Jim Mussared a377302623 extmod/modnetwork: Add network.hostname() and network.country().
This provides a standard interface to setting the global networking config
for all interfaces and interface types.

For ports that already use either a static hostname (mimxrt, rp2) they will
now use the configured value. The default is configured by the port
(or optionally the board).

For interfaces that previously supported .config(hostname), this is still
supported but now implemented using the global network.hostname.

Similarly, pyb.country and rp2.country are now deprecated, but the methods
still exist (and forward to network.hostname).

Because ESP32/ESP8266 do not use extmod/modnetwork.c they are not affected
by this commit.

Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
2023-03-01 01:26:17 +11:00

848 lines
26 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/mphal.h"
#include "py/mperrno.h"
#include "shared/netutils/netutils.h"
#include "pin_static_af.h"
#include "extmod/modnetwork.h"
#include "mpu.h"
#include "eth.h"
#if defined(MICROPY_HW_ETH_MDC)
#include "lwip/etharp.h"
#include "lwip/dns.h"
#include "lwip/dhcp.h"
#include "netif/ethernet.h"
// ETH PHY register definitions (for LAN8742)
#undef PHY_BCR
#define PHY_BCR (0x0000)
#define PHY_BCR_SOFT_RESET (0x8000)
#define PHY_BCR_AUTONEG_EN (0x1000)
#define PHY_BCR_POWER_DOWN (0x0800U)
#undef PHY_BSR
#define PHY_BSR (0x0001)
#define PHY_BSR_LINK_STATUS (0x0004)
#define PHY_BSR_AUTONEG_DONE (0x0020)
#define PHY_SCSR (0x001f)
#define PHY_SCSR_SPEED_Pos (2)
#define PHY_SCSR_SPEED_Msk (7 << PHY_SCSR_SPEED_Pos)
#define PHY_SCSR_SPEED_10HALF (1 << PHY_SCSR_SPEED_Pos)
#define PHY_SCSR_SPEED_10FULL (5 << PHY_SCSR_SPEED_Pos)
#define PHY_SCSR_SPEED_100HALF (2 << PHY_SCSR_SPEED_Pos)
#define PHY_SCSR_SPEED_100FULL (6 << PHY_SCSR_SPEED_Pos)
// ETH DMA RX and TX descriptor definitions
#if defined(STM32H7)
#define RX_DESCR_3_OWN_Pos (31)
#define RX_DESCR_3_IOC_Pos (30)
#define RX_DESCR_3_BUF1V_Pos (24)
#define RX_DESCR_3_PL_Msk (0x7fff)
#define TX_DESCR_3_OWN_Pos (31)
#define TX_DESCR_3_LD_Pos (29)
#define TX_DESCR_3_FD_Pos (28)
#define TX_DESCR_3_CIC_Pos (16)
#define TX_DESCR_2_B1L_Pos (0)
#define TX_DESCR_2_B1L_Msk (0x3fff << TX_DESCR_2_B1L_Pos)
#else
#define RX_DESCR_0_OWN_Pos (31)
#define RX_DESCR_0_FL_Pos (16)
#define RX_DESCR_0_FL_Msk (0x3fff << RX_DESCR_0_FL_Pos)
#define RX_DESCR_1_RER_Pos (15)
#define RX_DESCR_1_RCH_Pos (14)
#define RX_DESCR_1_RBS2_Pos (16)
#define RX_DESCR_1_RBS1_Pos (0)
#define TX_DESCR_0_OWN_Pos (31)
#define TX_DESCR_0_LS_Pos (29)
#define TX_DESCR_0_FS_Pos (28)
#define TX_DESCR_0_DP_Pos (26)
#define TX_DESCR_0_CIC_Pos (22)
#define TX_DESCR_0_TER_Pos (21)
#define TX_DESCR_0_TCH_Pos (20)
#define TX_DESCR_1_TBS1_Pos (0)
#endif
// Configuration values
#define PHY_INIT_TIMEOUT_MS (10000)
