circuitpython/ports/esp32/machine_pwm.c
Damien George e4650125b8 esp32: Update port to support IDF v5.0.2.
This commit updates the esp32 port to work exclusively with ESP-IDF v5.
IDF v5 is needed for some of the newer ESP32 SoCs to work, and it also
cleans up a lot of the inconsistencies between existing SoCs (eg S2, S3,
and C3).

Support for IDF v4 is dropped because it's a lot of effort to maintain both
versions at the same time.

The following components have been verified to work on the various SoCs:

                ESP32     ESP32-S2  ESP32-S3  ESP32-C3
    build       pass      pass      pass      pass
    SPIRAM      pass      pass      pass      N/A
    REPL (UART) pass      pass      pass      pass
    REPL (USB)  N/A       pass      pass      N/A
    filesystem  pass      pass      pass      pass
    GPIO        pass      pass      pass      pass
    SPI         pass      pass      pass      pass
    I2C         pass      pass      pass      pass
    PWM         pass      pass      pass      pass
    ADC         pass      pass      pass      pass
    WiFi STA    pass      pass      pass      pass
    WiFi AP     pass      pass      pass      pass
    BLE         pass      N/A       pass      pass
    ETH         pass      --        --        --
    PPP         pass      pass      pass      --
    sockets     pass      pass      pass      pass
    SSL         pass      ENOMEM    pass      pass
    RMT         pass      pass      pass      pass
    NeoPixel    pass      pass      pass      pass
    I2S         pass      pass      pass      N/A
    ESPNow      pass      pass      pass      pass
    ULP-FSM     pass      pass      pass      N/A
    SDCard      pass      N/A       N/A       pass
    WDT         pass      pass      pass      pass

Signed-off-by: Damien George <damien@micropython.org>
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
2023-06-23 15:34:22 +10:00

684 lines
25 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016-2021 Damien P. George
* Copyright (c) 2018 Alan Dragomirecky
* Copyright (c) 2020 Antoine Aubert
* Copyright (c) 2021 Ihor Nehrutsa
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <math.h>
#include "py/runtime.h"
#include "py/mphal.h"
#include "driver/ledc.h"
#include "esp_err.h"
#include "soc/gpio_sig_map.h"
#define PWM_DBG(...)
// #define PWM_DBG(...) mp_printf(&mp_plat_print, __VA_ARGS__); mp_printf(&mp_plat_print, "\n");
// Total number of channels
#define PWM_CHANNEL_MAX (LEDC_SPEED_MODE_MAX * LEDC_CHANNEL_MAX)
typedef struct _chan_t {
// Which channel has which GPIO pin assigned?
// (-1 if not assigned)
gpio_num_t pin;
// Which channel has which timer assigned?
// (-1 if not assigned)
int timer_idx;
} chan_t;
// List of PWM channels
STATIC chan_t chans[PWM_CHANNEL_MAX];
// channel_idx is an index (end-to-end sequential numbering) for all channels
// available on the chip and described in chans[]
#define CHANNEL_IDX(mode, channel) (mode * LEDC_CHANNEL_MAX + channel)
#define CHANNEL_IDX_TO_MODE(channel_idx) (channel_idx / LEDC_CHANNEL_MAX)
#define CHANNEL_IDX_TO_CHANNEL(channel_idx) (channel_idx % LEDC_CHANNEL_MAX)
// Total number of timers
