eee1e8841a
These macros could in principle be (inline) functions so it makes sense to have them lower case, to match the other C API functions. The remaining macros that are upper case are: - MP_OBJ_TO_PTR, MP_OBJ_FROM_PTR - MP_OBJ_NEW_SMALL_INT, MP_OBJ_SMALL_INT_VALUE - MP_OBJ_NEW_QSTR, MP_OBJ_QSTR_VALUE - MP_OBJ_FUN_MAKE_SIG - MP_DECLARE_CONST_xxx - MP_DEFINE_CONST_xxx These must remain macros because they are used when defining const data (at least, MP_OBJ_NEW_SMALL_INT is so it makes sense to have MP_OBJ_SMALL_INT_VALUE also a macro). For those macros that have been made lower case, compatibility macros are provided for the old names so that users do not need to change their code immediately.
533 lines
19 KiB
C
533 lines
19 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
* Copyright (c) 2014 Paul Sokolovsky
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "py/objtuple.h"
|
|
#include "py/objfun.h"
|
|
#include "py/runtime.h"
|
|
#include "py/bc.h"
|
|
#include "py/stackctrl.h"
|
|
|
|
#if MICROPY_DEBUG_VERBOSE // print debugging info
|
|
#define DEBUG_PRINT (1)
|
|
#else // don't print debugging info
|
|
#define DEBUG_PRINT (0)
|
|
#define DEBUG_printf(...) (void)0
|
|
#endif
|
|
|
|
// Note: the "name" entry in mp_obj_type_t for a function type must be
|
|
// MP_QSTR_function because it is used to determine if an object is of generic
|
|
// function type.
|
|
|
|
/******************************************************************************/
|
|
/* builtin functions */
|
|
|
|
STATIC mp_obj_t fun_builtin_0_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
(void)args;
|
|
assert(mp_obj_is_type(self_in, &mp_type_fun_builtin_0));
|
|
mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
|
|
mp_arg_check_num(n_args, n_kw, 0, 0, false);
|
|
return self->fun._0();
|
|
}
|
|
|
|
const mp_obj_type_t mp_type_fun_builtin_0 = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_function,
|
|
.call = fun_builtin_0_call,
|
|
.unary_op = mp_generic_unary_op,
|
|
};
|
|
|
|
STATIC mp_obj_t fun_builtin_1_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
assert(mp_obj_is_type(self_in, &mp_type_fun_builtin_1));
|
|
mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
|
|
mp_arg_check_num(n_args, n_kw, 1, 1, false);
|
|
return self->fun._1(args[0]);
|
|
}
|
|
|
|
const mp_obj_type_t mp_type_fun_builtin_1 = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_function,
|
|
.call = fun_builtin_1_call,
|
|
.unary_op = mp_generic_unary_op,
|
|
};
|
|
|
|
STATIC mp_obj_t fun_builtin_2_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
assert(mp_obj_is_type(self_in, &mp_type_fun_builtin_2));
|
|
mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
|
|
mp_arg_check_num(n_args, n_kw, 2, 2, false);
|
|
return self->fun._2(args[0], args[1]);
|
|
}
|
|
|
|
const mp_obj_type_t mp_type_fun_builtin_2 = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_function,
|
|
.call = fun_builtin_2_call,
|
|
.unary_op = mp_generic_unary_op,
|
|
};
|
|
|
|
STATIC mp_obj_t fun_builtin_3_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
assert(mp_obj_is_type(self_in, &mp_type_fun_builtin_3));
|
|
mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
|
|
mp_arg_check_num(n_args, n_kw, 3, 3, false);
|
|
return self->fun._3(args[0], args[1], args[2]);
|
|
}
|
|
|
|
const mp_obj_type_t mp_type_fun_builtin_3 = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_function,
|
|
.call = fun_builtin_3_call,
|
|
.unary_op = mp_generic_unary_op,
|
|
};
|
|
|
|
STATIC mp_obj_t fun_builtin_var_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
assert(mp_obj_is_type(self_in, &mp_type_fun_builtin_var));
|
|
mp_obj_fun_builtin_var_t *self = MP_OBJ_TO_PTR(self_in);
|
|
|
|
// check number of arguments
|
|
mp_arg_check_num_sig(n_args, n_kw, self->sig);
|
|
|
|
if (self->sig & 1) {
|
|
// function allows keywords
|
|
|
|
// we create a map directly from the given args array
|
|
mp_map_t kw_args;
|
|
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
|
|
|
|
return self->fun.kw(n_args, args, &kw_args);
|
|
|
|
} else {
|
|
// function takes a variable number of arguments, but no keywords
|
|
|
|
return self->fun.var(n_args, args);
|
|
}
|
|
}
|
|
|
|
const mp_obj_type_t mp_type_fun_builtin_var = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_function,
|
|
.call = fun_builtin_var_call,
|
|
.unary_op = mp_generic_unary_op,
|
|
};
|
|
|
|
/******************************************************************************/
|
|
/* byte code functions */
|
|
|
|
qstr mp_obj_code_get_name(const byte *code_info) {
|
|
code_info = mp_decode_uint_skip(code_info); // skip code_info_size entry
|
|
#if MICROPY_PERSISTENT_CODE
|
|
return code_info[0] | (code_info[1] << 8);
|
|
#else
|
|
return mp_decode_uint_value(code_info);
|
|
#endif
|
|
}
|
|
|
|
#if MICROPY_EMIT_NATIVE
|
|
STATIC const mp_obj_type_t mp_type_fun_native;
|
|
#endif
|
|
|
|
qstr mp_obj_fun_get_name(mp_const_obj_t fun_in) {
|
|
const mp_obj_fun_bc_t *fun = MP_OBJ_TO_PTR(fun_in);
|
|
#if MICROPY_EMIT_NATIVE
|
|
if (fun->base.type == &mp_type_fun_native || fun->base.type == &mp_type_native_gen_wrap) {
|
|
// TODO native functions don't have name stored
|
|
return MP_QSTR_;
|
|
}
|
|
#endif
|
|
|
|
const byte *bc = fun->bytecode;
|
|
bc = mp_decode_uint_skip(bc); // skip n_state
|
|
bc = mp_decode_uint_skip(bc); // skip n_exc_stack
|
|
bc++; // skip scope_params
|
|
bc++; // skip n_pos_args
|
|
bc++; // skip n_kwonly_args
|
|
bc++; // skip n_def_pos_args
|
|
return mp_obj_code_get_name(bc);
|
|
}
|
|
|
|
#if MICROPY_CPYTHON_COMPAT
|
|
STATIC void fun_bc_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) {
|
|
(void)kind;
|
|
mp_obj_fun_bc_t *o = MP_OBJ_TO_PTR(o_in);
|
|
mp_printf(print, "<function %q at 0x%p>", mp_obj_fun_get_name(o_in), o);
|
|
}
|
|
#endif
|
|
|
|
#if DEBUG_PRINT
|
|
STATIC void dump_args(const mp_obj_t *a, size_t sz) {
|
|
DEBUG_printf("%p: ", a);
|
|
for (size_t i = 0; i < sz; i++) {
|
|
DEBUG_printf("%p ", a[i]);
|
|
}
|
|
DEBUG_printf("\n");
|
|
}
|
|
#else
|
|
#define dump_args(...) (void)0
|
|
#endif
|
|
|
|
// With this macro you can tune the maximum number of function state bytes
|
|
// that will be allocated on the stack. Any function that needs more
|
|
// than this will try to use the heap, with fallback to stack allocation.