#define RX_BUF_SIZE (1524) // includes 4-byte CRC at end
#define TX_BUF_SIZE (1524)
#define RX_BUF_NUM (5)
#define TX_BUF_NUM (5)
typedef struct _eth_dma_rx_descr_t {
volatile uint32_t rdes0, rdes1, rdes2, rdes3;
} eth_dma_rx_descr_t;
typedef struct _eth_dma_tx_descr_t {
volatile uint32_t tdes0, tdes1, tdes2, tdes3;
} eth_dma_tx_descr_t;
typedef struct _eth_dma_t {
eth_dma_rx_descr_t rx_descr[RX_BUF_NUM];
eth_dma_tx_descr_t tx_descr[TX_BUF_NUM];
uint8_t rx_buf[RX_BUF_NUM * RX_BUF_SIZE] __attribute__((aligned(4)));
uint8_t tx_buf[TX_BUF_NUM * TX_BUF_SIZE] __attribute__((aligned(4)));
size_t rx_descr_idx;
size_t tx_descr_idx;
uint8_t padding[16384 - 15408];
} eth_dma_t;
typedef struct _eth_t {
uint32_t trace_flags;
struct netif netif;
struct dhcp dhcp_struct;
} eth_t;
static eth_dma_t eth_dma __attribute__((aligned(16384)));
eth_t eth_instance;
STATIC void eth_mac_deinit(eth_t *self);
STATIC void eth_process_frame(eth_t *self, size_t len, const uint8_t *buf);
STATIC void eth_phy_write(uint32_t reg, uint32_t val) {
#if defined(STM32H7)
while (ETH->MACMDIOAR & ETH_MACMDIOAR_MB) {
}
uint32_t ar = ETH->MACMDIOAR;
ar &= ~ETH_MACMDIOAR_RDA_Msk;
ar |= reg << ETH_MACMDIOAR_RDA_Pos;
ar &= ~ETH_MACMDIOAR_MOC_Msk;
ar |= ETH_MACMDIOAR_MOC_WR;
ar |= ETH_MACMDIOAR_MB;
ETH->MACMDIODR = val;
ETH->MACMDIOAR = ar;
while (ETH->MACMDIOAR & ETH_MACMDIOAR_MB) {
}
#else
while (ETH->MACMIIAR & ETH_MACMIIAR_MB) {
}
ETH->MACMIIDR = val;
uint32_t ar = ETH->MACMIIAR;
ar = reg << ETH_MACMIIAR_MR_Pos | (ar & ETH_MACMIIAR_CR_Msk) | ETH_MACMIIAR_MW | ETH_MACMIIAR_MB;
ETH->MACMIIAR = ar;
while (ETH->MACMIIAR & ETH_MACMIIAR_MB) {
}
#endif
}
STATIC uint32_t eth_phy_read(uint32_t reg) {
#if defined(STM32H7)
while (ETH->MACMDIOAR & ETH_MACMDIOAR_MB) {
}
uint32_t ar = ETH->MACMDIOAR;
ar &= ~ETH_MACMDIOAR_RDA_Msk;
ar |= reg << ETH_MACMDIOAR_RDA_Pos;
ar &= ~ETH_MACMDIOAR_MOC_Msk;
ar |= ETH_MACMDIOAR_MOC_RD;
ar |= ETH_MACMDIOAR_MB;
ETH->MACMDIOAR = ar;
while (ETH->MACMDIOAR & ETH_MACMDIOAR_MB) {
}
return ETH->MACMDIODR;
#else
while (ETH->MACMIIAR & ETH_MACMIIAR_MB) {
}
uint32_t ar = ETH->MACMIIAR;
ar = reg << ETH_MACMIIAR_MR_Pos | (ar & ETH_MACMIIAR_CR_Msk) | ETH_MACMIIAR_MB;
ETH->MACMIIAR = ar;
while (ETH->MACMIIAR & ETH_MACMIIAR_MB) {
}
return ETH->MACMIIDR;
#endif
}
void eth_init(eth_t *self, int mac_idx) {
mp_hal_get_mac(mac_idx, &self->netif.hwaddr[0]);
self->netif.hwaddr_len = 6;
// Configure GPIO
mp_hal_pin_config_alt_static(MICROPY_HW_ETH_MDC, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, STATIC_AF_ETH_MDC);
mp_hal_pin_config_alt_static(MICROPY_HW_ETH_MDIO, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, STATIC_AF_ETH_MDIO);
mp_hal_pin_config_alt_static_speed(MICROPY_HW_ETH_RMII_REF_CLK, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_MEDIUM, STATIC_AF_ETH_RMII_REF_CLK);