#define PWM_TIMER_MAX (LEDC_SPEED_MODE_MAX * LEDC_TIMER_MAX)
// List of timer configs
STATIC ledc_timer_config_t timers[PWM_TIMER_MAX];
// timer_idx is an index (end-to-end sequential numbering) for all timers
// available on the chip and configured in timers[]
#define TIMER_IDX(mode, timer) (mode * LEDC_TIMER_MAX + timer)
#define TIMER_IDX_TO_MODE(timer_idx) (timer_idx / LEDC_TIMER_MAX)
#define TIMER_IDX_TO_TIMER(timer_idx) (timer_idx % LEDC_TIMER_MAX)
// Params for PWM operation
// 5khz is default frequency
#define PWM_FREQ (5000)
// 10-bit resolution (compatible with esp8266 PWM)
#define PWM_RES_10_BIT (LEDC_TIMER_10_BIT)
// Maximum duty value on 10-bit resolution
#define MAX_DUTY_U10 ((1 << PWM_RES_10_BIT) - 1)
// https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/ledc.html#supported-range-of-frequency-and-duty-resolutions
// duty() uses 10-bit resolution or less
// duty_u16() and duty_ns() use 16-bit resolution or less
// Possible highest resolution in device
#if (LEDC_TIMER_BIT_MAX - 1) < LEDC_TIMER_16_BIT
#define HIGHEST_PWM_RES (LEDC_TIMER_BIT_MAX - 1)
#else
#define HIGHEST_PWM_RES (LEDC_TIMER_16_BIT) // 20 bit for ESP32, but 16 bit is used
#endif
// Duty resolution of user interface in `duty_u16()` and `duty_u16` parameter in constructor/initializer
#define UI_RES_16_BIT (16)
// Maximum duty value on highest user interface resolution
#define UI_MAX_DUTY ((1 << UI_RES_16_BIT) - 1)
// How much to shift from the HIGHEST_PWM_RES duty resolution to the user interface duty resolution UI_RES_16_BIT
#define UI_RES_SHIFT (UI_RES_16_BIT - HIGHEST_PWM_RES) // 0 for ESP32, 2 for S2, S3, C3
#if SOC_LEDC_SUPPORT_REF_TICK
// If the PWM frequency is less than EMPIRIC_FREQ, then LEDC_REF_CLK_HZ(1 MHz) source is used, else LEDC_APB_CLK_HZ(80 MHz) source is used
#define EMPIRIC_FREQ (10) // Hz
#endif
// Config of timer upon which we run all PWM'ed GPIO pins
STATIC bool pwm_inited = false;
// MicroPython PWM object struct
typedef struct _machine_pwm_obj_t {
mp_obj_base_t base;
gpio_num_t pin;
bool active;
int mode;
int channel;
int timer;
int duty_x; // PWM_RES_10_BIT if duty(), HIGHEST_PWM_RES if duty_u16(), -HIGHEST_PWM_RES if duty_ns()
int duty_u10; // stored values from previous duty setters
int duty_u16; // - / -
int duty_ns; // - / -
} machine_pwm_obj_t;
STATIC bool is_timer_in_use(int current_channel_idx, int timer_idx);
STATIC void set_duty_u16(machine_pwm_obj_t *self, int duty);
STATIC void set_duty_u10(machine_pwm_obj_t *self, int duty);
STATIC void set_duty_ns(machine_pwm_obj_t *self, int ns);
STATIC void pwm_init(void) {
// Initial condition: no channels assigned
for (int i = 0; i < PWM_CHANNEL_MAX; ++i) {
chans[i].pin = -1;
chans[i].timer_idx = -1;
}
// Prepare all timers config
// Initial condition: no timers assigned
for (int i = 0; i < PWM_TIMER_MAX; ++i) {
timers[i].duty_resolution = HIGHEST_PWM_RES;
// unset timer is -1
timers[i].freq_hz = -1;
timers[i].speed_mode = TIMER_IDX_TO_MODE(i);
timers[i].timer_num = TIMER_IDX_TO_TIMER(i);
timers[i].clk_cfg = LEDC_AUTO_CLK; // will reinstall later according to the EMPIRIC_FREQ
}
}
// Deinit channel and timer if the timer is unused
STATIC void pwm_deinit(int channel_idx) {
// Valid channel?
