink select with minimum timeout
SlTimeval_t tv;
tv.tv_sec = 0;
tv.tv_usec = 1;
int32_t nfds = sl_Select(sd + 1, &rfds, &wfds, &xfds, &tv);
// check for error
if (nfds == -1) {
*_errno = nfds;
return -1;
}
// check return of select
if (FD_ISSET(sd, &rfds)) {
ret |= MP_IOCTL_POLL_RD;
}
if (FD_ISSET(sd, &wfds)) {
ret |= MP_IOCTL_POLL_WR;
}
if (FD_ISSET(sd, &xfds)) {
ret |= MP_IOCTL_POLL_HUP;
}
} else {
*_errno = EINVAL;
ret = -1;
}
return ret;
}
const mod_network_nic_type_t mod_network_nic_type_wlan = {
.base = {
{ &mp_type_type },
.name = MP_QSTR_WLAN,
.print = wlan_print,
.make_new = wlan_make_new,
.locals_dict = (mp_obj_t)&wlan_locals_dict,
},
.gethostbyname = wlan_gethostbyname,
.socket = wlan_socket_socket,
.close = wlan_socket_close,
.bind = wlan_socket_bind,
.listen = wlan_socket_listen,
.accept = wlan_socket_accept,
.connect = wlan_socket_connect,
.send = wlan_socket_send,
.recv = wlan_socket_recv,
.sendto = wlan_socket_sendto,
.recvfrom = wlan_socket_recvfrom,
.setsockopt = wlan_socket_setsockopt,
.settimeout = wlan_socket_settimeout,
.ioctl = wlan_socket_ioctl,
};