mp_hal_pin_config_alt_static(MICROPY_HW_ETH_RMII_CRS_DV, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, STATIC_AF_ETH_RMII_CRS_DV);
mp_hal_pin_config_alt_static(MICROPY_HW_ETH_RMII_RXD0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, STATIC_AF_ETH_RMII_RXD0);
mp_hal_pin_config_alt_static(MICROPY_HW_ETH_RMII_RXD1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, STATIC_AF_ETH_RMII_RXD1);
mp_hal_pin_config_alt_static(MICROPY_HW_ETH_RMII_TX_EN, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, STATIC_AF_ETH_RMII_TX_EN);
mp_hal_pin_config_alt_static(MICROPY_HW_ETH_RMII_TXD0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, STATIC_AF_ETH_RMII_TXD0);
mp_hal_pin_config_alt_static(MICROPY_HW_ETH_RMII_TXD1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, STATIC_AF_ETH_RMII_TXD1);
// Enable peripheral clock
#if defined(STM32H7)
__HAL_RCC_ETH1MAC_CLK_ENABLE();
__HAL_RCC_ETH1TX_CLK_ENABLE();
__HAL_RCC_ETH1RX_CLK_ENABLE();
#else
__HAL_RCC_ETH_CLK_ENABLE();
#endif
}
void eth_set_trace(eth_t *self, uint32_t value) {
self->trace_flags = value;
}
STATIC int eth_mac_init(eth_t *self) {
// Configure MPU
uint32_t irq_state = mpu_config_start();
mpu_config_region(MPU_REGION_ETH, (uint32_t)&eth_dma, MPU_CONFIG_ETH(MPU_REGION_SIZE_16KB));
mpu_config_end(irq_state);
// Enable peripheral clock
#if defined(STM32H7)
__HAL_RCC_ETH1MAC_CLK_ENABLE();
__HAL_RCC_ETH1TX_CLK_ENABLE();
__HAL_RCC_ETH1RX_CLK_ENABLE();
__HAL_RCC_ETH1MAC_FORCE_RESET();
#else
__HAL_RCC_ETH_CLK_ENABLE();
__HAL_RCC_ETHMAC_FORCE_RESET();
#endif
// Select RMII interface
#if defined(STM32H7)
SYSCFG->PMCR = (SYSCFG->PMCR & ~SYSCFG_PMCR_EPIS_SEL_Msk) | SYSCFG_PMCR_EPIS_SEL_2;
#else
__HAL_RCC_SYSCFG_CLK_ENABLE();
SYSCFG->PMC |= SYSCFG_PMC_MII_RMII_SEL;
#endif
#if defined(STM32H7)
__HAL_RCC_ETH1MAC_RELEASE_RESET();
__HAL_RCC_ETH1MAC_CLK_SLEEP_ENABLE();
__HAL_RCC_ETH1TX_CLK_SLEEP_ENABLE();
__HAL_RCC_ETH1RX_CLK_SLEEP_ENABLE();
#else
__HAL_RCC_ETHMAC_RELEASE_RESET();
__HAL_RCC_ETHMAC_CLK_SLEEP_ENABLE();
__HAL_RCC_ETHMACTX_CLK_SLEEP_ENABLE();
__HAL_RCC_ETHMACRX_CLK_SLEEP_ENABLE();
#endif
// Do a soft reset of the MAC core
#if defined(STM32H7)
#define ETH_SOFT_RESET(eth) do { eth->DMAMR = ETH_DMAMR_SWR; } while (0)
#define ETH_IS_RESET(eth) (eth->DMAMR & ETH_DMAMR_SWR)
#else
#define ETH_SOFT_RESET(eth) do { eth->DMABMR = ETH_DMABMR_SR; } while (0)
#define ETH_IS_RESET(eth) (eth->DMABMR & ETH_DMABMR_SR)
#endif
ETH_SOFT_RESET(ETH);
mp_hal_delay_ms(2);
// Wait for soft reset to finish
uint32_t t0 = mp_hal_ticks_ms();
while (ETH_IS_RESET(ETH)) {
if (mp_hal_ticks_ms() - t0 > 1000) {
return -MP_ETIMEDOUT;
}
}
// Set MII clock range
uint32_t hclk = HAL_RCC_GetHCLKFreq();
uint32_t cr_div;
#if defined(STM32H7)
cr_div = ETH->MACMDIOAR & ~ETH_MACMDIOAR_CR;
if (hclk < 35000000) {
cr_div |= ETH_MACMDIOAR_CR_DIV16;
} else if (hclk < 60000000) {
cr_div |= ETH_MACMDIOAR_CR_DIV26;
