8137e2d6d2
This simplifies allocating outside of the VM because the VM doesn't take up all remaining memory by default. On ESP we delegate to the IDF for allocations. For all other ports, we use TLSF to manage an outer "port" heap. The IDF uses TLSF internally and we use their fork for the other ports. This also removes the dynamic C stack sizing. It wasn't often used and is not possible with a fixed outer heap. Fixes #8512. Fixes #7334.
1193 lines
41 KiB
C
1193 lines
41 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2016-2017 Scott Shawcroft for Adafruit Industries
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "extmod/vfs.h"
|
|
#include "extmod/vfs_fat.h"
|
|
|
|
#include "genhdr/mpversion.h"
|
|
#include "py/nlr.h"
|
|
#include "py/compile.h"
|
|
#include "py/frozenmod.h"
|
|
#include "py/mphal.h"
|
|
#include "py/runtime.h"
|
|
#include "py/repl.h"
|
|
#include "py/gc.h"
|
|
#include "py/stackctrl.h"
|
|
|
|
#include "shared/readline/readline.h"
|
|
#include "shared/runtime/pyexec.h"
|
|
|
|
#include "background.h"
|
|
#include "mpconfigboard.h"
|
|
#include "supervisor/background_callback.h"
|
|
#include "supervisor/board.h"
|
|
#include "supervisor/cpu.h"
|
|
#include "supervisor/filesystem.h"
|
|
#include "supervisor/port.h"
|
|
#include "supervisor/serial.h"
|
|
#include "supervisor/shared/reload.h"
|
|
#include "supervisor/shared/safe_mode.h"
|
|
#include "supervisor/shared/stack.h"
|
|
#include "supervisor/shared/status_leds.h"
|
|
#include "supervisor/shared/tick.h"
|
|
#include "supervisor/shared/traceback.h"
|
|
#include "supervisor/shared/workflow.h"
|
|
#include "supervisor/usb.h"
|
|
#include "supervisor/workflow.h"
|
|
#include "supervisor/shared/external_flash/external_flash.h"
|
|
|
|
#include "shared-bindings/microcontroller/__init__.h"
|
|
#include "shared-bindings/microcontroller/Processor.h"
|
|
#include "shared-bindings/supervisor/__init__.h"
|
|
#include "shared-bindings/supervisor/Runtime.h"
|
|
|
|
#include "shared-bindings/os/__init__.h"
|
|
|
|
#if CIRCUITPY_ALARM
|
|
#include "shared-bindings/alarm/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_ATEXIT
|
|
#include "shared-module/atexit/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_BLEIO
|
|
#include "shared-bindings/_bleio/__init__.h"
|
|
#include "supervisor/shared/bluetooth/bluetooth.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_BOARD
|
|
#include "shared-module/board/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_CANIO
|
|
#include "common-hal/canio/CAN.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_DISPLAYIO
|
|
#include "shared-module/displayio/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_EPAPERDISPLAY
|
|
#include "shared-bindings/epaperdisplay/EPaperDisplay.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_KEYPAD
|
|
#include "shared-module/keypad/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_MEMORYMONITOR
|
|
#include "shared-module/memorymonitor/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_SOCKETPOOL
|
|
#include "shared-bindings/socketpool/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_STATUS_BAR
|
|
#include "supervisor/shared/status_bar.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_USB_HID
|
|
#include "shared-module/usb_hid/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_WIFI
|
|
#include "shared-bindings/wifi/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_BOOT_COUNTER
|
|
#include "shared-bindings/nvm/ByteArray.h"
|
|
uint8_t value_out = 0;
|
|
#endif
|
|
|
|
#if MICROPY_ENABLE_PYSTACK && CIRCUITPY_OS_GETENV
|
|
#include "shared-module/os/__init__.h"
|
|
#endif
|
|
|
|
static void reset_devices(void) {
|
|
#if CIRCUITPY_BLEIO_HCI
|
|
bleio_reset();
|
|
#endif
|
|
}
|
|
|
|
STATIC uint8_t *_heap;
|
|
STATIC uint8_t *_pystack;
|
|
|
|
#if MICROPY_ENABLE_PYSTACK || MICROPY_ENABLE_GC
|
|
STATIC uint8_t *_allocate_memory(safe_mode_t safe_mode, const char *env_key, size_t default_size, size_t *final_size) {
|
|
*final_size = default_size;
|
|
#if CIRCUITPY_OS_GETENV
|
|
if (safe_mode == SAFE_MODE_NONE) {
|
|
(void)common_hal_os_getenv_int(env_key, (mp_int_t *)final_size);
|
|
if (*final_size < 0) {
|
|
*final_size = default_size;
|
|
}
|
|
}
|
|
#endif
|
|
uint8_t *ptr = port_malloc(*final_size, false);
|
|
|
|
#if CIRCUITPY_OS_GETENV
|
|
if (ptr == NULL) {
|
|
// Fallback to the build size.
|
|
ptr = port_malloc(default_size, false);
|
|
}
|
|
#endif
|
|
if (ptr == NULL) {
|
|
reset_into_safe_mode(SAFE_MODE_NO_HEAP);
|
|
}
|
|
return ptr;
|
|
}
|
|
#endif
|
|
|
|
STATIC void start_mp(safe_mode_t safe_mode) {
|
|
supervisor_workflow_reset();
|
|
|
|
// Stack limit should be less than real stack size, so we have a chance
|
|
// to recover from limit hit. (Limit is measured in bytes.) The top of the
|
|
// stack is set to our current state. Not the actual top.
|
|
mp_stack_ctrl_init();
|
|
|
|
uint32_t *stack_bottom = port_stack_get_limit();
|
|
uint32_t *stack_top = port_stack_get_top();
|
|
|
|
size_t stack_length = (stack_top - stack_bottom) * sizeof(uint32_t);
|
|
mp_stack_set_top(stack_top);
|
|
mp_stack_set_limit(stack_length - CIRCUITPY_EXCEPTION_STACK_SIZE);
|
|
|
|
#if MICROPY_MAX_STACK_USAGE
|
|
// _ezero (same as _ebss) is an int, so start 4 bytes above it.
|
|
if (stack_get_bottom() != NULL) {
|
|
mp_stack_set_bottom(stack_get_bottom());
|
|
mp_stack_fill_with_sentinel();
|
|
}
|
|
#endif
|
|
|
|
// Sync the file systems in case any used RAM from the GC to cache. As soon
|
|
// as we re-init the GC all bets are off on the cache.
