3b603f29ec
This is just a clean-up of the code. Generated code is exactly the same.
354 lines
12 KiB
C
354 lines
12 KiB
C
/*
|
|
* This file is part of the Micro Python project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include "stm32f4xx_hal.h"
|
|
|
|
#include "mpconfig.h"
|
|
#include "nlr.h"
|
|
#include "misc.h"
|
|
#include "qstr.h"
|
|
#include "obj.h"
|
|
#include "portmodules.h"
|
|
#include "rtc.h"
|
|
|
|
/// \module time - time related functions
|
|
///
|
|
/// The `time` module provides functions for getting the current time and date,
|
|
/// and for sleeping.
|
|
|
|
STATIC const uint16_t days_since_jan1[]= { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 };
|
|
|
|
STATIC bool is_leap_year(mp_uint_t year) {
|
|
return (year % 4 == 0 && year % 100 != 0) || year % 400 == 0;
|
|
}
|
|
|
|
// Month is one based
|
|
STATIC mp_uint_t mod_time_days_in_month(mp_uint_t year, mp_uint_t month) {
|
|
mp_uint_t mdays = days_since_jan1[month] - days_since_jan1[month - 1];
|
|
if (month == 2 && is_leap_year(year)) {
|
|
mdays++;
|
|
}
|
|
return mdays;
|
|
}
|
|
|
|
// compute the day of the year, between 1 and 366
|
|
// month should be between 1 and 12, date should start at 1
|
|
STATIC mp_uint_t mod_time_year_day(mp_uint_t year, mp_uint_t month, mp_uint_t date) {
|
|
mp_uint_t yday = days_since_jan1[month - 1] + date;
|
|
if (month >= 3 && is_leap_year(year)) {
|
|
yday += 1;
|
|
}
|
|
return yday;
|
|
}
|
|
|
|
// returns the number of seconds, as an integer, since 2000-01-01
|
|
mp_uint_t mod_time_seconds_since_2000(mp_uint_t year, mp_uint_t month, mp_uint_t date, mp_uint_t hour, mp_uint_t minute, mp_uint_t second) {
|
|
return
|
|
second
|
|
+ minute * 60
|
|
+ hour * 3600
|
|
+ (mod_time_year_day(year, month, date) - 1
|
|
+ ((year - 2000 + 3) / 4) // add a day each 4 years starting with 2001
|
|
- ((year - 2000 + 99) / 100) // subtract a day each 100 years starting with 2001
|
|
+ ((year - 2000 + 399) / 400) // add a day each 400 years starting with 2001
|
|
) * 86400
|
|
+ (year - 2000) * 31536000;
|
|
}
|
|
|
|
// LEAPOCH corresponds to 2000-03-01, which is a mod-400 year, immediately
|
|
// after Feb 29. We calculate seconds as a signed integer relative to that.
|
|
//
|
|
// Our timebase is is relative to 2000-01-01.
|
|
|
|
#define LEAPOCH ((31 + 29) * 86400)
|
|
|
|
#define DAYS_PER_400Y (365*400 + 97)
|
|
#define DAYS_PER_100Y (365*100 + 24)
|
|
#define DAYS_PER_4Y (365*4 + 1)
|
|
|
|
typedef struct {
|
|
uint16_t tm_year; // i.e. 2014
|
|
uint8_t tm_mon; // 1..12
|
|
uint8_t tm_mday; // 1..31
|
|
uint8_t tm_hour; // 0..23
|
|
uint8_t tm_min; // 0..59
|
|
uint8_t tm_sec; // 0..59
|
|
uint8_t tm_wday; // 0..6 0 = Monday
|
|
uint16_t tm_yday; // 1..366
|
|
} mod_struct_time;
|
|
|
|
STATIC void mod_time_seconds_since_2000_to_struct_time(mp_uint_t t, mod_struct_time *tm) {
|
|
// The following algorithm was adapted from musl's __secs_to_tm and adapted
|
|
// for differences in Micro Python's timebase.