|
|
#define VM_MAX_STATE_ON_STACK (11 * sizeof(mp_uint_t))
|
|
|
|
#define DECODE_CODESTATE_SIZE(bytecode, n_state_out_var, state_size_out_var) \
|
|
{ \
|
|
/* bytecode prelude: state size and exception stack size */ \
|
|
n_state_out_var = mp_decode_uint_value(bytecode); \
|
|
size_t n_exc_stack = mp_decode_uint_value(mp_decode_uint_skip(bytecode)); \
|
|
\
|
|
/* state size in bytes */ \
|
|
state_size_out_var = n_state_out_var * sizeof(mp_obj_t) \
|
|
+ n_exc_stack * sizeof(mp_exc_stack_t); \
|
|
}
|
|
|
|
#define INIT_CODESTATE(code_state, _fun_bc, n_args, n_kw, args) \
|
|
code_state->fun_bc = _fun_bc; \
|
|
code_state->ip = 0; \
|
|
mp_setup_code_state(code_state, n_args, n_kw, args); \
|
|
code_state->old_globals = mp_globals_get();
|
|
|
|
#if MICROPY_STACKLESS
|
|
mp_code_state_t *mp_obj_fun_bc_prepare_codestate(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
MP_STACK_CHECK();
|
|
mp_obj_fun_bc_t *self = MP_OBJ_TO_PTR(self_in);
|
|
|
|
size_t n_state, state_size;
|
|
DECODE_CODESTATE_SIZE(self->bytecode, n_state, state_size);
|
|
|
|
mp_code_state_t *code_state;
|
|
#if MICROPY_ENABLE_PYSTACK
|
|
code_state = mp_pystack_alloc(sizeof(mp_code_state_t) + state_size);
|
|
#else
|
|
// If we use m_new_obj_var(), then on no memory, MemoryError will be
|
|
// raised. But this is not correct exception for a function call,
|
|
// RuntimeError should be raised instead. So, we use m_new_obj_var_maybe(),
|
|
// return NULL, then vm.c takes the needed action (either raise
|
|
// RuntimeError or fallback to stack allocation).
|
|
code_state = m_new_obj_var_maybe(mp_code_state_t, byte, state_size);
|
|
if (!code_state) {
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
INIT_CODESTATE(code_state, self, n_args, n_kw, args);
|
|
|
|
// execute the byte code with the correct globals context
|
|
mp_globals_set(self->globals);
|
|
|
|
return code_state;
|
|
}
|
|
#endif
|
|
|
|
STATIC mp_obj_t fun_bc_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
MP_STACK_CHECK();
|
|
|
|
DEBUG_printf("Input n_args: " UINT_FMT ", n_kw: " UINT_FMT "\n", n_args, n_kw);
|
|
DEBUG_printf("Input pos args: ");
|
|
dump_args(args, n_args);
|
|
DEBUG_printf("Input kw args: ");
|
|
dump_args(args + n_args, n_kw * 2);
|
|
|
|
mp_obj_fun_bc_t *self = MP_OBJ_TO_PTR(self_in);
|
|
|
|
size_t n_state, state_size;
|
|
DECODE_CODESTATE_SIZE(self->bytecode, n_state, state_size);
|
|
|
|
// allocate state for locals and stack
|
|
mp_code_state_t *code_state = NULL;
|
|
#if MICROPY_ENABLE_PYSTACK
|
|
code_state = mp_pystack_alloc(sizeof(mp_code_state_t) + state_size);
|
|
#else
|
|
if (state_size > VM_MAX_STATE_ON_STACK) {
|
|
code_state = m_new_obj_var_maybe(mp_code_state_t, byte, state_size);
|
|
#if MICROPY_DEBUG_VM_STACK_OVERFLOW
|
|
if (code_state != NULL) {
|
|
memset(code_state->state, 0, state_size);
|
|
}
|
|
#endif
|
|
}
|
|
if (code_state == NULL) {
|
|
code_state = alloca(sizeof(mp_code_state_t) + state_size);
|
|
#if MICROPY_DEBUG_VM_STACK_OVERFLOW
|
|
memset(code_state->state, 0, state_size);
|
|
#endif
|
|