|
|
filesystem_flush();
|
|
|
|
// Clear the readline history. It references the heap we're about to destroy.
|
|
readline_init0();
|
|
|
|
#if MICROPY_ENABLE_PYSTACK
|
|
size_t pystack_size = 0;
|
|
_pystack = _allocate_memory(safe_mode, "CIRCUITPY_PYSTACK_SIZE", CIRCUITPY_PYSTACK_SIZE, &pystack_size);
|
|
mp_pystack_init(_pystack, _pystack + pystack_size / sizeof(size_t));
|
|
#endif
|
|
|
|
#if MICROPY_ENABLE_GC
|
|
size_t heap_size = 0;
|
|
_heap = _allocate_memory(safe_mode, "CIRCUITPY_HEAP_START_SIZE", CIRCUITPY_HEAP_START_SIZE, &heap_size);
|
|
gc_init(_heap, _heap + heap_size / 4);
|
|
#endif
|
|
mp_init();
|
|
mp_obj_list_init((mp_obj_list_t *)mp_sys_path, 0);
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_));
|
|
#if MICROPY_MODULE_FROZEN
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__dot_frozen));
|
|
#endif
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_lib));
|
|
|
|
mp_obj_list_init((mp_obj_list_t *)mp_sys_argv, 0);
|
|
}
|
|
|
|
STATIC void stop_mp(void) {
|
|
#if MICROPY_VFS
|
|
mp_vfs_mount_t *vfs = MP_STATE_VM(vfs_mount_table);
|
|
|
|
// Unmount all heap allocated vfs mounts.
|
|
while (gc_nbytes(vfs) > 0) {
|
|
vfs = vfs->next;
|
|
}
|
|
MP_STATE_VM(vfs_mount_table) = vfs;
|
|
MP_STATE_VM(vfs_cur) = vfs;
|
|
#endif
|
|
|
|
background_callback_reset();
|
|
|
|
#if CIRCUITPY_USB
|
|
usb_background();
|
|
#endif
|
|
|
|
// Set the qstr pool back to the const pools. The heap allocated ones will
|
|
// be overwritten.
|
|
qstr_reset();
|
|
|
|
gc_deinit();
|
|
port_free(_heap);
|
|
_heap = NULL;
|
|
|
|
#if MICROPY_ENABLE_PYSTACK
|
|
port_free(_pystack);
|
|
_pystack = NULL;
|
|
#endif
|
|
}
|
|
|
|
STATIC const char *_current_executing_filename = NULL;
|
|
|
|
STATIC pyexec_result_t _exec_result = {0, MP_OBJ_NULL, 0};
|
|
|
|
#if CIRCUITPY_STATUS_BAR
|
|
void supervisor_execution_status(void) {
|
|
mp_obj_exception_t *exception = MP_OBJ_TO_PTR(_exec_result.exception);
|
|
if (_current_executing_filename != NULL) {
|
|
serial_write(_current_executing_filename);
|
|
} else if ((_exec_result.return_code & PYEXEC_EXCEPTION) != 0 &&
|
|
_exec_result.exception_line > 0 &&
|
|
exception != NULL) {
|
|
mp_printf(&mp_plat_print, "%d@%s %q", _exec_result.exception_line, _exec_result.exception_filename, exception->base.type->name);
|
|
} else {
|
|
serial_write_compressed(MP_ERROR_TEXT("Done"));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if CIRCUITPY_WATCHDOG
|
|
pyexec_result_t *pyexec_result(void) {
|
|
return &_exec_result;
|
|
}
|
|
#endif
|
|
|
|
// Look for the first file that exists in the list of filenames, using mp_import_stat().
|
|
// Return its index. If no file found, return -1.
|
|
STATIC const char *first_existing_file_in_list(const char *const *filenames, size_t n_filenames) {
|
|
for (size_t i = 0; i < n_filenames; i++) {
|
|
mp_import_stat_t stat = mp_import_stat(filenames[i]);
|
|
if (stat == MP_IMPORT_STAT_FILE) {
|
|
return filenames[i];
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
STATIC bool maybe_run_list(const char *const *filenames, size_t n_filenames) {
|
|
_exec_result.return_code = 0;
|
|
_exec_result.exception = MP_OBJ_NULL;
|
|
_exec_result.exception_line = 0;
|
|
_current_executing_filename = first_existing_file_in_list(filenames, n_filenames);
|
|
if (_current_executing_filename == NULL) {
|
|
return false;
|
|
}
|
|
mp_hal_stdout_tx_str(_current_executing_filename);
|
|
serial_write_compressed(MP_ERROR_TEXT(" output:\n"));
|
|
|
|
#if CIRCUITPY_STATUS_BAR
|
|
supervisor_status_bar_update();
|
|
#endif
|
|
|
|
pyexec_file(_current_executing_filename, &_exec_result);
|
|
|
|
#if CIRCUITPY_ATEXIT
|
|
shared_module_atexit_execute(&_exec_result);
|
|
#endif
|
|
|
|
_current_executing_filename = NULL;
|
|
|
|
#if CIRCUITPY_STATUS_BAR
|
|
supervisor_status_bar_update();
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
STATIC void count_strn(void *data, const char *str, size_t len) {
|
|
*(size_t *)data += len;
|
|
}
|
|
|
|
STATIC void cleanup_after_vm(mp_obj_t exception) {
|
|
// Get the traceback of any exception from this run off the heap.
|
|
// MP_OBJ_SENTINEL means "this run does not contribute to traceback storage, don't touch it"
|
|
// MP_OBJ_NULL (=0) means "this run completed successfully, clear any stored traceback"
|
|
if (exception != MP_OBJ_SENTINEL) {
|
|
if (prev_traceback_string != NULL) {
|
|
port_free(prev_traceback_string);
|
|
prev_traceback_string = NULL;
|
|
}
|
|
// ReloadException is exempt from traceback printing in pyexec_file(), so treat it as "no
|
|
// traceback" here too.
