circuitpython/ports/esp8266/modespnow.c
Glenn Moloney 7fa322afb8 esp32,esp8266: Add support for the Espressif ESP-NOW protocol.
ESP-NOW is a proprietary wireless communication protocol which supports
connectionless communication between ESP32 and ESP8266 devices, using
vendor specific WiFi frames.  This commit adds support for this protocol
through a new `espnow` module.

This commit builds on original work done by @nickzoic, @shawwwn and with
contributions from @zoland.  Features include:
- Use of (extended) ring buffers in py/ringbuf.[ch] for robust IO.
- Signal strength (RSSI) monitoring.
- Core support in `_espnow` C module, extended by `espnow.py` module.
- Asyncio support via `aioespnow.py` module (separate to this commit).
- Docs provided at `docs/library/espnow.rst`.

Methods available in espnow.ESPNow class are:
- active(True/False)
- config(): set rx buffer size, read timeout and tx rate
- recv()/irecv()/recvinto() to read incoming messages from peers
- send() to send messages to peer devices
- any() to test if a message is ready to read
- irq() to set callback for received messages
- stats() returns transfer stats:
    (tx_pkts, tx_pkt_responses, tx_failures, rx_pkts, lost_rx_pkts)
- add_peer(mac, ...) registers a peer before sending messages
- get_peer(mac) returns peer info: (mac, lmk, channel, ifidx, encrypt)
- mod_peer(mac, ...) changes peer info parameters
- get_peers() returns all peer info tuples
- peers_table supports RSSI signal monitoring for received messages:
    {peer1: [rssi, time_ms], peer2: [rssi, time_ms], ...}

ESP8266 is a pared down version of the ESP32 ESPNow support due to code
size restrictions and differences in the low-level API.  See docs for
details.

Also included is a test suite in tests/multi_espnow.  This tests basic
espnow data transfer, multiple transfers, various message sizes, encrypted
messages (pmk and lmk), and asyncio support.

Initial work is from https://github.com/micropython/micropython/pull/4115.
Initial import of code is from:
https://github.com/nickzoic/micropython/tree/espnow-4115.
2023-05-01 16:47:21 +10:00

508 lines
19 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017-2020 Nick Moore
* Copyright (c) 2018 shawwwn <shawwwn1@gmail.com>
* Copyright (c) 2020-2021 Glenn Moloney @glenn20
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "py/runtime.h"
#if MICROPY_ESPNOW
#include "c_types.h"
#include "espnow.h"
#include "py/mphal.h"
#include "py/mperrno.h"
#include "py/qstr.h"
#include "py/objstr.h"
#include "py/objarray.h"
#include "py/stream.h"
#include "py/binary.h"
#include "py/ringbuf.h"
#include "mpconfigport.h"
#include "modespnow.h"
// For the esp8266
#define ESP_NOW_MAX_DATA_LEN (250)
#define ESP_NOW_KEY_LEN (16)
#define ESP_NOW_ETH_ALEN (6)
#define ESP_NOW_SEND_SUCCESS (0)
#define ESP_ERR_ESPNOW_NO_MEM (-77777)
#define ESP_OK (0)
#define ESP_NOW_MAX_TOTAL_PEER_NUM (20)
#define ESP_NOW_MAX_ENCRYPT_PEER_NUM (6)
#define ESP_ERR_ESPNOW_NOT_INIT (0x300 + 100 + 1)
typedef int esp_err_t;
static const uint8_t ESPNOW_MAGIC = 0x99;
// Use this for peeking at the header of the next packet in the buffer.
typedef struct {
uint8_t magic; // = ESPNOW_MAGIC
uint8_t msg_len; // Length of the message
} __attribute__((packed)) espnow_hdr_t;
// ESPNow packet format for the receive buffer.