if ((channel_idx >= 0) && (channel_idx < PWM_CHANNEL_MAX)) {
// Clean up timer if necessary
int timer_idx = chans[channel_idx].timer_idx;
if (timer_idx != -1) {
if (!is_timer_in_use(channel_idx, timer_idx)) {
check_esp_err(ledc_timer_rst(TIMER_IDX_TO_MODE(timer_idx), TIMER_IDX_TO_TIMER(timer_idx)));
// Flag it unused
timers[chans[channel_idx].timer_idx].freq_hz = -1;
}
}
int pin = chans[channel_idx].pin;
if (pin != -1) {
int mode = CHANNEL_IDX_TO_MODE(channel_idx);
int channel = CHANNEL_IDX_TO_CHANNEL(channel_idx);
// Mark it unused, and tell the hardware to stop routing
check_esp_err(ledc_stop(mode, channel, 0));
// Disable ledc signal for the pin
// esp_rom_gpio_connect_out_signal(pin, SIG_GPIO_OUT_IDX, false, false);
if (mode == LEDC_LOW_SPEED_MODE) {
esp_rom_gpio_connect_out_signal(pin, LEDC_LS_SIG_OUT0_IDX + channel, false, true);
} else {
#if LEDC_SPEED_MODE_MAX > 1
#if CONFIG_IDF_TARGET_ESP32
esp_rom_gpio_connect_out_signal(pin, LEDC_HS_SIG_OUT0_IDX + channel, false, true);
#else
#error Add supported CONFIG_IDF_TARGET_ESP32_xxx
#endif
#endif
}
}
chans[channel_idx].pin = -1;
chans[channel_idx].timer_idx = -1;
}
}
// This called from Ctrl-D soft reboot
void machine_pwm_deinit_all(void) {
if (pwm_inited) {
for (int channel_idx = 0; channel_idx < PWM_CHANNEL_MAX; ++channel_idx) {
pwm_deinit(channel_idx);
}
pwm_inited = false;
}
}
STATIC void configure_channel(machine_pwm_obj_t *self) {
ledc_channel_config_t cfg = {
.channel = self->channel,
.duty = (1 << (timers[TIMER_IDX(self->mode, self->timer)].duty_resolution)) / 2,
.gpio_num = self->pin,
.intr_type = LEDC_INTR_DISABLE,
.speed_mode = self->mode,
.timer_sel = self->timer,
};
if (ledc_channel_config(&cfg) != ESP_OK) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("PWM not supported on Pin(%d)"), self->pin);
}
}
STATIC void set_freq(machine_pwm_obj_t *self, unsigned int freq, ledc_timer_config_t *timer) {
if (freq != timer->freq_hz) {
// Find the highest bit resolution for the requested frequency
unsigned int i = APB_CLK_FREQ; // 80 MHz
#if SOC_LEDC_SUPPORT_REF_TICK
if (freq < EMPIRIC_FREQ) {
i = REF_CLK_FREQ; // 1 MHz
}
#endif
int divider = (i + freq / 2) / freq; // rounded
if (divider == 0) {
divider = 1;
}
float f = (float)i / divider; // actual frequency
if (f <= 1.0) {
f = 1.0;
}
i = (unsigned int)roundf((float)i / f);
unsigned int res = 0;
for (; i > 1; i >>= 1) {
++res;
}
if (res == 0) {
res = 1;
} else if (res > HIGHEST_PWM_RES) {
// Limit resolution to HIGHEST_PWM_RES to match units of our duty
res = HIGHEST_PWM_RES;
}
// Configure the new resolution and frequency
timer->duty_resolution = res;
timer->freq_hz = freq;
timer->clk_cfg = LEDC_USE_APB_CLK;
#if SOC_LEDC_SUPPORT_REF_TICK
if (freq < EMPIRIC_FREQ) {
timer->clk_cfg = LEDC_USE_REF_TICK;
}
#endif
// Set frequency
esp_err_t err = ledc_timer_config(timer);
if (err != ESP_OK) {
if (err == ESP_FAIL) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("unreachable frequency %d"), freq);
} else {
check_esp_err(err);
}