|
|
if (exception && exception != MP_OBJ_FROM_PTR(&MP_STATE_VM(mp_reload_exception))) {
|
|
size_t traceback_len = 0;
|
|
mp_print_t print_count = {&traceback_len, count_strn};
|
|
mp_obj_print_exception(&print_count, exception);
|
|
prev_traceback_string = (char *)port_malloc(traceback_len + 1, false);
|
|
// Empirically, this never fails in practice - even when the heap is totally filled up
|
|
// with single-block-sized objects referenced by a root pointer, exiting the VM frees
|
|
// up several hundred bytes, sufficient for the traceback (which tends to be shortened
|
|
// because there wasn't memory for the full one). There may be convoluted ways of
|
|
// making it fail, but at this point I believe they are not worth spending code on.
|
|
if (prev_traceback_string != NULL) {
|
|
vstr_t vstr;
|
|
vstr_init_fixed_buf(&vstr, traceback_len, prev_traceback_string);
|
|
mp_print_t print = {&vstr, (mp_print_strn_t)vstr_add_strn};
|
|
mp_obj_print_exception(&print, exception);
|
|
prev_traceback_string[traceback_len] = '\0';
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reset port-independent devices, like CIRCUITPY_BLEIO_HCI.
|
|
reset_devices();
|
|
|
|
#if CIRCUITPY_ATEXIT
|
|
atexit_reset();
|
|
#endif
|
|
|
|
// Turn off the display and flush the filesystem before the heap disappears.
|
|
#if CIRCUITPY_DISPLAYIO
|
|
reset_displays();
|
|
#endif
|
|
|
|
#if CIRCUITPY_MEMORYMONITOR
|
|
memorymonitor_reset();
|
|
#endif
|
|
|
|
// Disable user related BLE state that uses the micropython heap.
|
|
#if CIRCUITPY_BLEIO
|
|
bleio_user_reset();
|
|
#endif
|
|
|
|
#if CIRCUITPY_CANIO
|
|
common_hal_canio_reset();
|
|
#endif
|
|
|
|
#if CIRCUITPY_KEYPAD
|
|
keypad_reset();
|
|
#endif
|
|
|
|
// Close user-initiated sockets.
|
|
#if CIRCUITPY_SOCKETPOOL
|
|
socketpool_user_reset();
|
|
#endif
|
|
|
|
// Turn off user initiated WiFi connections.
|
|
#if CIRCUITPY_WIFI
|
|
wifi_user_reset();
|
|
#endif
|
|
|
|
// reset_board_buses() first because it may release pins from the never_reset state, so that
|
|
// reset_port() can reset them.
|
|
#if CIRCUITPY_BOARD
|
|
reset_board_buses();
|
|
#endif
|
|
reset_port();
|
|
reset_board();
|
|
|
|
// Free the heap last because other modules may reference heap memory and need to shut down.
|
|
filesystem_flush();
|
|
stop_mp();
|
|
|
|
// Let the workflows know we've reset in case they want to restart.
|
|
supervisor_workflow_reset();
|
|
}
|
|
|
|
STATIC void print_code_py_status_message(safe_mode_t safe_mode) {
|
|
if (autoreload_is_enabled()) {
|
|
serial_write_compressed(
|
|
MP_ERROR_TEXT("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\n"));
|
|
} else {
|
|
serial_write_compressed(MP_ERROR_TEXT("Auto-reload is off.\n"));
|
|
}
|
|
if (safe_mode != SAFE_MODE_NONE) {
|
|
serial_write_compressed(MP_ERROR_TEXT("Running in safe mode! Not running saved code.\n"));
|
|
}
|
|
}
|
|
|
|
STATIC bool run_code_py(safe_mode_t safe_mode, bool *simulate_reset) {
|
|
bool serial_connected_at_start = serial_connected();
|
|
bool printed_safe_mode_message = false;
|
|
#if CIRCUITPY_AUTORELOAD_DELAY_MS > 0
|
|
if (serial_connected_at_start) {
|
|
serial_write("\r\n");
|
|
print_code_py_status_message(safe_mode);
|
|
print_safe_mode_message(safe_mode);
|
|
printed_safe_mode_message = true;
|
|
}
|
|
#endif
|
|
|
|
bool skip_repl = false;
|
|
bool skip_wait = false;
|
|
bool found_main = false;
|
|
uint8_t next_code_options = 0;
|
|
// Collects stickiness bits that apply in the current situation.
|
|
uint8_t next_code_stickiness_situation = SUPERVISOR_NEXT_CODE_OPT_NEWLY_SET;
|
|
|
|
// Do the filesystem flush check before reload in case another write comes
|
|
// in while we're doing the flush.
|
|
if (safe_mode == SAFE_MODE_NONE) {
|
|
filesystem_flush();
|
|
}
|
|
if (safe_mode == SAFE_MODE_NONE && !autoreload_pending()) {
|
|
static const char *const supported_filenames[] = {
|
|
"code.txt", "code.py", "main.py", "main.txt"
|
|
};
|
|
#if CIRCUITPY_FULL_BUILD
|
|
static const char *const double_extension_filenames[] = {
|
|
"code.txt.py", "code.py.txt", "code.txt.txt", "code.py.py",
|
|
"main.txt.py", "main.py.txt", "main.txt.txt", "main.py.py"
|
|
};
|
|
#endif
|
|
|
|
start_mp(safe_mode);
|
|
|
|
#if CIRCUITPY_USB
|
|
usb_setup_with_vm();
|
|
#endif
|
|
|
|
// Make sure we are in the root directory before looking at files.
|
|
common_hal_os_chdir("/");
|
|
|
|
// Check if a different run file has been allocated
|
|
if (next_code_configuration != NULL) {
|
|
next_code_configuration->options &= ~SUPERVISOR_NEXT_CODE_OPT_NEWLY_SET;
|
|
next_code_options = next_code_configuration->options;
|
|
if (next_code_configuration->filename[0] != '\0') {
|
|
// This is where the user's python code is actually executed:
|
|
const char *const filenames[] = { next_code_configuration->filename };
|
|
found_main = maybe_run_list(filenames, MP_ARRAY_SIZE(filenames));
|
|
if (!found_main) {
|
|
serial_write(next_code_configuration->filename);
|
|
serial_write_compressed(MP_ERROR_TEXT(" not found.\n"));
|
|
}
|
|
}
|
|
}
|
|
// Otherwise, default to the standard list of filenames
|
|
if (!found_main) {
|
|
// This is where the user's python code is actually executed:
|
|
found_main = maybe_run_list(supported_filenames, MP_ARRAY_SIZE(supported_filenames));
|
|
// If that didn't work, double check the extensions
|
|
#if CIRCUITPY_FULL_BUILD
|
|
if (!found_main) {
|
|
found_main = maybe_run_list(double_extension_filenames, MP_ARRAY_SIZE(double_extension_filenames));
|
|
if (found_main) {
|
|
serial_write_compressed(MP_ERROR_TEXT("WARNING: Your code filename has two extensions\n"));
|
|
}
|
|
}
|
|
#else
|
|
(void)found_main;
|
|
#endif
|
|
}
|
|
|
|
// Print done before resetting everything so that we get the message over
|
|
// BLE before it is reset and we have a delay before reconnect.