typedef struct {
espnow_hdr_t hdr; // The header
uint8_t peer[6]; // Peer address
uint8_t msg[0]; // Message is up to 250 bytes
} __attribute__((packed)) espnow_pkt_t;
// The maximum length of an espnow packet (bytes)
static const size_t MAX_PACKET_LEN = (
sizeof(espnow_pkt_t) + ESP_NOW_MAX_DATA_LEN);
// Enough for 2 full-size packets: 2 * (6 + 2 + 250) = 516 bytes
// Will allocate an additional 7 bytes for buffer overhead
#define DEFAULT_RECV_BUFFER_SIZE \
(2 * (sizeof(espnow_pkt_t) + ESP_NOW_MAX_DATA_LEN))
// Default timeout (millisec) to wait for incoming ESPNow messages (5 minutes).
#define DEFAULT_RECV_TIMEOUT_MS (5 * 60 * 1000)
// Number of milliseconds to wait for pending responses to sent packets.
// This is a fallback which should never be reached.
#define PENDING_RESPONSES_TIMEOUT_MS 100
// The data structure for the espnow_singleton.
typedef struct _esp_espnow_obj_t {
mp_obj_base_t base;
ringbuf_t *recv_buffer; // A buffer for received packets
size_t recv_buffer_size; // Size of recv buffer
size_t recv_timeout_ms; // Timeout for irecv()
size_t tx_packets; // Count of sent packets
volatile size_t tx_responses; // # of sent packet responses received
volatile size_t tx_failures; // # of sent packet responses failed
} esp_espnow_obj_t;
// Initialised below.
const mp_obj_type_t esp_espnow_type;
static esp_espnow_obj_t espnow_singleton = {
.base.type = &esp_espnow_type,
.recv_buffer = NULL,
.recv_buffer_size = DEFAULT_RECV_BUFFER_SIZE,
.recv_timeout_ms = DEFAULT_RECV_TIMEOUT_MS,
};
// ### Initialisation and Config functions
//
static void check_esp_err(int e) {
if (e != 0) {
mp_raise_OSError(e);
}
}
// Return a pointer to the ESPNow module singleton
// If state == INITIALISED check the device has been initialised.
// Raises OSError if not initialised and state == INITIALISED.
static esp_espnow_obj_t *_get_singleton() {
return &espnow_singleton;
}
static esp_espnow_obj_t *_get_singleton_initialised() {
esp_espnow_obj_t *self = _get_singleton();
if (self->recv_buffer == NULL) {
// Throw an espnow not initialised error
check_esp_err(ESP_ERR_ESPNOW_NOT_INIT);
}
return self;
}
// Allocate and initialise the ESPNow module as a singleton.
// Returns the initialised espnow_singleton.
STATIC mp_obj_t espnow_make_new(const mp_obj_type_t *type, size_t n_args,
size_t n_kw, const mp_obj_t *all_args) {
return _get_singleton();
}
// Forward declare the send and recv ESPNow callbacks
STATIC void send_cb(uint8_t *mac_addr, uint8_t status);
STATIC void recv_cb(uint8_t *mac_addr, uint8_t *data, uint8_t len);
// ESPNow.deinit(): De-initialise the ESPNOW software stack, disable callbacks
// and deallocate the recv data buffers.
// Note: this function is called from main.c:mp_task() to cleanup before soft
// reset, so cannot be declared STATIC and must guard against self == NULL;.
mp_obj_t espnow_deinit(mp_obj_t _) {
esp_espnow_obj_t *self = _get_singleton();
if (self->recv_buffer != NULL) {
// esp_now_unregister_recv_cb();
esp_now_deinit();
self->recv_buffer->buf = NULL;
self->recv_buffer = NULL;
self->tx_packets = self->tx_responses;
}
MP_STATE_PORT(espnow_buffer) = NULL;
return mp_const_none;
}
// ESPNow.active(): Initialise the data buffers and ESP-NOW functions.
// Initialise the Espressif ESPNOW software stack, register callbacks and
// allocate the recv data buffers.
