circuitpython/ports/nrf/modules/machine/uart.c
2020-04-05 15:02:06 +10:00

370 lines
12 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2015 Glenn Ruben Bakke
* Copyright (c) 2018 Ayke van Laethem
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdbool.h>
#include <string.h>
#include <stdarg.h>
#include "py/nlr.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "py/ringbuf.h"
#include "pin.h"
#include "genhdr/pins.h"
#include "lib/utils/interrupt_char.h"
#include "uart.h"
#include "mpconfigboard.h"
#include "nrf.h"
#include "mphalport.h"
#if NRFX_UART_ENABLED
#include "nrfx_uart.h"
#else
#include "nrfx_uarte.h"
#endif
#if MICROPY_PY_MACHINE_UART
typedef struct _machine_hard_uart_buf_t {
uint8_t tx_buf[1];
uint8_t rx_buf[1];
uint8_t rx_ringbuf_array[64];
volatile ringbuf_t rx_ringbuf;
} machine_hard_uart_buf_t;
#if NRFX_UARTE_ENABLED
#define nrfx_uart_t nrfx_uarte_t
#define nrfx_uart_config_t nrfx_uarte_config_t
#define nrfx_uart_rx nrfx_uarte_rx
#define nrfx_uart_tx nrfx_uarte_tx
#define nrfx_uart_tx_in_progress nrfx_uarte_tx_in_progress
#define nrfx_uart_init nrfx_uarte_init
#define nrfx_uart_event_t nrfx_uarte_event_t
#define NRFX_UART_INSTANCE NRFX_UARTE_INSTANCE
#define NRF_UART_HWFC_ENABLED NRF_UARTE_HWFC_ENABLED
#define NRF_UART_HWFC_DISABLED NRF_UARTE_HWFC_DISABLED
#define NRF_UART_PARITY_EXCLUDED NRF_UARTE_PARITY_EXCLUDED
#define NRFX_UART_EVT_RX_DONE NRFX_UARTE_EVT_RX_DONE
#define NRF_UART_BAUDRATE_1200 NRF_UARTE_BAUDRATE_1200
#define NRF_UART_BAUDRATE_2400 NRF_UARTE_BAUDRATE_2400
#define NRF_UART_BAUDRATE_4800 NRF_UARTE_BAUDRATE_4800
#define NRF_UART_BAUDRATE_9600 NRF_UARTE_BAUDRATE_9600
#define NRF_UART_BAUDRATE_14400 NRF_UARTE_BAUDRATE_14400
#define NRF_UART_BAUDRATE_19200 NRF_UARTE_BAUDRATE_19200
#define NRF_UART_BAUDRATE_28800 NRF_UARTE_BAUDRATE_28800
#define NRF_UART_BAUDRATE_38400 NRF_UARTE_BAUDRATE_38400
#define NRF_UART_BAUDRATE_57600 NRF_UARTE_BAUDRATE_57600
#define NRF_UART_BAUDRATE_76800 NRF_UARTE_BAUDRATE_76800
#define NRF_UART_BAUDRATE_115200 NRF_UARTE_BAUDRATE_115200
#define NRF_UART_BAUDRATE_230400 NRF_UARTE_BAUDRATE_230400
#define NRF_UART_BAUDRATE_250000 NRF_UARTE_BAUDRATE_250000
#define NRF_UART_BAUDRATE_1000000 NRF_UARTE_BAUDRATE_1000000
#endif
typedef struct _machine_hard_uart_obj_t {
mp_obj_base_t base;
const nrfx_uart_t * p_uart; // Driver instance
machine_hard_uart_buf_t *buf;
} machine_hard_uart_obj_t;
static const nrfx_uart_t instance0 = NRFX_UART_INSTANCE(0);
STATIC machine_hard_uart_buf_t machine_hard_uart_buf[1];
STATIC const machine_hard_uart_obj_t machine_hard_uart_obj[] = {
{{&machine_hard_uart_type}, .p_uart = &instance0, .buf = &machine_hard_uart_buf[0]},
};
void uart_init0(void) {
}
STATIC int uart_find(mp_obj_t id) {
// given an integer id
int uart_id = mp_obj_get_int(id);
if (uart_id >= 0 && uart_id < MP_ARRAY_SIZE(machine_hard_uart_obj)) {
return uart_id;
}