|
|
if ((_exec_result.return_code & PYEXEC_RELOAD) && supervisor_get_run_reason() == RUN_REASON_AUTO_RELOAD) {
|
|
serial_write_compressed(MP_ERROR_TEXT("\nCode stopped by auto-reload. Reloading soon.\n"));
|
|
} else {
|
|
serial_write_compressed(MP_ERROR_TEXT("\nCode done running.\n"));
|
|
}
|
|
|
|
|
|
// Finished executing python code. Cleanup includes filesystem flush and a board reset.
|
|
cleanup_after_vm(_exec_result.exception);
|
|
_exec_result.exception = NULL;
|
|
|
|
// If a new next code file was set, that is a reason to keep it (obviously). Stuff this into
|
|
// the options because it can be treated like any other reason-for-stickiness bit. The
|
|
// source is different though: it comes from the options that will apply to the next run,
|
|
// while the rest of next_code_options is what applied to this run.
|
|
if (next_code_configuration != NULL &&
|
|
next_code_configuration->options & SUPERVISOR_NEXT_CODE_OPT_NEWLY_SET) {
|
|
next_code_configuration->options |= SUPERVISOR_NEXT_CODE_OPT_NEWLY_SET;
|
|
}
|
|
|
|
if (_exec_result.return_code & PYEXEC_RELOAD) {
|
|
next_code_stickiness_situation |= SUPERVISOR_NEXT_CODE_OPT_STICKY_ON_RELOAD;
|
|
// Reload immediately unless the reload is due to autoreload. In that
|
|
// case, we wait below to see if any other writes occur.
|
|
if (supervisor_get_run_reason() != RUN_REASON_AUTO_RELOAD) {
|
|
skip_repl = true;
|
|
skip_wait = true;
|
|
}
|
|
} else if (_exec_result.return_code == 0) {
|
|
next_code_stickiness_situation |= SUPERVISOR_NEXT_CODE_OPT_STICKY_ON_SUCCESS;
|
|
if (next_code_options & SUPERVISOR_NEXT_CODE_OPT_RELOAD_ON_SUCCESS) {
|
|
skip_repl = true;
|
|
skip_wait = true;
|
|
}
|
|
} else {
|
|
next_code_stickiness_situation |= SUPERVISOR_NEXT_CODE_OPT_STICKY_ON_ERROR;
|
|
// Deep sleep cannot be skipped
|
|
// TODO: settings in deep sleep should persist, using a new sleep memory API
|
|
if (next_code_options & SUPERVISOR_NEXT_CODE_OPT_RELOAD_ON_ERROR
|
|
&& !(_exec_result.return_code & PYEXEC_DEEP_SLEEP)) {
|
|
skip_repl = true;
|
|
skip_wait = true;
|
|
}
|
|
}
|
|
if (_exec_result.return_code & PYEXEC_FORCED_EXIT) {
|
|
skip_repl = false;
|
|
skip_wait = true;
|
|
}
|
|
}
|
|
|
|
// Program has finished running.
|
|
bool printed_press_any_key = false;
|
|
#if CIRCUITPY_EPAPERDISPLAY
|
|
size_t time_to_epaper_refresh = 1;
|
|
#endif
|
|
|
|
// Setup LED blinks.
|
|
#if CIRCUITPY_STATUS_LED
|
|
uint32_t color;
|
|
uint8_t blink_count;
|
|
bool led_active = false;
|
|
#if CIRCUITPY_ALARM
|
|
if (_exec_result.return_code & PYEXEC_DEEP_SLEEP) {
|
|
color = BLACK;
|
|
blink_count = 0;
|
|
} else
|
|
#endif
|
|
if (_exec_result.return_code != PYEXEC_EXCEPTION) {
|
|
if (safe_mode == SAFE_MODE_NONE) {
|
|
color = ALL_DONE;
|
|
blink_count = ALL_DONE_BLINKS;
|
|
} else {
|
|
color = SAFE_MODE;
|
|
blink_count = SAFE_MODE_BLINKS;
|
|
}
|
|
} else {
|
|
color = EXCEPTION;
|
|
blink_count = EXCEPTION_BLINKS;
|
|
}
|
|
size_t pattern_start = supervisor_ticks_ms32();
|
|
size_t single_blink_time = (OFF_ON_RATIO + 1) * BLINK_TIME_MS;
|
|
size_t blink_time = single_blink_time * blink_count;
|
|
size_t total_time = blink_time + LED_SLEEP_TIME_MS;
|
|
#endif
|
|
|
|
// This loop is waits after code completes. It waits for fake sleeps to
|
|
// finish, user input or autoreloads.
|
|
#if CIRCUITPY_ALARM
|
|
bool fake_sleeping = false;
|
|
#endif
|
|
while (!skip_wait) {
|
|
RUN_BACKGROUND_TASKS;
|
|
|
|
// If a reload was requested by the supervisor or autoreload, return.
|
|
if (autoreload_ready()) {
|
|
next_code_stickiness_situation |= SUPERVISOR_NEXT_CODE_OPT_STICKY_ON_RELOAD;
|
|
// Should the STICKY_ON_SUCCESS and STICKY_ON_ERROR bits be cleared in
|
|
// next_code_stickiness_situation? I can see arguments either way, but I'm deciding
|
|
// "no" for now, mainly because it's a bit less code. At this point, we have both a
|
|
// success or error and a reload, so let's have both of the respective options take
|
|
// effect (in OR combination).
|
|
skip_repl = true;
|
|
// We're kicking off the autoreload process so reset now. If any
|
|
// other reloads trigger after this, then we'll want another wait
|
|
// period.