// Returns True if interface is active, else False.
STATIC mp_obj_t espnow_active(size_t n_args, const mp_obj_t *args) {
esp_espnow_obj_t *self = args[0];
if (n_args > 1) {
if (mp_obj_is_true(args[1])) {
if (self->recv_buffer == NULL) { // Already initialised
self->recv_buffer = m_new_obj(ringbuf_t);
ringbuf_alloc(self->recv_buffer, self->recv_buffer_size);
MP_STATE_PORT(espnow_buffer) = self->recv_buffer;
esp_now_init();
esp_now_set_self_role(ESP_NOW_ROLE_COMBO);
esp_now_register_recv_cb(recv_cb);
esp_now_register_send_cb(send_cb);
}
} else {
espnow_deinit(self);
}
}
return mp_obj_new_bool(self->recv_buffer != NULL);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_active_obj, 1, 2, espnow_active);
// ESPNow.config(): Initialise the data buffers and ESP-NOW functions.
// Initialise the Espressif ESPNOW software stack, register callbacks and
// allocate the recv data buffers.
// Returns True if interface is active, else False.
STATIC mp_obj_t espnow_config(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
esp_espnow_obj_t *self = _get_singleton();
enum { ARG_rxbuf, ARG_timeout_ms };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_timeout_ms, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args,
MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if (args[ARG_rxbuf].u_int >= 0) {
self->recv_buffer_size = args[ARG_rxbuf].u_int;
}
if (args[ARG_timeout_ms].u_int >= 0) {
self->recv_timeout_ms = args[ARG_timeout_ms].u_int;
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(espnow_config_obj, 1, espnow_config);
// ### The ESP_Now send and recv callback routines
//
// Callback triggered when a sent packet is acknowledged by the peer (or not).
// Just count the number of responses and number of failures.
// These are used in the send()/write() logic.
STATIC void send_cb(uint8_t *mac_addr, uint8_t status) {
esp_espnow_obj_t *self = _get_singleton();
self->tx_responses++;
if (status != ESP_NOW_SEND_SUCCESS) {
self->tx_failures++;
}
}
// Callback triggered when an ESP-Now packet is received.
// Write the peer MAC address and the message into the recv_buffer as an
// ESPNow packet.
// If the buffer is full, drop the message and increment the dropped count.
// Schedules the user callback if one has been registered (ESPNow.config()).
STATIC void recv_cb(uint8_t *mac_addr, uint8_t *msg, uint8_t msg_len) {
esp_espnow_obj_t *self = _get_singleton();
ringbuf_t *buf = self->recv_buffer;
// TODO: Test this works with ">".
if (buf == NULL || sizeof(espnow_pkt_t) + msg_len >= ringbuf_free(buf)) {
return;
}
espnow_hdr_t header;
header.magic = ESPNOW_MAGIC;
header.msg_len = msg_len;
ringbuf_put_bytes(buf, (uint8_t *)&header, sizeof(header));
ringbuf_put_bytes(buf, mac_addr, ESP_NOW_ETH_ALEN);
ringbuf_put_bytes(buf, msg, msg_len);
}
// Return C pointer to byte memory string/bytes/bytearray in obj.
// Raise ValueError if the length does not match expected len.