}
// Reset the timer if low speed
if (self->mode == LEDC_LOW_SPEED_MODE) {
check_esp_err(ledc_timer_rst(self->mode, self->timer));
}
}
// Save the same duty cycle when frequency is changed
if (self->duty_x == HIGHEST_PWM_RES) {
set_duty_u16(self, self->duty_u16);
} else if (self->duty_x == PWM_RES_10_BIT) {
set_duty_u10(self, self->duty_u10);
} else if (self->duty_x == -HIGHEST_PWM_RES) {
set_duty_ns(self, self->duty_ns);
}
}
// Calculate the duty parameters based on an ns value
STATIC int ns_to_duty(machine_pwm_obj_t *self, int ns) {
ledc_timer_config_t timer = timers[TIMER_IDX(self->mode, self->timer)];
int64_t duty = ((int64_t)ns * UI_MAX_DUTY * timer.freq_hz + 500000000LL) / 1000000000LL;
if ((ns > 0) && (duty == 0)) {
duty = 1;
} else if (duty > UI_MAX_DUTY) {
duty = UI_MAX_DUTY;
}
return duty;
}
STATIC int duty_to_ns(machine_pwm_obj_t *self, int duty) {
ledc_timer_config_t timer = timers[TIMER_IDX(self->mode, self->timer)];
int64_t ns = ((int64_t)duty * 1000000000LL + (int64_t)timer.freq_hz * UI_MAX_DUTY / 2) / ((int64_t)timer.freq_hz * UI_MAX_DUTY);
return ns;
}
#define get_duty_raw(self) ledc_get_duty(self->mode, self->channel)
STATIC void pwm_is_active(machine_pwm_obj_t *self) {
if (self->active == false) {
mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("PWM inactive"));
}
}
STATIC uint32_t get_duty_u16(machine_pwm_obj_t *self) {
pwm_is_active(self);
int resolution = timers[TIMER_IDX(self->mode, self->timer)].duty_resolution;
int duty = ledc_get_duty(self->mode, self->channel);
if (resolution <= UI_RES_16_BIT) {
duty <<= (UI_RES_16_BIT - resolution);
} else {
duty >>= (resolution - UI_RES_16_BIT);
}
return duty;
}
STATIC uint32_t get_duty_u10(machine_pwm_obj_t *self) {
pwm_is_active(self);
return get_duty_u16(self) >> 6; // Scale down from 16 bit to 10 bit resolution
}
STATIC uint32_t get_duty_ns(machine_pwm_obj_t *self) {
pwm_is_active(self);
return duty_to_ns(self, get_duty_u16(self));
}
STATIC void set_duty_u16(machine_pwm_obj_t *self, int duty) {
pwm_is_active(self);
if ((duty < 0) || (duty > UI_MAX_DUTY)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("duty_u16 must be from 0 to %d"), UI_MAX_DUTY);
}
ledc_timer_config_t timer = timers[TIMER_IDX(self->mode, self->timer)];
int channel_duty;
if (timer.duty_resolution <= UI_RES_16_BIT) {
channel_duty = duty >> (UI_RES_16_BIT - timer.duty_resolution);
} else {
channel_duty = duty << (timer.duty_resolution - UI_RES_16_BIT);
}
int max_duty = (1 << timer.duty_resolution) - 1;
if (channel_duty < 0) {
channel_duty = 0;
} else if (channel_duty > max_duty) {
channel_duty = max_duty;
}
check_esp_err(ledc_set_duty(self->mode, self->channel, channel_duty));
check_esp_err(ledc_update_duty(self->mode, self->channel));
/*
// Bug: Sometimes duty is not set right now.
// Not a bug. It's a feature. The duty is applied at the beginning of the next signal period.
// Bug: It has been experimentally established that the duty is set during 2 signal periods, but 1 period is expected.