|
|
|
|
mp_int_t seconds = t - LEAPOCH;
|
|
|
|
mp_int_t days = seconds / 86400;
|
|
seconds %= 86400;
|
|
tm->tm_hour = seconds / 3600;
|
|
tm->tm_min = seconds / 60 % 60;
|
|
tm->tm_sec = seconds % 60;
|
|
|
|
mp_int_t wday = (days + 2) % 7; // Mar 1, 2000 was a Wednesday (2)
|
|
if (wday < 0) {
|
|
wday += 7;
|
|
}
|
|
tm->tm_wday = wday;
|
|
|
|
mp_int_t qc_cycles = days / DAYS_PER_400Y;
|
|
days %= DAYS_PER_400Y;
|
|
if (days < 0) {
|
|
days += DAYS_PER_400Y;
|
|
qc_cycles--;
|
|
}
|
|
mp_int_t c_cycles = days / DAYS_PER_100Y;
|
|
if (c_cycles == 4) {
|
|
c_cycles--;
|
|
}
|
|
days -= (c_cycles * DAYS_PER_100Y);
|
|
|
|
mp_int_t q_cycles = days / DAYS_PER_4Y;
|
|
if (q_cycles == 25) {
|
|
q_cycles--;
|
|
}
|
|
days -= q_cycles * DAYS_PER_4Y;
|
|
|
|
mp_int_t years = days / 365;
|
|
if (years == 4) {
|
|
years--;
|
|
}
|
|
days -= (years * 365);
|
|
|
|
/* We will compute tm_yday at the very end
|
|
mp_int_t leap = !years && (q_cycles || !c_cycles);
|
|
|
|
tm->tm_yday = days + 31 + 28 + leap;
|
|
if (tm->tm_yday >= 365 + leap) {
|
|
tm->tm_yday -= 365 + leap;
|
|
}
|
|
|
|
tm->tm_yday++; // Make one based
|
|
*/
|
|
|
|
tm->tm_year = 2000 + years + 4 * q_cycles + 100 * c_cycles + 400 * qc_cycles;
|
|
|
|
// Note: days_in_month[0] corresponds to March
|
|
STATIC const int8_t days_in_month[] = {31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 29};
|
|
|
|
mp_int_t month;
|
|
for (month = 0; days_in_month[month] <= days; month++) {
|
|
days -= days_in_month[month];
|
|
}
|
|
|
|
tm->tm_mon = month + 2;
|
|
if (tm->tm_mon >= 12) {
|
|
tm->tm_mon -= 12;
|
|
tm->tm_year++;
|
|
}
|
|
tm->tm_mday = days + 1; // Make one based
|
|
tm->tm_mon++; // Make one based
|
|
|
|
tm->tm_yday = mod_time_year_day(tm->tm_year, tm->tm_mon, tm->tm_mday);
|
|
}
|
|
|
|
/// \function localtime([secs])
|
|
/// Convert a time expressed in seconds since Jan 1, 2000 into an 8-tuple which
|
|
/// contains: (year, month, mday, hour, minute, second, weekday, yearday)
|
|
/// If secs is not provided or None, then the current time from the RTC is used.
|
|
/// year includes the century (for example 2014)
|
|
/// month is 1-12
|
|
/// mday is 1-31
|
|
/// hour is 0-23
|
|
/// minute is 0-59
|
|
/// second is 0-59
|
|
/// weekday is 0-6 for Mon-Sun.
|
|
/// yearday is 1-366
|
|
STATIC mp_obj_t time_localtime(mp_uint_t n_args, const mp_obj_t *args) {
|
|
if (n_args == 0 || args[0] == mp_const_none) {
|
|
// get current date and time
|
|
// note: need to call get time then get date to correctly access the registers
|
|
RTC_DateTypeDef date;
|
|
RTC_TimeTypeDef time;
|
|
HAL_RTC_GetTime(&RTCHandle, &time, FORMAT_BIN);
|
|
HAL_RTC_GetDate(&RTCHandle, &date, FORMAT_BIN);
|
|
mp_obj_t tuple[8] = {
|
|
mp_obj_new_int(2000 + date.Year),
|
|
mp_obj_new_int(date.Month),
|
|
mp_obj_new_int(date.Date),
|
|
mp_obj_new_int(time.Hours),
|
|
mp_obj_new_int(time.Minutes),
|
|
mp_obj_new_int(time.Seconds),
|
|
mp_obj_new_int(date.WeekDay - 1),
|
|
mp_obj_new_int(mod_time_year_day(2000 + date.Year, date.Month, date.Date)),
|
|
};
|
|
return mp_obj_new_tuple(8, tuple);
|
|
} else {
|
|
mp_int_t seconds = mp_obj_get_int(args[0]);
|
|
mod_struct_time tm;
|
|
mod_time_seconds_since_2000_to_struct_time(seconds, &tm);
|
|
mp_obj_t tuple[8] = {
|
|
tuple[0] = mp_obj_new_int(tm.tm_year),
|
|
tuple[1] = mp_obj_new_int(tm.tm_mon),
|
|
tuple[2] = mp_obj_new_int(tm.tm_mday),
|
|
tuple[3] = mp_obj_new_int(tm.tm_hour),
|
|
tuple[4] = mp_obj_new_int(tm.tm_min),
|
|
tuple[5] = mp_obj_new_int(tm.tm_sec),
|
|
tuple[6] = mp_obj_new_int(tm.tm_wday),
|
|
tuple[7] = mp_obj_new_int(tm.tm_yday),
|
|
};
|
|
return mp_obj_new_tuple(8, tuple);
|
|
}
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(time_localtime_obj, 0, 1, time_localtime);
|
|
|
|
|
|
/// \function mktime()
|
|
/// This is inverse function of localtime. It's argument is a full 8-tuple
|
|
/// which expresses a time as per localtime. It returns an integer which is
|
|
/// the number of seconds since Jan 1, 2000.