static uint8_t *_get_bytes_len_rw(mp_obj_t obj, size_t len, mp_uint_t rw) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(obj, &bufinfo, rw);
if (bufinfo.len != len) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid buffer length"));
}
return (uint8_t *)bufinfo.buf;
}
static uint8_t *_get_bytes_len(mp_obj_t obj, size_t len) {
return _get_bytes_len_rw(obj, len, MP_BUFFER_READ);
}
static uint8_t *_get_bytes_len_w(mp_obj_t obj, size_t len) {
return _get_bytes_len_rw(obj, len, MP_BUFFER_WRITE);
}
// ### Handling espnow packets in the recv buffer
//
// Copy data from the ring buffer - wait if buffer is empty up to timeout_ms
// 0: Success
// -1: Not enough data available to complete read (try again later)
// -2: Requested read is larger than buffer - will never succeed
static int ringbuf_get_bytes_wait(ringbuf_t *r, uint8_t *data, size_t len, mp_int_t timeout_ms) {
mp_uint_t start = mp_hal_ticks_ms();
int status = 0;
while (((status = ringbuf_get_bytes(r, data, len)) == -1)
&& (timeout_ms < 0 || (mp_uint_t)(mp_hal_ticks_ms() - start) < (mp_uint_t)timeout_ms)) {
MICROPY_EVENT_POLL_HOOK;
}
return status;
}
// ESPNow.recvinto([timeout_ms, []]):
// Returns a list of byte strings: (peer_addr, message) where peer_addr is
// the MAC address of the sending peer.
// Arguments:
// timeout_ms: timeout in milliseconds (or None).
// buffers: list of bytearrays to store values: [peer, message].
// Default timeout is set with ESPNow.config(timeout=milliseconds).
// Return (None, None) on timeout.
STATIC mp_obj_t espnow_recvinto(size_t n_args, const mp_obj_t *args) {
esp_espnow_obj_t *self = _get_singleton_initialised();
size_t timeout_ms = ((n_args > 2 && args[2] != mp_const_none)
? mp_obj_get_int(args[2]) : self->recv_timeout_ms);
mp_obj_list_t *list = MP_OBJ_TO_PTR(args[1]);
if (!mp_obj_is_type(list, &mp_type_list) || list->len < 2) {
mp_raise_ValueError(MP_ERROR_TEXT("ESPNow.recvinto(): Invalid argument"));
}
mp_obj_array_t *msg = MP_OBJ_TO_PTR(list->items[1]);
size_t msg_size = msg->len + msg->free;
if (mp_obj_is_type(msg, &mp_type_bytearray)) {
msg->len = msg_size; // Make all the space in msg array available
msg->free = 0;
}
uint8_t *peer_buf = _get_bytes_len_w(list->items[0], ESP_NOW_ETH_ALEN);
uint8_t *msg_buf = _get_bytes_len_w(msg, ESP_NOW_MAX_DATA_LEN);
// Read the packet header from the incoming buffer
espnow_hdr_t hdr;
if (ringbuf_get_bytes_wait(self->recv_buffer, (uint8_t *)&hdr, sizeof(hdr), timeout_ms) < 0) {
return MP_OBJ_NEW_SMALL_INT(0); // Timeout waiting for packet
}
int msg_len = hdr.msg_len;
// Check the message packet header format and read the message data
if (hdr.magic != ESPNOW_MAGIC
|| msg_len > ESP_NOW_MAX_DATA_LEN
|| ringbuf_get_bytes(self->recv_buffer, peer_buf, ESP_NOW_ETH_ALEN) < 0
|| ringbuf_get_bytes(self->recv_buffer, msg_buf, msg_len) < 0) {
mp_raise_ValueError(MP_ERROR_TEXT("ESPNow.recv(): buffer error"));
}
if (mp_obj_is_type(msg, &mp_type_bytearray)) {
// Set the length of the message bytearray.
msg->len = msg_len;
msg->free = msg_size - msg_len;
}
return MP_OBJ_NEW_SMALL_INT(msg_len);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_recvinto_obj, 2, 3, espnow_recvinto);
// Used by espnow_send() for sends() with sync==True.
// Wait till all pending sent packet responses have been received.
// ie. self->tx_responses == self->tx_packets.
// Return the number of responses where status != ESP_NOW_SEND_SUCCESS.
static void _wait_for_pending_responses(esp_espnow_obj_t *self) {
for (int i = 0; i < PENDING_RESPONSES_TIMEOUT_MS; i++) {
if (self->tx_responses >= self->tx_packets) {
return;
}
mp_hal_delay_ms(1); // Allow other tasks to run
}
// Note: the loop timeout is just a fallback - in normal operation
// we should never reach that timeout.