|
|
autoreload_reset();
|
|
break;
|
|
}
|
|
|
|
// If interrupted by keyboard, return
|
|
if (serial_connected() && serial_bytes_available() && !autoreload_pending()) {
|
|
// Skip REPL if reload was requested.
|
|
skip_repl = serial_read() == CHAR_CTRL_D;
|
|
if (skip_repl) {
|
|
supervisor_set_run_reason(RUN_REASON_REPL_RELOAD);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Check for a deep sleep alarm and restart the VM. This can happen if
|
|
// an alarm alerts faster than our USB delay or if we pretended to deep
|
|
// sleep.
|
|
#if CIRCUITPY_ALARM
|
|
if (fake_sleeping && common_hal_alarm_woken_from_sleep()) {
|
|
serial_write_compressed(MP_ERROR_TEXT("Woken up by alarm.\n"));
|
|
supervisor_set_run_reason(RUN_REASON_STARTUP);
|
|
skip_repl = true;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
// If messages haven't been printed yet, print them
|
|
if (!printed_press_any_key && serial_connected() && !autoreload_pending()) {
|
|
if (!serial_connected_at_start) {
|
|
print_code_py_status_message(safe_mode);
|
|
}
|
|
|
|
if (!printed_safe_mode_message) {
|
|
print_safe_mode_message(safe_mode);
|
|
printed_safe_mode_message = true;
|
|
}
|
|
serial_write("\r\n");
|
|
serial_write_compressed(MP_ERROR_TEXT("Press any key to enter the REPL. Use CTRL-D to reload.\n"));
|
|
printed_press_any_key = true;
|
|
}
|
|
if (!serial_connected()) {
|
|
serial_connected_at_start = false;
|
|
printed_press_any_key = false;
|
|
}
|
|
|
|
// Sleep until our next interrupt.
|
|
#if CIRCUITPY_ALARM
|
|
if (_exec_result.return_code & PYEXEC_DEEP_SLEEP) {
|
|
const bool awoke_from_true_deep_sleep =
|
|
common_hal_mcu_processor_get_reset_reason() == RESET_REASON_DEEP_SLEEP_ALARM;
|
|
|
|
if (fake_sleeping) {
|
|
// This waits until a pretend deep sleep alarm occurs. They are set
|
|
// during common_hal_alarm_set_deep_sleep_alarms. On some platforms
|
|
// it may also return due to another interrupt, that's why we check
|
|
// for deep sleep alarms above. If it wasn't a deep sleep alarm,
|
|
// then we'll idle here again.
|
|
common_hal_alarm_pretending_deep_sleep();
|
|
}
|
|
// The first time we go into a deep sleep, make sure we have been awake long enough
|
|
// for USB to connect (enumeration delay), or for the BLE workflow to start.
|
|
// We wait CIRCUITPY_WORKFLOW_CONNECTION_SLEEP_DELAY seconds after a restart.
|
|
// But if we woke up from a real deep sleep, don't wait for connection. The user will need to
|
|
// do a hard reset to get out of the real deep sleep.
|
|
else if (awoke_from_true_deep_sleep ||
|
|
port_get_raw_ticks(NULL) > CIRCUITPY_WORKFLOW_CONNECTION_SLEEP_DELAY * 1024) {
|
|
// OK to start sleeping, real or fake.
|
|
#if CIRCUITPY_DISPLAYIO
|
|
common_hal_displayio_release_displays();
|
|
#endif
|
|
status_led_deinit();
|
|
deinit_rxtx_leds();
|
|
board_deinit();
|
|
|
|
// Continue with true deep sleep even if workflow is available.
|
|
if (awoke_from_true_deep_sleep || !supervisor_workflow_active()) {
|
|
// Enter true deep sleep. When we wake up we'll be back at the
|
|
// top of main(), not in this loop.
|
|
common_hal_alarm_enter_deep_sleep();
|
|
// Does not return.
|
|
} else {
|
|
serial_write_compressed(
|
|
MP_ERROR_TEXT("Pretending to deep sleep until alarm, CTRL-C or file write.\n"));
|
|
fake_sleeping = true;
|
|
}
|
|
} else {
|
|
// Loop while checking the time. We can't idle because we don't want to override a
|
|
// time alarm set for the deep sleep.
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
// Refresh the ePaper display if we have one. That way it'll show an error message.
|
|
// Skip if we're about to autoreload. Otherwise we may delay when user code can update
|
|
// the display.
|
|
#if CIRCUITPY_EPAPERDISPLAY
|
|
if (time_to_epaper_refresh > 0 && !autoreload_pending()) {
|
|
time_to_epaper_refresh = maybe_refresh_epaperdisplay();
|
|
}
|
|
|
|
#if !CIRCUITPY_STATUS_LED
|
|
port_interrupt_after_ticks(time_to_epaper_refresh);
|
|
#endif
|
|
#endif
|
|
|
|
#if CIRCUITPY_STATUS_LED
|
|
uint32_t tick_diff = supervisor_ticks_ms32() - pattern_start;
|
|
|
|
// By default, don't sleep.
|
|
size_t time_to_next_change = 0;
|
|
if (tick_diff < blink_time) {
|
|
uint32_t blink_diff = tick_diff % (single_blink_time);
|
|
if (blink_diff >= BLINK_TIME_MS) {
|
|
if (led_active) {
|
|
new_status_color(BLACK);
|
|
status_led_deinit();
|
|
led_active = false;
|
|
}
|
|
time_to_next_change = single_blink_time - blink_diff;
|
|
} else {
|
|
if (!led_active) {
|
|
status_led_init();
|
|
new_status_color(color);
|
|
led_active = true;
|
|
}
|
|
time_to_next_change = BLINK_TIME_MS - blink_diff;
|
|
}
|
|
} else if (tick_diff > total_time) {
|
|
pattern_start = supervisor_ticks_ms32();
|
|
} else {
|
|
if (led_active) {
|
|
new_status_color(BLACK);
|
|
status_led_deinit();
|
|
led_active = false;
|
|
}
|
|
time_to_next_change = total_time - tick_diff;
|
|
}
|
|
#if CIRCUITPY_EPAPERDISPLAY
|
|
if (time_to_epaper_refresh > 0 && time_to_next_change > 0) {
|
|
time_to_next_change = MIN(time_to_next_change, time_to_epaper_refresh);
|
|
}
|
|
#endif
|
|
|
|
// time_to_next_change is in ms and ticks are slightly shorter so
|
|
// we'll undersleep just a little. It shouldn't matter.