// See https://github.com/espressif/esp-idf/issues/7288
if (duty != get_duty_u16(self)) {
PWM_DBG("set_duty_u16(%u), get_duty_u16():%u, channel_duty:%d, duty_resolution:%d, freq_hz:%d", duty, get_duty_u16(self), channel_duty, timer.duty_resolution, timer.freq_hz);
esp_rom_delay_us(2 * 1000000 / timer.freq_hz);
if (duty != get_duty_u16(self)) {
PWM_DBG("set_duty_u16(%u), get_duty_u16():%u, channel_duty:%d, duty_resolution:%d, freq_hz:%d", duty, get_duty_u16(self), channel_duty, timer.duty_resolution, timer.freq_hz);
}
}
*/
self->duty_x = HIGHEST_PWM_RES;
self->duty_u16 = duty;
}
STATIC void set_duty_u10(machine_pwm_obj_t *self, int duty) {
pwm_is_active(self);
if ((duty < 0) || (duty > MAX_DUTY_U10)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("duty must be from 0 to %u"), MAX_DUTY_U10);
}
set_duty_u16(self, duty << (UI_RES_16_BIT - PWM_RES_10_BIT));
self->duty_x = PWM_RES_10_BIT;
self->duty_u10 = duty;
}
STATIC void set_duty_ns(machine_pwm_obj_t *self, int ns) {
pwm_is_active(self);
if ((ns < 0) || (ns > duty_to_ns(self, UI_MAX_DUTY))) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("duty_ns must be from 0 to %d ns"), duty_to_ns(self, UI_MAX_DUTY));
}
set_duty_u16(self, ns_to_duty(self, ns));
self->duty_x = -HIGHEST_PWM_RES;
self->duty_ns = ns;
}
/******************************************************************************/
#define SAME_FREQ_ONLY (true)
#define SAME_FREQ_OR_FREE (false)
#define ANY_MODE (-1)
// Return timer_idx. Use TIMER_IDX_TO_MODE(timer_idx) and TIMER_IDX_TO_TIMER(timer_idx) to get mode and timer
STATIC int find_timer(unsigned int freq, bool same_freq_only, int mode) {
int free_timer_idx_found = -1;
// Find a free PWM Timer using the same freq
for (int timer_idx = 0; timer_idx < PWM_TIMER_MAX; ++timer_idx) {
if ((mode == ANY_MODE) || (mode == TIMER_IDX_TO_MODE(timer_idx))) {
if (timers[timer_idx].freq_hz == freq) {
// A timer already uses the same freq. Use it now.
return timer_idx;
}
if (!same_freq_only && (free_timer_idx_found == -1) && (timers[timer_idx].freq_hz == -1)) {
free_timer_idx_found = timer_idx;
// Continue to check if a channel with the same freq is in use.
}
}
}
return free_timer_idx_found;
}
// Return true if the timer is in use in addition to current channel
STATIC bool is_timer_in_use(int current_channel_idx, int timer_idx) {
for (int i = 0; i < PWM_CHANNEL_MAX; ++i) {
if ((i != current_channel_idx) && (chans[i].timer_idx == timer_idx)) {
return true;
}
}
return false;
}
// Find a free PWM channel, also spot if our pin is already mentioned.
// Return channel_idx. Use CHANNEL_IDX_TO_MODE(channel_idx) and CHANNEL_IDX_TO_CHANNEL(channel_idx) to get mode and channel
STATIC int find_channel(int pin, int mode) {
int avail_idx = -1;
int channel_idx;
for (channel_idx = 0; channel_idx < PWM_CHANNEL_MAX; ++channel_idx) {
if ((mode == ANY_MODE) || (mode == CHANNEL_IDX_TO_MODE(channel_idx))) {
if (chans[channel_idx].pin == pin) {
break;
}
if ((avail_idx == -1) && (chans[channel_idx].pin == -1)) {
avail_idx = channel_idx;
}
}
}
if (channel_idx >= PWM_CHANNEL_MAX) {
channel_idx = avail_idx;
}
return channel_idx;
}
/******************************************************************************/
// MicroPython bindings for PWM
STATIC void mp_machine_pwm_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_pwm_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "PWM(Pin(%u)", self->pin);
if (self->active) {
mp_printf(print, ", freq=%u", ledc_get_freq(self->mode, self->timer));
if (self->duty_x == PWM_RES_10_BIT) {