}
// ESPNow.send(peer_addr, message, [sync (=true)])
// ESPNow.send(message)
// Send a message to the peer's mac address. Optionally wait for a response.
// If sync == True, wait for response after sending.
// Returns:
// True if sync==False and message sent successfully.
// True if sync==True and message is received successfully by all recipients
// False if sync==True and message is not received by at least one recipient
// Raises: EAGAIN if the internal espnow buffers are full.
STATIC mp_obj_t espnow_send(size_t n_args, const mp_obj_t *args) {
esp_espnow_obj_t *self = _get_singleton_initialised();
bool sync = n_args <= 3 || args[3] == mp_const_none || mp_obj_is_true(args[3]);
// Get a pointer to the buffer of obj
mp_buffer_info_t message;
mp_get_buffer_raise(args[2], &message, MP_BUFFER_READ);
// Bugfix: esp_now_send() generates a panic if message buffer points
// to an address in ROM (eg. a statically interned QSTR).
// Fix: if message is not in gc pool, copy to a temp buffer.
static char temp[ESP_NOW_MAX_DATA_LEN]; // Static to save code space
byte *p = (byte *)message.buf;
// if (p < MP_STATE_MEM(area.gc_pool_start) || MP_STATE_MEM(area.gc_pool_end) < p) {
if (MP_STATE_MEM(area.gc_pool_end) < p) {
// If buffer is not in GC pool copy from ROM to stack
memcpy(temp, message.buf, message.len);
message.buf = temp;
}
if (sync) {
// If the last call was sync==False there may be outstanding responses.
// We need to wait for all pending responses if this call has sync=True.
_wait_for_pending_responses(self);
}
int saved_failures = self->tx_failures;
check_esp_err(
esp_now_send(_get_bytes_len(args[1], ESP_NOW_ETH_ALEN), message.buf, message.len));
self->tx_packets++;
if (sync) {
// Wait for message to be received by peer
_wait_for_pending_responses(self);
}
// Return False if sync and any peers did not respond.
return mp_obj_new_bool(!(sync && self->tx_failures != saved_failures));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_send_obj, 3, 4, espnow_send);
// ### Peer Management Functions
//
// Set the ESP-NOW Primary Master Key (pmk) (for encrypted communications).
// Raise OSError if not initialised.
// Raise ValueError if key is not a bytes-like object exactly 16 bytes long.
STATIC mp_obj_t espnow_set_pmk(mp_obj_t _, mp_obj_t key) {
check_esp_err(esp_now_set_kok(_get_bytes_len(key, ESP_NOW_KEY_LEN), ESP_NOW_KEY_LEN));
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_pmk_obj, espnow_set_pmk);
// ESPNow.add_peer(peer_mac, [lmk, [channel, [ifidx, [encrypt]]]])
// Positional args set to None will be left at defaults.
// Raise OSError if not initialised.
// Raise ValueError if mac or LMK are not bytes-like objects or wrong length.
// Raise TypeError if invalid keyword args or too many positional args.
// Return None.
STATIC mp_obj_t espnow_add_peer(size_t n_args, const mp_obj_t *args) {
check_esp_err(
esp_now_add_peer(
_get_bytes_len(args[1], ESP_NOW_ETH_ALEN),
ESP_NOW_ROLE_COMBO,
(n_args > 3) ? mp_obj_get_int(args[3]) : 0,
(n_args > 2) ? _get_bytes_len(args[2], ESP_NOW_KEY_LEN) : NULL,
ESP_NOW_KEY_LEN));
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_add_peer_obj, 2, 4, espnow_add_peer);
// ESPNow.del_peer(peer_mac): Unregister peer_mac.
// Raise OSError if not initialised.