|
|
if (time_to_next_change > 0) {
|
|
port_interrupt_after_ticks(time_to_next_change);
|
|
port_idle_until_interrupt();
|
|
}
|
|
#else
|
|
// No status LED can we sleep until we are interrupted by some
|
|
// interaction.
|
|
port_idle_until_interrupt();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Done waiting, start the board back up.
|
|
|
|
// We delay resetting BLE until after the wait in case we're transferring
|
|
// more files over.
|
|
#if CIRCUITPY_BLEIO
|
|
bleio_reset();
|
|
#endif
|
|
|
|
// free code allocation if unused
|
|
if (next_code_configuration != NULL && (next_code_configuration->options & next_code_stickiness_situation) == 0) {
|
|
port_free(next_code_configuration);
|
|
next_code_configuration = NULL;
|
|
}
|
|
|
|
#if CIRCUITPY_STATUS_LED
|
|
if (led_active) {
|
|
new_status_color(BLACK);
|
|
status_led_deinit();
|
|
}
|
|
#endif
|
|
|
|
#if CIRCUITPY_ALARM
|
|
if (fake_sleeping) {
|
|
board_init();
|
|
// Pretend that the next run is the first run, as if we were reset.
|
|
*simulate_reset = true;
|
|
}
|
|
#endif
|
|
|
|
return skip_repl;
|
|
}
|
|
|
|
vstr_t *boot_output;
|
|
|
|
#if CIRCUITPY_SAFEMODE_PY
|
|
STATIC void __attribute__ ((noinline)) run_safemode_py(safe_mode_t safe_mode) {
|
|
// Don't run if we aren't in safe mode or we won't be able to find safemode.py.
|
|
// Also don't run if it's a user-initiated safemode (pressing button(s) during boot),
|
|
// since that's deliberate.
|
|
if (safe_mode == SAFE_MODE_NONE || safe_mode == SAFE_MODE_USER || !filesystem_present()) {
|
|
return;
|
|
}
|
|
|
|
start_mp(safe_mode);
|
|
|
|
static const char *const safemode_py_filenames[] = {"safemode.py", "safemode.txt"};
|
|
maybe_run_list(safemode_py_filenames, MP_ARRAY_SIZE(safemode_py_filenames));
|
|
|
|
// If safemode.py itself caused an error, change the safe_mode state to indicate that.
|
|
if (_exec_result.exception != MP_OBJ_NULL &&
|
|
_exec_result.exception != MP_OBJ_SENTINEL) {
|
|
set_safe_mode(SAFE_MODE_SAFEMODE_PY_ERROR);
|
|
}
|
|
|
|
cleanup_after_vm(_exec_result.exception);
|
|
_exec_result.exception = NULL;
|
|
}
|
|
#endif
|
|
|
|
STATIC void __attribute__ ((noinline)) run_boot_py(safe_mode_t safe_mode) {
|
|
if (safe_mode == SAFE_MODE_NO_HEAP) {
|
|
return;
|
|
}
|
|
|
|
// If not in safe mode, run boot before initing USB and capture output in a file.
|
|
|
|
// There is USB setup to do even if boot.py is not actually run.
|
|
const bool ok_to_run = filesystem_present()
|
|
&& safe_mode == SAFE_MODE_NONE
|
|
&& MP_STATE_VM(vfs_mount_table) != NULL;
|
|
|
|
static const char *const boot_py_filenames[] = {"boot.py", "boot.txt"};
|
|
|
|
// Do USB setup even if boot.py is not run.
|
|
|
|
start_mp(safe_mode);
|
|
|
|
#if CIRCUITPY_USB
|
|
// Set up default USB values after boot.py VM starts but before running boot.py.
|
|
usb_set_defaults();
|
|
#endif
|
|
|
|
if (ok_to_run) {
|
|
#ifdef CIRCUITPY_BOOT_OUTPUT_FILE
|
|
#if CIRCUITPY_STATUS_BAR
|
|
// Turn off status bar updates when writing out to boot_out.txt.
|
|
supervisor_status_bar_suspend();
|
|
#endif
|
|
vstr_t boot_text;
|
|
vstr_init(&boot_text, 512);
|
|
boot_output = &boot_text;
|
|
#endif
|
|
|
|
// Write version info
|
|
mp_printf(&mp_plat_print, "%s\nBoard ID:%s\n", MICROPY_FULL_VERSION_INFO, CIRCUITPY_BOARD_ID);
|
|
#if CIRCUITPY_MICROCONTROLLER && COMMON_HAL_MCU_PROCESSOR_UID_LENGTH > 0
|
|
uint8_t raw_id[COMMON_HAL_MCU_PROCESSOR_UID_LENGTH];
|
|
common_hal_mcu_processor_get_uid(raw_id);
|
|
mp_cprintf(&mp_plat_print, MP_ERROR_TEXT("UID:"));
|
|
for (size_t i = 0; i < COMMON_HAL_MCU_PROCESSOR_UID_LENGTH; i++) {
|
|
mp_cprintf(&mp_plat_print, MP_ERROR_TEXT("%02X"), raw_id[i]);
|
|
}
|
|
mp_printf(&mp_plat_print, "\n");
|
|
port_boot_info();
|
|
#endif
|
|
|
|
bool found_boot = maybe_run_list(boot_py_filenames, MP_ARRAY_SIZE(boot_py_filenames));
|
|
(void)found_boot;
|
|
|
|
|
|
#ifdef CIRCUITPY_BOOT_OUTPUT_FILE
|
|
// Get the base filesystem.