mp_raise_ValueError(MP_ERROR_TEXT("UART doesn't exist"));
}
STATIC void uart_event_handler(nrfx_uart_event_t const *p_event, void *p_context) {
machine_hard_uart_obj_t *self = p_context;
if (p_event->type == NRFX_UART_EVT_RX_DONE) {
int chr = self->buf->rx_buf[0];
nrfx_uart_rx(self->p_uart, &self->buf->rx_buf[0], 1);
#if !MICROPY_PY_BLE_NUS && MICROPY_KBD_EXCEPTION
if (chr == mp_interrupt_char) {
mp_keyboard_interrupt();
} else
#endif
{
ringbuf_put((ringbuf_t*)&self->buf->rx_ringbuf, chr);
}
}
}
bool uart_rx_any(const machine_hard_uart_obj_t *self) {
return self->buf->rx_ringbuf.iput != self->buf->rx_ringbuf.iget;
}
int uart_rx_char(const machine_hard_uart_obj_t * self) {
return ringbuf_get((ringbuf_t*)&self->buf->rx_ringbuf);
}
STATIC nrfx_err_t uart_tx_char(const machine_hard_uart_obj_t * self, int c) {
while (nrfx_uart_tx_in_progress(self->p_uart)) {
;
}
self->buf->tx_buf[0] = c;
return nrfx_uart_tx(self->p_uart, &self->buf->tx_buf[0], 1);
}
void uart_tx_strn(const machine_hard_uart_obj_t *uart_obj, const char *str, uint len) {
for (const char *top = str + len; str < top; str++) {
uart_tx_char(uart_obj, *str);
}
}
void uart_tx_strn_cooked(const machine_hard_uart_obj_t *uart_obj, const char *str, uint len) {
for (const char *top = str + len; str < top; str++) {
if (*str == '\n') {
uart_tx_char(uart_obj, '\r');
}
uart_tx_char(uart_obj, *str);
}
}
/******************************************************************************/
/* MicroPython bindings */
STATIC void machine_hard_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
mp_printf(print, "UART(0)");
}
/// \method init(id, baudrate)
///
/// Initialise the UART bus with the given parameters:
/// - `id`is bus id.
/// - `baudrate` is the clock rate.
STATIC mp_obj_t machine_hard_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_id, ARG_baudrate };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get static peripheral object
int uart_id = uart_find(args[ARG_id].u_obj);
const machine_hard_uart_obj_t * self = &machine_hard_uart_obj[uart_id];
nrfx_uart_config_t config;
// flow control
#if MICROPY_HW_UART1_HWFC
config.hwfc = NRF_UART_HWFC_ENABLED;
#else
config.hwfc = NRF_UART_HWFC_DISABLED;
#endif
config.parity = NRF_UART_PARITY_EXCLUDED;
#if (BLUETOOTH_SD == 100)
config.interrupt_priority = 3;
#else
config.interrupt_priority = 6;
#endif
// These baudrates are not supported, it seems.
if (args[ARG_baudrate].u_int < 1200 || args[ARG_baudrate].u_int > 1000000) {
mp_raise_ValueError(MP_ERROR_TEXT("UART baudrate not supported"));
}
// Magic: calculate 'baudrate' register from the input number.
// Every value listed in the datasheet will be converted to the
// correct register value, except for 192600. I believe the value
// listed in the nrf52 datasheet (0x0EBED000) is incorrectly rounded
// and should be 0x0EBEE000, as the nrf51 datasheet lists the
// nonrounded value 0x0EBEDFA4.