mp_printf(print, ", duty=%d", get_duty_u10(self));
} else if (self->duty_x == -HIGHEST_PWM_RES) {
mp_printf(print, ", duty_ns=%d", get_duty_ns(self));
} else {
mp_printf(print, ", duty_u16=%d", get_duty_u16(self));
}
int resolution = timers[TIMER_IDX(self->mode, self->timer)].duty_resolution;
mp_printf(print, ", resolution=%d", resolution);
mp_printf(print, ", (duty=%.2f%%, resolution=%.3f%%)", 100.0 * get_duty_raw(self) / (1 << resolution), 100.0 * 1 / (1 << resolution)); // percents
mp_printf(print, ", mode=%d, channel=%d, timer=%d", self->mode, self->channel, self->timer);
}
mp_printf(print, ")");
}
// This called from pwm.init() method
STATIC void mp_machine_pwm_init_helper(machine_pwm_obj_t *self,
size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_freq, ARG_duty, ARG_duty_u16, ARG_duty_ns };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_freq, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_duty, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_duty_u16, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_duty_ns, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args,
MP_ARRAY_SIZE(allowed_args), allowed_args, args);
int channel_idx = find_channel(self->pin, ANY_MODE);
if (channel_idx == -1) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("out of PWM channels:%d"), PWM_CHANNEL_MAX); // in all modes
}
int duty = args[ARG_duty].u_int;
int duty_u16 = args[ARG_duty_u16].u_int;
int duty_ns = args[ARG_duty_ns].u_int;
if (((duty != -1) && (duty_u16 != -1)) || ((duty != -1) && (duty_ns != -1)) || ((duty_u16 != -1) && (duty_ns != -1))) {
mp_raise_ValueError(MP_ERROR_TEXT("only one of parameters 'duty', 'duty_u16' or 'duty_ns' is allowed"));
}
int freq = args[ARG_freq].u_int;
// Check if freq wasn't passed as an argument
if (freq == -1) {
// Check if already set, otherwise use the default freq.
// It is possible in case:
// pwm = PWM(pin, freq=1000, duty=256)
// pwm = PWM(pin, duty=128)
if (chans[channel_idx].timer_idx != -1) {
freq = timers[chans[channel_idx].timer_idx].freq_hz;
}
if (freq <= 0) {
freq = PWM_FREQ;
}
}
if ((freq <= 0) || (freq > 40000000)) {
mp_raise_ValueError(MP_ERROR_TEXT("frequency must be from 1Hz to 40MHz"));
}
int timer_idx;
int current_timer_idx = chans[channel_idx].timer_idx;
bool current_in_use = is_timer_in_use(channel_idx, current_timer_idx);
if (current_in_use) {
timer_idx = find_timer(freq, SAME_FREQ_OR_FREE, CHANNEL_IDX_TO_MODE(channel_idx));
} else {
timer_idx = chans[channel_idx].timer_idx;
}
if (timer_idx == -1) {
timer_idx = find_timer(freq, SAME_FREQ_OR_FREE, ANY_MODE);
}
if (timer_idx == -1) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("out of PWM timers:%d"), PWM_TIMER_MAX); // in all modes
}
int mode = TIMER_IDX_TO_MODE(timer_idx);
if (CHANNEL_IDX_TO_MODE(channel_idx) != mode) {
// unregister old channel
chans[channel_idx].pin = -1;
chans[channel_idx].timer_idx = -1;
// find new channel
channel_idx = find_channel(self->pin, mode);
if (CHANNEL_IDX_TO_MODE(channel_idx) != mode) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("out of PWM channels:%d"), PWM_CHANNEL_MAX); // in current mode
}
}
self->mode = mode;
self->timer = TIMER_IDX_TO_TIMER(timer_idx);
self->channel = CHANNEL_IDX_TO_CHANNEL(channel_idx);
// New PWM assignment
if ((chans[channel_idx].pin == -1) || (chans[channel_idx].timer_idx != timer_idx)) {
configure_channel(self);
chans[channel_idx].pin = self->pin;
}
chans[channel_idx].timer_idx = timer_idx;
self->active = true;
// Set timer frequency
set_freq(self, freq, &timers[timer_idx]);
// Set duty cycle?