|
|
fs_user_mount_t *vfs = (fs_user_mount_t *)MP_STATE_VM(vfs_mount_table)->obj;
|
|
FATFS *fs = &vfs->fatfs;
|
|
|
|
boot_output = NULL;
|
|
#if CIRCUITPY_STATUS_BAR
|
|
supervisor_status_bar_resume();
|
|
#endif
|
|
bool write_boot_output = true;
|
|
FIL boot_output_file;
|
|
if (f_open(fs, &boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_READ) == FR_OK) {
|
|
char *file_contents = m_new(char, boot_text.alloc);
|
|
UINT chars_read;
|
|
if (f_read(&boot_output_file, file_contents, 1 + boot_text.len, &chars_read) == FR_OK) {
|
|
write_boot_output =
|
|
(chars_read != boot_text.len) || (memcmp(boot_text.buf, file_contents, chars_read) != 0);
|
|
}
|
|
// no need to f_close the file
|
|
}
|
|
|
|
if (write_boot_output) {
|
|
// Wait 1 second before opening CIRCUITPY_BOOT_OUTPUT_FILE for write,
|
|
// in case power is momentary or will fail shortly due to, say a low, battery.
|
|
mp_hal_delay_ms(1000);
|
|
|
|
// USB isn't up, so we can write the file.
|
|
// operating at the oofatfs (f_open) layer means the usb concurrent write permission
|
|
// is not even checked!
|
|
f_open(fs, &boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_WRITE | FA_CREATE_ALWAYS);
|
|
UINT chars_written;
|
|
f_write(&boot_output_file, boot_text.buf, boot_text.len, &chars_written);
|
|
f_close(&boot_output_file);
|
|
filesystem_flush();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
port_post_boot_py(true);
|
|
|
|
cleanup_after_vm(_exec_result.exception);
|
|
_exec_result.exception = NULL;
|
|
|
|
port_post_boot_py(false);
|
|
}
|
|
|
|
STATIC int run_repl(safe_mode_t safe_mode) {
|
|
int exit_code = PYEXEC_FORCED_EXIT;
|
|
filesystem_flush();
|
|
|
|
start_mp(safe_mode);
|
|
|
|
#if CIRCUITPY_USB
|
|
usb_setup_with_vm();
|
|
#endif
|
|
|
|
autoreload_suspend(AUTORELOAD_SUSPEND_REPL);
|
|
|
|
if (get_safe_mode() == SAFE_MODE_NONE) {
|
|
const char *const filenames[] = { "repl.py" };
|
|
(void)maybe_run_list(filenames, MP_ARRAY_SIZE(filenames));
|
|
}
|
|
|
|
// Set the status LED to the REPL color before running the REPL. For
|
|
// NeoPixels and DotStars this will be sticky but for PWM or single LED it
|
|
// won't. This simplifies pin sharing because they won't be in use when
|
|
// actually in the REPL.
|
|
#if CIRCUITPY_STATUS_LED
|
|
status_led_init();
|
|
new_status_color(REPL_RUNNING);
|
|
status_led_deinit();
|
|
#endif
|
|
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
|
|
#if CIRCUITPY_STATUS_BAR
|
|
supervisor_status_bar_suspend();
|
|
#endif
|
|
exit_code = pyexec_raw_repl();
|
|
#if CIRCUITPY_STATUS_BAR
|
|
supervisor_status_bar_resume();
|
|
#endif
|
|
} else {
|
|
_current_executing_filename = "REPL";
|
|
#if CIRCUITPY_STATUS_BAR
|
|
supervisor_status_bar_update();
|
|
#endif
|
|
exit_code = pyexec_friendly_repl();
|
|
_current_executing_filename = NULL;
|
|
#if CIRCUITPY_STATUS_BAR
|
|
supervisor_status_bar_update();
|
|
#endif
|
|
}
|
|
#if CIRCUITPY_ATEXIT
|
|
pyexec_result_t result;
|
|
shared_module_atexit_execute(&result);
|
|
if (result.return_code == PYEXEC_DEEP_SLEEP) {
|
|
exit_code = PYEXEC_DEEP_SLEEP;
|
|
}
|
|
#endif
|
|
cleanup_after_vm(MP_OBJ_SENTINEL);
|
|
|
|
// Also reset bleio. The above call omits it in case workflows should continue. In this case,
|
|
// we're switching straight to another VM so we want to reset.
|
|
#if CIRCUITPY_BLEIO
|
|
bleio_reset();
|
|
#endif
|
|
|
|
#if CIRCUITPY_STATUS_LED
|
|
status_led_init();
|
|
new_status_color(BLACK);
|
|
status_led_deinit();
|
|
#endif
|
|
|
|
autoreload_resume(AUTORELOAD_SUSPEND_REPL);
|
|
return exit_code;
|
|
}
|
|
|
|
int __attribute__((used)) main(void) {
|
|
|
|
// initialise the cpu and peripherals
|
|
set_safe_mode(port_init());
|
|
|
|
port_heap_init();
|
|
|
|
// Turn on RX and TX LEDs if we have them.
|
|
init_rxtx_leds();
|
|
|
|
#if CIRCUITPY_BOOT_COUNTER
|
|
// Increment counter before possibly entering safe mode
|
|
common_hal_nvm_bytearray_get_bytes(&common_hal_mcu_nvm_obj, 0, 1, &value_out);
|
|
++value_out;
|
|
common_hal_nvm_bytearray_set_bytes(&common_hal_mcu_nvm_obj, 0, &value_out, 1);
|
|
#endif
|
|
|
|
// Start the debug serial
|
|
serial_early_init();
|
|
|
|
// Wait briefly to give a reset window where we'll enter safe mode after the reset.
|
|
if (get_safe_mode() == SAFE_MODE_NONE) {
|
|
set_safe_mode(wait_for_safe_mode_reset());
|
|
}
|
|
|
|
stack_init();
|
|
|
|
#if CIRCUITPY_STATUS_BAR
|
|
supervisor_status_bar_init();
|
|
#endif
|
|
|
|
#if CIRCUITPY_BLEIO
|
|
// Early init so that a reset press can cause BLE public advertising.
|
|
supervisor_bluetooth_init();
|
|
#endif
|
|
|
|
#if !INTERNAL_FLASH_FILESYSTEM
|
|
// Set up anything that might need to get done before we try to use SPI flash
|
|
// This is needed for some boards where flash relies on GPIO setup to work
|
|
external_flash_setup();
|
|
#endif
|
|
|
|
// Create a new filesystem only if we're not in a safe mode.
|
|
// A power brownout here could make it appear as if there's
|
|
// no SPI flash filesystem, and we might erase the existing one.
|
|
|
|
// Check whether CIRCUITPY is available. No need to reset to get safe mode
|
|
// since we haven't run user code yet.