} else if (hclk < 100000000) {
cr_div |= ETH_MACMDIOAR_CR_DIV42;
} else if (hclk < 150000000) {
cr_div |= ETH_MACMDIOAR_CR_DIV62;
} else {
cr_div |= ETH_MACMDIOAR_CR_DIV102;
}
ETH->MACMDIOAR = cr_div;
#else
if (hclk < 35000000) {
cr_div = ETH_MACMIIAR_CR_Div16;
} else if (hclk < 60000000) {
cr_div = ETH_MACMIIAR_CR_Div26;
} else if (hclk < 100000000) {
cr_div = ETH_MACMIIAR_CR_Div42;
} else if (hclk < 150000000) {
cr_div = ETH_MACMIIAR_CR_Div62;
} else {
cr_div = ETH_MACMIIAR_CR_Div102;
}
ETH->MACMIIAR = cr_div;
#endif
#if defined(STM32H7)
// don't skip 32bit words since our desriptors are continuous in memory
ETH->DMACCR &= ~(ETH_DMACCR_DSL_Msk);
#endif
// Reset the PHY
eth_phy_write(PHY_BCR, PHY_BCR_SOFT_RESET);
mp_hal_delay_ms(50);
// Wait for the PHY link to be established
int phy_state = 0;
t0 = mp_hal_ticks_ms();
while (phy_state != 3) {
if (mp_hal_ticks_ms() - t0 > PHY_INIT_TIMEOUT_MS) {
eth_mac_deinit(self);
return -MP_ETIMEDOUT;
}
uint16_t bcr = eth_phy_read(0);
uint16_t bsr = eth_phy_read(1);
switch (phy_state) {
case 0:
if (!(bcr & PHY_BCR_SOFT_RESET)) {
phy_state = 1;
}
break;
case 1:
if (bsr & PHY_BSR_LINK_STATUS) {
eth_phy_write(PHY_BCR, PHY_BCR_AUTONEG_EN);
phy_state = 2;
}
break;
case 2:
if ((bsr & (PHY_BSR_AUTONEG_DONE | PHY_BSR_LINK_STATUS))
== (PHY_BSR_AUTONEG_DONE | PHY_BSR_LINK_STATUS)) {
phy_state = 3;
}
break;
}
mp_hal_delay_ms(2);
}
// Get register with link status
uint16_t phy_scsr = eth_phy_read(PHY_SCSR);
// Burst mode configuration
#if defined(STM32H7)
ETH->DMASBMR = ETH->DMASBMR & ~ETH_DMASBMR_AAL & ~ETH_DMASBMR_FB;
#else
ETH->DMABMR = 0;
#endif
mp_hal_delay_ms(2);
// Select DMA interrupts
#if defined(STM32H7)
ETH->DMACIER = ETH->DMACIER
| ETH_DMACIER_NIE // enable normal interrupts
| ETH_DMACIER_RIE // enable RX interrupt
;
#else
ETH->DMAIER =
ETH_DMAIER_NISE // enable normal interrupts
| ETH_DMAIER_RIE // enable RX interrupt
;
#endif
// Configure RX descriptor lists
for (size_t i = 0; i < RX_BUF_NUM; ++i) {
#if defined(STM32H7)
eth_dma.rx_descr[i].rdes3 =
1 << RX_DESCR_3_OWN_Pos
| (1 << RX_DESCR_3_BUF1V_Pos) // buf1 address valid
| (1 << RX_DESCR_3_IOC_Pos) // Interrupt Enabled on Completion
;
eth_dma.rx_descr[i].rdes0 = (uint32_t)&eth_dma.rx_buf[i * RX_BUF_SIZE]; // buf 1 address
#else
eth_dma.rx_descr[i].rdes0 = 1 << RX_DESCR_0_OWN_Pos;
eth_dma.rx_descr[i].rdes1 =
1 << RX_DESCR_1_RCH_Pos // chained
| RX_BUF_SIZE << RX_DESCR_1_RBS1_Pos
;
eth_dma.rx_descr[i].rdes2 = (uint32_t)&eth_dma.rx_buf[i * RX_BUF_SIZE];
eth_dma.rx_descr[i].rdes3 = (uint32_t)&eth_dma.rx_descr[(i + 1) % RX_BUF_NUM];
#endif
}
#if defined(STM32H7)
ETH->DMACRDLAR = (uint32_t)&eth_dma.rx_descr[0];
#else
ETH->DMARDLAR = (uint32_t)&eth_dma.rx_descr[0];
#endif
eth_dma.rx_descr_idx = 0;
// Configure TX descriptor lists
for (size_t i = 0; i < TX_BUF_NUM; ++i) {
#if defined(STM32H7)
eth_dma.tx_descr[i].tdes0 = 0;