if (duty_u16 != -1) {
set_duty_u16(self, duty_u16);
} else if (duty_ns != -1) {
set_duty_ns(self, duty_ns);
} else if (duty != -1) {
set_duty_u10(self, duty);
} else if (self->duty_x == 0) {
set_duty_u10(self, (1 << PWM_RES_10_BIT) / 2); // 50%
}
}
// This called from PWM() constructor
STATIC mp_obj_t mp_machine_pwm_make_new(const mp_obj_type_t *type,
size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, 2, true);
gpio_num_t pin_id = machine_pin_get_id(args[0]);
// create PWM object from the given pin
machine_pwm_obj_t *self = mp_obj_malloc(machine_pwm_obj_t, &machine_pwm_type);
self->pin = pin_id;
self->active = false;
self->mode = -1;
self->channel = -1;
self->timer = -1;
self->duty_x = 0;
// start the PWM subsystem if it's not already running
if (!pwm_inited) {
pwm_init();
pwm_inited = true;
}
// start the PWM running for this channel
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
mp_machine_pwm_init_helper(self, n_args - 1, args + 1, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
// This called from pwm.deinit() method
STATIC void mp_machine_pwm_deinit(machine_pwm_obj_t *self) {
int channel_idx = CHANNEL_IDX(self->mode, self->channel);
pwm_deinit(channel_idx);
self->active = false;
self->mode = -1;
self->channel = -1;
self->timer = -1;
self->duty_x = 0;
}
// Set and get methods of PWM class
STATIC mp_obj_t mp_machine_pwm_freq_get(machine_pwm_obj_t *self) {
pwm_is_active(self);
return MP_OBJ_NEW_SMALL_INT(ledc_get_freq(self->mode, self->timer));
}
STATIC void mp_machine_pwm_freq_set(machine_pwm_obj_t *self, mp_int_t freq) {
pwm_is_active(self);
if ((freq <= 0) || (freq > 40000000)) {
mp_raise_ValueError(MP_ERROR_TEXT("frequency must be from 1Hz to 40MHz"));
}
if (freq == timers[TIMER_IDX(self->mode, self->timer)].freq_hz) {
return;
}
int current_timer_idx = chans[CHANNEL_IDX(self->mode, self->channel)].timer_idx;
bool current_in_use = is_timer_in_use(CHANNEL_IDX(self->mode, self->channel), current_timer_idx);
// Check if an already running timer with the same freq is running
int new_timer_idx = find_timer(freq, SAME_FREQ_ONLY, self->mode);
// If no existing timer was found, and the current one is in use, then find a new one
if ((new_timer_idx == -1) && current_in_use) {
// Have to find a new timer
new_timer_idx = find_timer(freq, SAME_FREQ_OR_FREE, self->mode);
if (new_timer_idx == -1) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("out of PWM timers:%d"), PWM_TIMER_MAX); // in current mode
}
}
if ((new_timer_idx != -1) && (new_timer_idx != current_timer_idx)) {
// Bind the channel to the new timer
chans[self->channel].timer_idx = new_timer_idx;
if (ledc_bind_channel_timer(self->mode, self->channel, TIMER_IDX_TO_TIMER(new_timer_idx)) != ESP_OK) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("failed to bind timer to channel"));
}
if (!current_in_use) {
// Free the old timer
check_esp_err(ledc_timer_rst(self->mode, self->timer));
// Flag it unused
timers[current_timer_idx].freq_hz = -1;
}
current_timer_idx = new_timer_idx;
}
self->mode = TIMER_IDX_TO_MODE(current_timer_idx);
self->timer = TIMER_IDX_TO_TIMER(current_timer_idx);
// Set the frequency
set_freq(self, freq, &timers[current_timer_idx]);
}
STATIC mp_obj_t mp_machine_pwm_duty_get(machine_pwm_obj_t *self) {
return MP_OBJ_NEW_SMALL_INT(get_duty_u10(self));
}
STATIC void mp_machine_pwm_duty_set(machine_pwm_obj_t *self, mp_int_t duty) {
set_duty_u10(self, duty);
}
STATIC mp_obj_t mp_machine_pwm_duty_get_u16(machine_pwm_obj_t *self) {
return MP_OBJ_NEW_SMALL_INT(get_duty_u16(self));
}
STATIC void mp_machine_pwm_duty_set_u16(machine_pwm_obj_t *self, mp_int_t duty_u16) {
set_duty_u16(self, duty_u16);
}
STATIC mp_obj_t mp_machine_pwm_duty_get_ns(machine_pwm_obj_t *self) {
return MP_OBJ_NEW_SMALL_INT(get_duty_ns(self));
}
STATIC void mp_machine_pwm_duty_set_ns(machine_pwm_obj_t *self, mp_int_t duty_ns) {
set_duty_ns(self, duty_ns);
}