// Some background:
// https://devzone.nordicsemi.com/f/nordic-q-a/391/uart-baudrate-register-values/2046#2046
config.baudrate = args[ARG_baudrate].u_int / 400 * (uint32_t)(400ULL * (uint64_t)UINT32_MAX / 16000000ULL);
config.baudrate = (config.baudrate + 0x800) & 0xffffff000; // rounding
config.pseltxd = MICROPY_HW_UART1_TX;
config.pselrxd = MICROPY_HW_UART1_RX;
#if MICROPY_HW_UART1_HWFC
config.pselrts = MICROPY_HW_UART1_RTS;
config.pselcts = MICROPY_HW_UART1_CTS;
#endif
// Set context to this instance of UART
config.p_context = (void *)self;
// Initialise ring buffer
self->buf->rx_ringbuf.buf = self->buf->rx_ringbuf_array;
self->buf->rx_ringbuf.size = sizeof(self->buf->rx_ringbuf_array);
self->buf->rx_ringbuf.iget = 0;
self->buf->rx_ringbuf.iput = 0;
// Enable event callback and start asynchronous receive
nrfx_uart_init(self->p_uart, &config, uart_event_handler);
nrfx_uart_rx(self->p_uart, &self->buf->rx_buf[0], 1);
#if NRFX_UART_ENABLED
nrfx_uart_rx_enable(self->p_uart);
#endif
return MP_OBJ_FROM_PTR(self);
}
/// \method writechar(char)
/// Write a single character on the bus. `char` is an integer to write.
/// Return value: `None`.
STATIC mp_obj_t machine_hard_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) {
machine_hard_uart_obj_t *self = self_in;
// get the character to write (might be 9 bits)
int data = mp_obj_get_int(char_in);
nrfx_err_t err = uart_tx_char(self, data);
if (err != NRFX_SUCCESS) {
mp_hal_raise(err);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_hard_uart_writechar_obj, machine_hard_uart_writechar);
/// \method readchar()
/// Receive a single character on the bus.
/// Return value: The character read, as an integer. Returns -1 on timeout.
STATIC mp_obj_t machine_hard_uart_readchar(mp_obj_t self_in) {
machine_hard_uart_obj_t *self = self_in;
return MP_OBJ_NEW_SMALL_INT(uart_rx_char(self));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_hard_uart_readchar_obj, machine_hard_uart_readchar);
// uart.sendbreak()
STATIC mp_obj_t machine_hard_uart_sendbreak(mp_obj_t self_in) {
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_hard_uart_sendbreak_obj, machine_hard_uart_sendbreak);
STATIC const mp_rom_map_elem_t machine_hard_uart_locals_dict_table[] = {
// instance methods
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_writechar), MP_ROM_PTR(&machine_hard_uart_writechar_obj) },
{ MP_ROM_QSTR(MP_QSTR_readchar), MP_ROM_PTR(&machine_hard_uart_readchar_obj) },
{ MP_ROM_QSTR(MP_QSTR_sendbreak), MP_ROM_PTR(&machine_hard_uart_sendbreak_obj) },
// class constants
/*
{ MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) },
{ MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) },
*/
};
STATIC MP_DEFINE_CONST_DICT(machine_hard_uart_locals_dict, machine_hard_uart_locals_dict_table);
STATIC mp_uint_t machine_hard_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
const machine_hard_uart_obj_t *self = self_in;
byte *buf = buf_in;
// read the data
for (size_t i = 0; i < size; i++) {
while (!uart_rx_any(self)) {
}
buf[i] = uart_rx_char(self);
}
return size;
}
STATIC mp_uint_t machine_hard_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
machine_hard_uart_obj_t *self = self_in;
const byte *buf = buf_in;
nrfx_err_t err = NRFX_SUCCESS;
for (int i = 0; i < size; i++) {
err = uart_tx_char(self, (int)((uint8_t *)buf)[i]);
}
if (err == NRFX_SUCCESS) {
// return number of bytes written
return size;
} else {
*errcode = mp_hal_status_to_errno_table[err];
return MP_STREAM_ERROR;
}
}
STATIC mp_uint_t machine_hard_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
machine_hard_uart_obj_t *self = self_in;
(void)self;
return MP_STREAM_ERROR;
}
STATIC const mp_stream_p_t uart_stream_p = {
.read = machine_hard_uart_read,
.write = machine_hard_uart_write,
.ioctl = machine_hard_uart_ioctl,
.is_text = false,
};
const mp_obj_type_t machine_hard_uart_type = {
{ &mp_type_type },
.name = MP_QSTR_UART,
.print = machine_hard_uart_print,
.make_new = machine_hard_uart_make_new,
.getiter = mp_identity_getiter,
.iternext = mp_stream_unbuffered_iter,
.protocol = &uart_stream_p,
.locals_dict = (mp_obj_dict_t*)&machine_hard_uart_locals_dict,
};
#endif // MICROPY_PY_MACHINE_UART