state_size = 0; // indicate that we allocated using alloca
|
|
}
|
|
#endif
|
|
|
|
INIT_CODESTATE(code_state, self, n_args, n_kw, args);
|
|
|
|
// execute the byte code with the correct globals context
|
|
mp_globals_set(self->globals);
|
|
mp_vm_return_kind_t vm_return_kind = mp_execute_bytecode(code_state, MP_OBJ_NULL);
|
|
mp_globals_set(code_state->old_globals);
|
|
|
|
#if MICROPY_DEBUG_VM_STACK_OVERFLOW
|
|
if (vm_return_kind == MP_VM_RETURN_NORMAL) {
|
|
if (code_state->sp < code_state->state) {
|
|
mp_printf(MICROPY_DEBUG_PRINTER, "VM stack underflow: " INT_FMT "\n", code_state->sp - code_state->state);
|
|
assert(0);
|
|
}
|
|
}
|
|
const byte *bytecode_ptr = mp_decode_uint_skip(mp_decode_uint_skip(self->bytecode));
|
|
size_t n_pos_args = bytecode_ptr[1];
|
|
size_t n_kwonly_args = bytecode_ptr[2];
|
|
// We can't check the case when an exception is returned in state[0]
|
|
// and there are no arguments, because in this case our detection slot may have
|
|
// been overwritten by the returned exception (which is allowed).
|
|
if (!(vm_return_kind == MP_VM_RETURN_EXCEPTION && n_pos_args + n_kwonly_args == 0)) {
|
|
// Just check to see that we have at least 1 null object left in the state.
|
|
bool overflow = true;
|
|
for (size_t i = 0; i < n_state - n_pos_args - n_kwonly_args; ++i) {
|
|
if (code_state->state[i] == MP_OBJ_NULL) {
|
|
overflow = false;
|
|
break;
|
|
}
|
|
}
|
|
if (overflow) {
|
|
mp_printf(MICROPY_DEBUG_PRINTER, "VM stack overflow state=%p n_state+1=" UINT_FMT "\n", code_state->state, n_state);
|
|
assert(0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
mp_obj_t result;
|
|
if (vm_return_kind == MP_VM_RETURN_NORMAL) {
|
|
// return value is in *sp
|
|
result = *code_state->sp;
|
|
} else {
|
|
// must be an exception because normal functions can't yield
|
|
assert(vm_return_kind == MP_VM_RETURN_EXCEPTION);
|
|
// returned exception is in state[0]
|
|
result = code_state->state[0];
|
|
}
|
|
|
|
#if MICROPY_ENABLE_PYSTACK
|
|
mp_pystack_free(code_state);
|
|
#else
|
|
// free the state if it was allocated on the heap
|
|
if (state_size != 0) {
|
|
m_del_var(mp_code_state_t, byte, state_size, code_state);
|
|
}
|
|
#endif
|
|
|
|
if (vm_return_kind == MP_VM_RETURN_NORMAL) {
|
|
return result;
|
|
} else { // MP_VM_RETURN_EXCEPTION
|
|
nlr_raise(result);
|
|
}
|
|
}
|
|
|
|
#if MICROPY_PY_FUNCTION_ATTRS
|
|
void mp_obj_fun_bc_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
|
|
if (dest[0] != MP_OBJ_NULL) {
|
|
// not load attribute
|
|
return;
|
|
}
|
|
if (attr == MP_QSTR___name__) {
|
|
dest[0] = MP_OBJ_NEW_QSTR(mp_obj_fun_get_name(self_in));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
const mp_obj_type_t mp_type_fun_bc = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_function,
|
|
#if MICROPY_CPYTHON_COMPAT
|
|
.print = fun_bc_print,
|
|
#endif
|
|
.call = fun_bc_call,
|
|
.unary_op = mp_generic_unary_op,
|
|
#if MICROPY_PY_FUNCTION_ATTRS
|
|
.attr = mp_obj_fun_bc_attr,
|
|
#endif
|
|
};
|
|
|
|
mp_obj_t mp_obj_new_fun_bc(mp_obj_t def_args_in, mp_obj_t def_kw_args, const byte *code, const mp_uint_t *const_table) {