// Raise ValueError if peer is not a bytes-like objects or wrong length.
// Return None.
STATIC mp_obj_t espnow_del_peer(mp_obj_t _, mp_obj_t peer) {
esp_now_del_peer(_get_bytes_len(peer, ESP_NOW_ETH_ALEN));
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_del_peer_obj, espnow_del_peer);
STATIC const mp_rom_map_elem_t esp_espnow_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_active), MP_ROM_PTR(&espnow_active_obj) },
{ MP_ROM_QSTR(MP_QSTR_config), MP_ROM_PTR(&espnow_config_obj) },
{ MP_ROM_QSTR(MP_QSTR_recvinto), MP_ROM_PTR(&espnow_recvinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&espnow_send_obj) },
// Peer management functions
{ MP_ROM_QSTR(MP_QSTR_set_pmk), MP_ROM_PTR(&espnow_set_pmk_obj) },
{ MP_ROM_QSTR(MP_QSTR_add_peer), MP_ROM_PTR(&espnow_add_peer_obj) },
{ MP_ROM_QSTR(MP_QSTR_del_peer), MP_ROM_PTR(&espnow_del_peer_obj) },
};
STATIC MP_DEFINE_CONST_DICT(esp_espnow_locals_dict, esp_espnow_locals_dict_table);
STATIC const mp_rom_map_elem_t espnow_globals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR__espnow) },
{ MP_ROM_QSTR(MP_QSTR_ESPNowBase), MP_ROM_PTR(&esp_espnow_type) },
{ MP_ROM_QSTR(MP_QSTR_MAX_DATA_LEN), MP_ROM_INT(ESP_NOW_MAX_DATA_LEN)},
{ MP_ROM_QSTR(MP_QSTR_ADDR_LEN), MP_ROM_INT(ESP_NOW_ETH_ALEN)},
{ MP_ROM_QSTR(MP_QSTR_KEY_LEN), MP_ROM_INT(ESP_NOW_KEY_LEN)},
{ MP_ROM_QSTR(MP_QSTR_MAX_TOTAL_PEER_NUM), MP_ROM_INT(ESP_NOW_MAX_TOTAL_PEER_NUM)},
{ MP_ROM_QSTR(MP_QSTR_MAX_ENCRYPT_PEER_NUM), MP_ROM_INT(ESP_NOW_MAX_ENCRYPT_PEER_NUM)},
};
STATIC MP_DEFINE_CONST_DICT(espnow_globals_dict, espnow_globals_dict_table);
// ### Dummy Buffer Protocol support
// ...so asyncio can poll.ipoll() on this device
// Support ioctl(MP_STREAM_POLL, ) for asyncio
STATIC mp_uint_t espnow_stream_ioctl(mp_obj_t self_in, mp_uint_t request,
uintptr_t arg, int *errcode) {
if (request != MP_STREAM_POLL) {
*errcode = MP_EINVAL;
return MP_STREAM_ERROR;
}
esp_espnow_obj_t *self = _get_singleton();
return (self->recv_buffer == NULL) ? 0 : // If not initialised
arg ^ ((ringbuf_avail(self->recv_buffer) == 0) ? MP_STREAM_POLL_RD : 0);
}
STATIC const mp_stream_p_t espnow_stream_p = {
.ioctl = espnow_stream_ioctl,
};
MP_DEFINE_CONST_OBJ_TYPE(
esp_espnow_type,
MP_QSTR_ESPNowBase,
MP_TYPE_FLAG_NONE,
make_new, espnow_make_new,
protocol, &espnow_stream_p,
locals_dict, &esp_espnow_locals_dict
);
const mp_obj_module_t mp_module_espnow = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t *)&espnow_globals_dict,
};
MP_REGISTER_MODULE(MP_QSTR__espnow, mp_module_espnow);
MP_REGISTER_ROOT_POINTER(void *espnow_buffer);
#endif