eth_dma.tx_descr[i].tdes1 = 0;
eth_dma.tx_descr[i].tdes2 = TX_BUF_SIZE & TX_DESCR_2_B1L_Msk;
eth_dma.tx_descr[i].tdes3 = 0;
#else
eth_dma.tx_descr[i].tdes0 = 1 << TX_DESCR_0_TCH_Pos;
eth_dma.tx_descr[i].tdes1 = 0;
eth_dma.tx_descr[i].tdes2 = 0;
eth_dma.tx_descr[i].tdes3 = (uint32_t)&eth_dma.tx_descr[(i + 1) % TX_BUF_NUM];
#endif
}
#if defined(STM32H7)
// set number of descriptors and buffers
ETH->DMACTDRLR = TX_BUF_NUM - 1;
ETH->DMACRDRLR = RX_BUF_NUM - 1;
ETH->DMACTDLAR = (uint32_t)&eth_dma.tx_descr[0];
#else
ETH->DMATDLAR = (uint32_t)&eth_dma.tx_descr[0];
#endif
eth_dma.tx_descr_idx = 0;
// Configure DMA
#if defined(STM32H7)
// read from RX FIFO only after a full frame is written
ETH->MTLRQOMR = ETH_MTLRQOMR_RSF;
// transmission starts when a full packet resides in the Tx queue
ETH->MTLTQOMR = ETH_MTLTQOMR_TSF;
#else
ETH->DMAOMR =
ETH_DMAOMR_RSF // read from RX FIFO after a full frame is written
| ETH_DMAOMR_TSF // transmit when a full frame is in TX FIFO (needed by errata)
;
#endif
mp_hal_delay_ms(2);
// Select MAC filtering options
#if defined(STM32H7)
ETH->MACPFR = ETH_MACPFR_RA; // pass all frames up
#else
ETH->MACFFR =
ETH_MACFFR_RA // pass all frames up
;
#endif
mp_hal_delay_ms(2);
// Set MAC address
u8_t *mac = &self->netif.hwaddr[0];
ETH->MACA0HR = mac[5] << 8 | mac[4];
mp_hal_delay_ms(2);
ETH->MACA0LR = mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0];
mp_hal_delay_ms(2);
// Set main MAC control register
ETH->MACCR =
(phy_scsr & PHY_SCSR_SPEED_Msk) == PHY_SCSR_SPEED_10FULL ? ETH_MACCR_DM
: (phy_scsr & PHY_SCSR_SPEED_Msk) == PHY_SCSR_SPEED_100HALF ? ETH_MACCR_FES
: (phy_scsr & PHY_SCSR_SPEED_Msk) == PHY_SCSR_SPEED_100FULL ? (ETH_MACCR_FES | ETH_MACCR_DM)
: 0
;
mp_hal_delay_ms(2);
// Start MAC layer
ETH->MACCR |=
ETH_MACCR_TE // enable TX
| ETH_MACCR_RE // enable RX
;
mp_hal_delay_ms(2);
// Start DMA layer
#if defined(STM32H7)
ETH->DMACRCR |= ETH_DMACRCR_SR; // start RX
ETH->DMACTCR |= ETH_DMACTCR_ST; // start TX
#else
ETH->DMAOMR |=
ETH_DMAOMR_ST // start TX
| ETH_DMAOMR_SR // start RX
;
#endif
mp_hal_delay_ms(2);
// Enable interrupts
NVIC_SetPriority(ETH_IRQn, IRQ_PRI_PENDSV);
HAL_NVIC_EnableIRQ(ETH_IRQn);
return 0;
}
STATIC void eth_mac_deinit(eth_t *self) {
(void)self;
HAL_NVIC_DisableIRQ(ETH_IRQn);
#if defined(STM32H7)
__HAL_RCC_ETH1MAC_FORCE_RESET();
__HAL_RCC_ETH1MAC_RELEASE_RESET();
__HAL_RCC_ETH1MAC_CLK_DISABLE();
#else
__HAL_RCC_ETHMAC_FORCE_RESET();
__HAL_RCC_ETHMAC_RELEASE_RESET();
__HAL_RCC_ETH_CLK_DISABLE();
#endif
}
STATIC int eth_tx_buf_get(size_t len, uint8_t **buf) {
if (len > TX_BUF_SIZE) {
return -MP_EINVAL;
}
// Wait for DMA to release the current TX descriptor (if it has it)
eth_dma_tx_descr_t *tx_descr = &eth_dma.tx_descr[eth_dma.tx_descr_idx];
uint32_t t0 = mp_hal_ticks_ms();
for (;;) {
#if defined(STM32H7)