|
|
size_t n_def_args = 0;
|
|
size_t n_extra_args = 0;
|
|
mp_obj_tuple_t *def_args = MP_OBJ_TO_PTR(def_args_in);
|
|
if (def_args_in != MP_OBJ_NULL) {
|
|
assert(mp_obj_is_type(def_args_in, &mp_type_tuple));
|
|
n_def_args = def_args->len;
|
|
n_extra_args = def_args->len;
|
|
}
|
|
if (def_kw_args != MP_OBJ_NULL) {
|
|
n_extra_args += 1;
|
|
}
|
|
mp_obj_fun_bc_t *o = m_new_obj_var(mp_obj_fun_bc_t, mp_obj_t, n_extra_args);
|
|
o->base.type = &mp_type_fun_bc;
|
|
o->globals = mp_globals_get();
|
|
o->bytecode = code;
|
|
o->const_table = const_table;
|
|
if (def_args != NULL) {
|
|
memcpy(o->extra_args, def_args->items, n_def_args * sizeof(mp_obj_t));
|
|
}
|
|
if (def_kw_args != MP_OBJ_NULL) {
|
|
o->extra_args[n_def_args] = def_kw_args;
|
|
}
|
|
return MP_OBJ_FROM_PTR(o);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* native functions */
|
|
|
|
#if MICROPY_EMIT_NATIVE
|
|
|
|
STATIC mp_obj_t fun_native_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
MP_STACK_CHECK();
|
|
mp_obj_fun_bc_t *self = self_in;
|
|
mp_call_fun_t fun = MICROPY_MAKE_POINTER_CALLABLE((void*)self->bytecode);
|
|
return fun(self_in, n_args, n_kw, args);
|
|
}
|
|
|
|
STATIC const mp_obj_type_t mp_type_fun_native = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_function,
|
|
.call = fun_native_call,
|
|
.unary_op = mp_generic_unary_op,
|
|
};
|
|
|
|
mp_obj_t mp_obj_new_fun_native(mp_obj_t def_args_in, mp_obj_t def_kw_args, const void *fun_data, const mp_uint_t *const_table) {
|
|
mp_obj_fun_bc_t *o = mp_obj_new_fun_bc(def_args_in, def_kw_args, (const byte*)fun_data, const_table);
|
|
o->base.type = &mp_type_fun_native;
|
|
return o;
|
|
}
|
|
|
|
#endif // MICROPY_EMIT_NATIVE
|
|
|
|
/******************************************************************************/
|
|
/* inline assembler functions */
|
|
|
|
#if MICROPY_EMIT_INLINE_ASM
|
|
|
|
typedef struct _mp_obj_fun_asm_t {
|
|
mp_obj_base_t base;
|
|
size_t n_args;
|
|
void *fun_data; // GC must be able to trace this pointer
|
|
mp_uint_t type_sig;
|
|
} mp_obj_fun_asm_t;
|
|
|
|
typedef mp_uint_t (*inline_asm_fun_0_t)(void);
|
|
typedef mp_uint_t (*inline_asm_fun_1_t)(mp_uint_t);
|
|
typedef mp_uint_t (*inline_asm_fun_2_t)(mp_uint_t, mp_uint_t);
|
|
typedef mp_uint_t (*inline_asm_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t);
|
|
typedef mp_uint_t (*inline_asm_fun_4_t)(mp_uint_t, mp_uint_t, mp_uint_t, mp_uint_t);
|
|
|
|
// convert a MicroPython object to a sensible value for inline asm
|
|
STATIC mp_uint_t convert_obj_for_inline_asm(mp_obj_t obj) {
|
|
// TODO for byte_array, pass pointer to the array
|
|
if (mp_obj_is_small_int(obj)) {
|
|
return MP_OBJ_SMALL_INT_VALUE(obj);
|
|
} else if (obj == mp_const_none) {
|
|
return 0;
|
|
} else if (obj == mp_const_false) {
|
|
return 0;
|
|
} else if (obj == mp_const_true) {
|
|
return 1;
|
|
} else if (mp_obj_is_type(obj, &mp_type_int)) {
|
|
return mp_obj_int_get_truncated(obj);
|
|
} else if (mp_obj_is_str(obj)) {
|
|
// pointer to the string (it's probably constant though!)