|
|
if (!filesystem_init(get_safe_mode() == SAFE_MODE_NONE, false)) {
|
|
set_safe_mode(SAFE_MODE_NO_CIRCUITPY);
|
|
}
|
|
|
|
#if CIRCUITPY_ALARM
|
|
// Record which alarm woke us up, if any.
|
|
// common_hal_alarm_record_wake_alarm() should return a static, non-heap object
|
|
shared_alarm_save_wake_alarm(common_hal_alarm_record_wake_alarm());
|
|
// Then reset the alarm system. It's not reset in reset_port(), because that's also called
|
|
// on VM teardown, which would clear any alarm setup.
|
|
alarm_reset();
|
|
#endif
|
|
|
|
// Reset everything and prep MicroPython to run boot.py.
|
|
reset_port();
|
|
// Port-independent devices, like CIRCUITPY_BLEIO_HCI.
|
|
reset_devices();
|
|
reset_board();
|
|
|
|
// displays init after filesystem, since they could share the flash SPI
|
|
board_init();
|
|
|
|
// This is first time we are running CircuitPython after a reset or power-up.
|
|
supervisor_set_run_reason(RUN_REASON_STARTUP);
|
|
|
|
// If not in safe mode turn on autoreload by default but before boot.py in case it wants to change it.
|
|
if (get_safe_mode() == SAFE_MODE_NONE) {
|
|
autoreload_enable();
|
|
}
|
|
|
|
// By default our internal flash is readonly to local python code and
|
|
// writable over USB. Set it here so that safemode.py or boot.py can change it.
|
|
filesystem_set_internal_concurrent_write_protection(true);
|
|
filesystem_set_internal_writable_by_usb(CIRCUITPY_USB == 1);
|
|
|
|
#if CIRCUITPY_SAFEMODE_PY
|
|
// Run safemode.py if we ARE in safe mode.
|
|
// If safemode.py does not do a hard reset, and exits normally, we will continue on
|
|
// and report the safe mode as usual.
|
|
run_safemode_py(get_safe_mode());
|
|
#endif
|
|
|
|
run_boot_py(get_safe_mode());
|
|
|
|
supervisor_workflow_start();
|
|
|
|
#if CIRCUITPY_STATUS_BAR
|
|
supervisor_status_bar_request_update(true);
|
|
#endif
|
|
|
|
// Boot script is finished, so now go into REPL or run code.py.
|
|
int exit_code = PYEXEC_FORCED_EXIT;
|
|
bool skip_repl = true;
|
|
bool simulate_reset = true;
|
|
for (;;) {
|
|
if (!skip_repl) {
|
|
exit_code = run_repl(get_safe_mode());
|
|
supervisor_set_run_reason(RUN_REASON_REPL_RELOAD);
|
|
}
|
|
if (exit_code == PYEXEC_FORCED_EXIT) {
|
|
if (!simulate_reset) {
|
|
serial_write_compressed(MP_ERROR_TEXT("soft reboot\n"));
|
|
}
|
|
simulate_reset = false;
|
|
if (pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
|
|
// If code.py did a fake deep sleep, pretend that we
|
|
// are running code.py for the first time after a hard
|
|
// reset. This will preserve any alarm information.
|
|
skip_repl = run_code_py(get_safe_mode(), &simulate_reset);
|
|
} else {
|
|
skip_repl = false;
|
|
}
|
|
} else if (exit_code != 0) {
|
|
break;
|
|
}
|
|
|
|
#if CIRCUITPY_ALARM
|
|
shared_alarm_save_wake_alarm(simulate_reset ? common_hal_alarm_record_wake_alarm() : mp_const_none);
|
|
alarm_reset();
|
|
#endif
|
|
}
|
|
mp_deinit();
|
|
return 0;
|
|
}
|
|
|
|
void gc_collect(void) {
|
|
gc_collect_start();
|
|
|
|
mp_uint_t regs[10];
|
|
mp_uint_t sp = cpu_get_regs_and_sp(regs);
|
|
|
|
// This collects root pointers from the VFS mount table. Some of them may
|
|
// have lost their references in the VM even though they are mounted.
|
|
gc_collect_root((void **)&MP_STATE_VM(vfs_mount_table), sizeof(mp_vfs_mount_t) / sizeof(mp_uint_t));
|
|
|
|
port_gc_collect();
|
|
|
|
background_callback_gc_collect();
|
|
|
|
#if CIRCUITPY_ALARM
|
|
common_hal_alarm_gc_collect();
|
|
#endif
|
|
|
|
#if CIRCUITPY_ATEXIT
|
|
atexit_gc_collect();
|
|
#endif
|
|
|
|
#if CIRCUITPY_DISPLAYIO
|
|
displayio_gc_collect();
|
|
#endif
|
|
|
|
#if CIRCUITPY_BLEIO
|
|
common_hal_bleio_gc_collect();
|
|
#endif
|
|
|
|
#if CIRCUITPY_USB_HID
|
|
usb_hid_gc_collect();
|
|
#endif
|
|
|
|
#if CIRCUITPY_WIFI
|
|
common_hal_wifi_gc_collect();
|
|
#endif
|
|
|
|
// This naively collects all object references from an approximate stack
|
|
// range.
|
|
gc_collect_root((void **)sp, ((mp_uint_t)port_stack_get_top() - sp) / sizeof(mp_uint_t));
|
|
gc_collect_end();
|
|
}
|
|
|
|
// Ports may provide an implementation of this function if it is needed
|
|
MP_WEAK void port_gc_collect() {
|
|
}
|
|
|
|
size_t gc_get_max_new_split(void) {
|
|
return port_heap_get_largest_free_size();
|
|
}
|
|
|
|
void NORETURN nlr_jump_fail(void *val) {
|
|
reset_into_safe_mode(SAFE_MODE_NLR_JUMP_FAIL);
|
|
while (true) {
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static void NORETURN __fatal_error(const char *msg) {
|
|
#if CIRCUITPY_DEBUG == 0
|
|
reset_into_safe_mode(SAFE_MODE_HARD_FAULT);
|
|
#endif
|
|
while (true) {
|
|
}
|
|
}
|
|
|
|
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
|
|
mp_printf(&mp_plat_print, "Assertion '%s' failed, at file %s:%d\n", expr, file, line);
|
|
__fatal_error("Assertion failed");
|
|
}
|
|
#endif
|