if (!(tx_descr->tdes3 & (1 << TX_DESCR_3_OWN_Pos))) {
break;
}
#else
if (!(tx_descr->tdes0 & (1 << TX_DESCR_0_OWN_Pos))) {
break;
}
#endif
if (mp_hal_ticks_ms() - t0 > 1000) {
return -MP_ETIMEDOUT;
}
}
#if defined(STM32H7)
// Update TX descriptor with length and buffer pointer
*buf = &eth_dma.tx_buf[eth_dma.tx_descr_idx * TX_BUF_SIZE];
tx_descr->tdes2 = len & TX_DESCR_2_B1L_Msk;
tx_descr->tdes0 = (uint32_t)*buf;
#else
// Update TX descriptor with length, buffer pointer and linked list pointer
*buf = &eth_dma.tx_buf[eth_dma.tx_descr_idx * TX_BUF_SIZE];
tx_descr->tdes1 = len << TX_DESCR_1_TBS1_Pos;
tx_descr->tdes2 = (uint32_t)*buf;
tx_descr->tdes3 = (uint32_t)&eth_dma.tx_descr[(eth_dma.tx_descr_idx + 1) % TX_BUF_NUM];
#endif
return 0;
}
STATIC int eth_tx_buf_send(void) {
// Get TX descriptor and move to next one
eth_dma_tx_descr_t *tx_descr = &eth_dma.tx_descr[eth_dma.tx_descr_idx];
eth_dma.tx_descr_idx = (eth_dma.tx_descr_idx + 1) % TX_BUF_NUM;
// Schedule to send next outgoing frame
#if defined(STM32H7)
tx_descr->tdes3 =
1 << TX_DESCR_3_OWN_Pos // owned by DMA
| 1 << TX_DESCR_3_LD_Pos // last segment
| 1 << TX_DESCR_3_FD_Pos // first segment
| 3 << TX_DESCR_3_CIC_Pos // enable all checksums inserted by hardware
;
#else
tx_descr->tdes0 =
1 << TX_DESCR_0_OWN_Pos // owned by DMA
| 1 << TX_DESCR_0_LS_Pos // last segment
| 1 << TX_DESCR_0_FS_Pos // first segment
| 3 << TX_DESCR_0_CIC_Pos // enable all checksums inserted by hardware
| 1 << TX_DESCR_0_TCH_Pos // TX descriptor is chained
;
#endif
// Notify ETH DMA that there is a new TX descriptor for sending
__DMB();
#if defined(STM32H7)
if (ETH->DMACSR & ETH_DMACSR_TBU) {
ETH->DMACSR = ETH_DMACSR_TBU;
}
ETH->DMACTDTPR = (uint32_t)&eth_dma.tx_descr[eth_dma.tx_descr_idx];
#else
if (ETH->DMASR & ETH_DMASR_TBUS) {
ETH->DMASR = ETH_DMASR_TBUS;
ETH->DMATPDR = 0;
}
#endif
return 0;
}
STATIC void eth_dma_rx_free(void) {
// Get RX descriptor, RX buffer and move to next one
eth_dma_rx_descr_t *rx_descr = &eth_dma.rx_descr[eth_dma.rx_descr_idx];
uint8_t *buf = &eth_dma.rx_buf[eth_dma.rx_descr_idx * RX_BUF_SIZE];
eth_dma.rx_descr_idx = (eth_dma.rx_descr_idx + 1) % RX_BUF_NUM;
// Schedule to get next incoming frame
#if defined(STM32H7)
rx_descr->rdes0 = (uint32_t)buf;
rx_descr->rdes3 = 1 << RX_DESCR_3_OWN_Pos; // owned by DMA
rx_descr->rdes3 |= 1 << RX_DESCR_3_BUF1V_Pos; // buf 1 address valid
rx_descr->rdes3 |= 1 << RX_DESCR_3_IOC_Pos; // Interrupt Enabled on Completion
#else
rx_descr->rdes1 =
1 << RX_DESCR_1_RCH_Pos // RX descriptor is chained
| RX_BUF_SIZE << RX_DESCR_1_RBS1_Pos // maximum buffer length
;
rx_descr->rdes2 = (uint32_t)buf;
rx_descr->rdes3 = (uint32_t)&eth_dma.rx_descr[eth_dma.rx_descr_idx];
rx_descr->rdes0 = 1 << RX_DESCR_0_OWN_Pos; // owned by DMA
#endif
// Notify ETH DMA that there is a new RX descriptor available
__DMB();
#if defined(STM32H7)