|
|
size_t l;
|
|
return (mp_uint_t)mp_obj_str_get_data(obj, &l);
|
|
} else {
|
|
mp_obj_type_t *type = mp_obj_get_type(obj);
|
|
if (0) {
|
|
#if MICROPY_PY_BUILTINS_FLOAT
|
|
} else if (type == &mp_type_float) {
|
|
// convert float to int (could also pass in float registers)
|
|
return (mp_int_t)mp_obj_float_get(obj);
|
|
#endif
|
|
} else if (type == &mp_type_tuple || type == &mp_type_list) {
|
|
// pointer to start of tuple (could pass length, but then could use len(x) for that)
|
|
size_t len;
|
|
mp_obj_t *items;
|
|
mp_obj_get_array(obj, &len, &items);
|
|
return (mp_uint_t)items;
|
|
} else {
|
|
mp_buffer_info_t bufinfo;
|
|
if (mp_get_buffer(obj, &bufinfo, MP_BUFFER_WRITE)) {
|
|
// supports the buffer protocol, return a pointer to the data
|
|
return (mp_uint_t)bufinfo.buf;
|
|
} else {
|
|
// just pass along a pointer to the object
|
|
return (mp_uint_t)obj;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC mp_obj_t fun_asm_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
mp_obj_fun_asm_t *self = self_in;
|
|
|
|
mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false);
|
|
|
|
void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data);
|
|
|
|
mp_uint_t ret;
|
|
if (n_args == 0) {
|
|
ret = ((inline_asm_fun_0_t)fun)();
|
|
} else if (n_args == 1) {
|
|
ret = ((inline_asm_fun_1_t)fun)(convert_obj_for_inline_asm(args[0]));
|
|
} else if (n_args == 2) {
|
|
ret = ((inline_asm_fun_2_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]));
|
|
} else if (n_args == 3) {
|
|
ret = ((inline_asm_fun_3_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2]));
|
|
} else {
|
|
// compiler allows at most 4 arguments
|
|
assert(n_args == 4);
|
|
ret = ((inline_asm_fun_4_t)fun)(
|
|
convert_obj_for_inline_asm(args[0]),
|
|
convert_obj_for_inline_asm(args[1]),
|
|
convert_obj_for_inline_asm(args[2]),
|
|
convert_obj_for_inline_asm(args[3])
|
|
);
|
|
}
|
|
|
|
return mp_convert_native_to_obj(ret, self->type_sig);
|
|
}
|
|
|
|
STATIC const mp_obj_type_t mp_type_fun_asm = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_function,
|
|
.call = fun_asm_call,
|
|
.unary_op = mp_generic_unary_op,
|
|
};
|
|
|
|
mp_obj_t mp_obj_new_fun_asm(size_t n_args, void *fun_data, mp_uint_t type_sig) {
|
|
mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t);
|
|
o->base.type = &mp_type_fun_asm;
|
|
o->n_args = n_args;
|
|
o->fun_data = fun_data;
|
|
o->type_sig = type_sig;
|
|
return o;
|
|
}
|
|
|
|
#endif // MICROPY_EMIT_INLINE_ASM
|