ETH->DMACRDTPR = (uint32_t)&rx_descr[eth_dma.rx_descr_idx];
#else
ETH->DMARPDR = 0;
#endif
}
void ETH_IRQHandler(void) {
#if defined(STM32H7)
uint32_t sr = ETH->DMACSR;
ETH->DMACSR = ETH_DMACSR_NIS;
uint32_t rx_interrupt = sr & ETH_DMACSR_RI;
#else
uint32_t sr = ETH->DMASR;
ETH->DMASR = ETH_DMASR_NIS;
uint32_t rx_interrupt = sr & ETH_DMASR_RS;
#endif
if (rx_interrupt) {
#if defined(STM32H7)
ETH->DMACSR = ETH_DMACSR_RI;
#else
ETH->DMASR = ETH_DMASR_RS;
#endif
for (;;) {
#if defined(STM32H7)
eth_dma_rx_descr_t *rx_descr_l = &eth_dma.rx_descr[eth_dma.rx_descr_idx];
if (rx_descr_l->rdes3 & (1 << RX_DESCR_3_OWN_Pos)) {
// No more RX descriptors ready to read
break;
}
#else
eth_dma_rx_descr_t *rx_descr = &eth_dma.rx_descr[eth_dma.rx_descr_idx];
if (rx_descr->rdes0 & (1 << RX_DESCR_0_OWN_Pos)) {
// No more RX descriptors ready to read
break;
}
#endif
// Get RX buffer containing new frame
#if defined(STM32H7)
size_t len = (rx_descr_l->rdes3 & RX_DESCR_3_PL_Msk);
#else
size_t len = (rx_descr->rdes0 & RX_DESCR_0_FL_Msk) >> RX_DESCR_0_FL_Pos;
#endif
len -= 4; // discard CRC at end
#if defined(STM32H7)
uint8_t *buf = &eth_dma.rx_buf[eth_dma.rx_descr_idx * RX_BUF_SIZE];
#else
uint8_t *buf = (uint8_t *)rx_descr->rdes2;
#endif
// Process frame
eth_process_frame(&eth_instance, len, buf);
eth_dma_rx_free();
}
}
}
/*******************************************************************************/
// ETH-LwIP bindings
#define TRACE_ASYNC_EV (0x0001)
#define TRACE_ETH_TX (0x0002)
#define TRACE_ETH_RX (0x0004)
#define TRACE_ETH_FULL (0x0008)
STATIC void eth_trace(eth_t *self, size_t len, const void *data, unsigned int flags) {
if (((flags & NETUTILS_TRACE_IS_TX) && (self->trace_flags & TRACE_ETH_TX))
|| (!(flags & NETUTILS_TRACE_IS_TX) && (self->trace_flags & TRACE_ETH_RX))) {
const uint8_t *buf;
if (len == (size_t)-1) {
// data is a pbuf
const struct pbuf *pbuf = data;
buf = pbuf->payload;
len = pbuf->len; // restricted to print only the first chunk of the pbuf
} else {
// data is actual data buffer
buf = data;
}
if (self->trace_flags & TRACE_ETH_FULL) {
flags |= NETUTILS_TRACE_PAYLOAD;
}
netutils_ethernet_trace(MP_PYTHON_PRINTER, len, buf, flags);
}
}
STATIC err_t eth_netif_output(struct netif *netif, struct pbuf *p) {
// This function should always be called from a context where PendSV-level IRQs are disabled
LINK_STATS_INC(link.xmit);
eth_trace(netif->state, (size_t)-1, p, NETUTILS_TRACE_IS_TX | NETUTILS_TRACE_NEWLINE);
uint8_t *buf;
int ret = eth_tx_buf_get(p->tot_len, &buf);
if (ret == 0) {
pbuf_copy_partial(p, buf, p->tot_len, 0);
ret = eth_tx_buf_send();
}
return ret ? ERR_BUF : ERR_OK;
}
STATIC err_t eth_netif_init(struct netif *netif) {
netif->linkoutput = eth_netif_output;
netif->output = etharp_output;
netif->mtu = 1500;
netif->flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_ETHERNET | NETIF_FLAG_IGMP;
// Checksums only need to be checked on incoming frames, not computed on outgoing frames
NETIF_SET_CHECKSUM_CTRL(netif,
NETIF_CHECKSUM_CHECK_IP
| NETIF_CHECKSUM_CHECK_UDP
| NETIF_CHECKSUM_CHECK_TCP
| NETIF_CHECKSUM_CHECK_ICMP
| NETIF_CHECKSUM_CHECK_ICMP6);
return ERR_OK;
}
STATIC void eth_lwip_init(eth_t *self) {
ip_addr_t ipconfig[4];
IP4_ADDR(&ipconfig[0], 0, 0, 0, 0);
IP4_ADDR(&ipconfig[2], 192, 168, 0, 1);
IP4_ADDR(&ipconfig[1], 255, 255, 255, 0);
IP4_ADDR(&ipconfig[3], 8, 8, 8, 8);
MICROPY_PY_LWIP_ENTER
struct netif *n = &self->netif;
n->name[0] = 'e';
n->name[1] = '0';
netif_add(n, &ipconfig[0], &ipconfig[1], &ipconfig[2], self, eth_netif_init, ethernet_input);
netif_set_hostname(n, mod_network_hostname);
netif_set_default(n);
netif_set_up(n);
dns_setserver(0, &ipconfig[3]);
dhcp_set_struct(n, &self->dhcp_struct);
dhcp_start(n);
netif_set_link_up(n);
MICROPY_PY_LWIP_EXIT
}
STATIC void eth_lwip_deinit(eth_t *self) {
MICROPY_PY_LWIP_ENTER
for (struct netif *netif = netif_list; netif != NULL; netif = netif->next) {
if (netif == &self->netif) {
netif_remove(netif);
netif->ip_addr.addr = 0;
netif->flags = 0;
}
}
MICROPY_PY_LWIP_EXIT
}
STATIC void eth_process_frame(eth_t *self, size_t len, const uint8_t *buf) {
eth_trace(self, len, buf, NETUTILS_TRACE_NEWLINE);
struct netif *netif = &self->netif;
if (netif->flags & NETIF_FLAG_LINK_UP) {
struct pbuf *p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
if (p != NULL) {
pbuf_take(p, buf, len);
if (netif->input(p, netif) != ERR_OK) {
pbuf_free(p);
}
}
}
}
struct netif *eth_netif(eth_t *self) {
return &self->netif;
}
int eth_link_status(eth_t *self) {
struct netif *netif = &self->netif;
if ((netif->flags & (NETIF_FLAG_UP | NETIF_FLAG_LINK_UP))
== (NETIF_FLAG_UP | NETIF_FLAG_LINK_UP)) {
if (netif->ip_addr.addr != 0) {
return 3; // link up
} else {
return 2; // link no-ip;
}
} else {
if (eth_phy_read(PHY_BSR) & PHY_BSR_LINK_STATUS) {
return 1; // link up
} else {
return 0; // link down
}
}
}
int eth_start(eth_t *self) {
eth_lwip_deinit(self);
// Make sure Eth is Not in low power mode.
eth_low_power_mode(self, false);
int ret = eth_mac_init(self);
if (ret < 0) {
return ret;
}
eth_lwip_init(self);
return 0;
}
int eth_stop(eth_t *self) {
eth_lwip_deinit(self);
eth_mac_deinit(self);
return 0;
}
void eth_low_power_mode(eth_t *self, bool enable) {
(void)self;
// Enable eth clock
#if defined(STM32H7)
__HAL_RCC_ETH1MAC_CLK_ENABLE();
#else
__HAL_RCC_ETH_CLK_ENABLE();
#endif
uint16_t bcr = eth_phy_read(PHY_BCR);
if (enable) {
// Enable low-power mode.
eth_phy_write(PHY_BCR, bcr | PHY_BCR_POWER_DOWN);
// Disable eth clock.
#if defined(STM32H7)
__HAL_RCC_ETH1MAC_CLK_DISABLE();
#else
__HAL_RCC_ETH_CLK_DISABLE();
#endif
} else {
// Disable low-power mode.
eth_phy_write(PHY_BCR, bcr & (~PHY_BCR_POWER_DOWN));
}
}
#endif // defined(MICROPY_HW_ETH_MDC)