|
|
STATIC mp_obj_t time_mktime(mp_obj_t tuple) {
|
|
|
|
mp_uint_t len;
|
|
mp_obj_t *elem;
|
|
|
|
mp_obj_get_array(tuple, &len, &elem);
|
|
|
|
// localtime generates a tuple of len 8. CPython uses 9, so we accept both.
|
|
if (len < 8 || len > 9) {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "mktime needs a tuple of length 8 or 9 (%d given)", len));
|
|
}
|
|
|
|
mp_int_t year = mp_obj_get_int(elem[0]);
|
|
mp_int_t month = mp_obj_get_int(elem[1]);
|
|
mp_int_t mday = mp_obj_get_int(elem[2]);
|
|
mp_int_t hours = mp_obj_get_int(elem[3]);
|
|
mp_int_t minutes = mp_obj_get_int(elem[4]);
|
|
mp_int_t seconds = mp_obj_get_int(elem[5]);
|
|
|
|
// Normalise the tuple. This allows things like:
|
|
//
|
|
// tm_tomorrow = list(time.localtime())
|
|
// tm_tomorrow[2] += 1 # Adds 1 to mday
|
|
// tomorrow = time.mktime(tm_tommorrow)
|
|
//
|
|
// And not have to worry about all the weird overflows.
|
|
//
|
|
// You can subtract dates/times this way as well.
|
|
|
|
minutes += seconds / 60;
|
|
if ((seconds = seconds % 60) < 0) {
|
|
seconds += 60;
|
|
minutes--;
|
|
}
|
|
|
|
hours += minutes / 60;
|
|
if ((minutes = minutes % 60) < 0) {
|
|
minutes += 60;
|
|
hours--;
|
|
}
|
|
|
|
mday += hours / 24;
|
|
if ((hours = hours % 24) < 0) {
|
|
hours += 24;
|
|
mday--;
|
|
}
|
|
|
|
month--; // make month zero based
|
|
year += month / 12;
|
|
if ((month = month % 12) < 0) {
|
|
month += 12;
|
|
year--;
|
|
}
|
|
month++; // back to one based
|
|
|
|
while (mday < 1) {
|
|
if (--month == 0) {
|
|
month = 12;
|
|
year--;
|
|
}
|
|
mday += mod_time_days_in_month(year, month);
|
|
}
|
|
while (mday > mod_time_days_in_month(year, month)) {
|
|
mday -= mod_time_days_in_month(year, month);
|
|
if (++month == 13) {
|
|
month = 1;
|
|
year++;
|
|
}
|
|
}
|
|
return mp_obj_new_int_from_uint(mod_time_seconds_since_2000(year, month, mday, hours, minutes, seconds));
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(time_mktime_obj, time_mktime);
|
|
|
|
|
|
/// \function sleep(seconds)
|
|
/// Sleep for the given number of seconds. Seconds can be a floating-point number to
|
|
/// sleep for a fractional number of seconds.
|
|
STATIC mp_obj_t time_sleep(mp_obj_t seconds_o) {
|
|
#if MICROPY_PY_BUILTINS_FLOAT
|
|
if (MP_OBJ_IS_INT(seconds_o)) {
|
|
#endif
|
|
HAL_Delay(1000 * mp_obj_get_int(seconds_o));
|
|
#if MICROPY_PY_BUILTINS_FLOAT
|
|
} else {
|
|
HAL_Delay((uint32_t)(1000 * mp_obj_get_float(seconds_o)));
|
|
}
|
|
#endif
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(time_sleep_obj, time_sleep);
|
|
|
|
/// \function time()
|
|
/// Returns the number of seconds, as an integer, since 1/1/2000.
|
|
STATIC mp_obj_t time_time(void) {
|
|
// get date and time
|
|
// note: need to call get time then get date to correctly access the registers
|
|
RTC_DateTypeDef date;
|
|
RTC_TimeTypeDef time;
|
|
HAL_RTC_GetTime(&RTCHandle, &time, FORMAT_BIN);
|
|
HAL_RTC_GetDate(&RTCHandle, &date, FORMAT_BIN);
|
|
return mp_obj_new_int(mod_time_seconds_since_2000(2000 + date.Year, date.Month, date.Date, time.Hours, time.Minutes, time.Seconds));
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_0(time_time_obj, time_time);
|
|
|
|
STATIC const mp_map_elem_t time_module_globals_table[] = {
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_utime) },
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_localtime), (mp_obj_t)&time_localtime_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_mktime), (mp_obj_t)&time_mktime_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_sleep), (mp_obj_t)&time_sleep_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_time), (mp_obj_t)&time_time_obj },
|
|
};
|
|
|
|
STATIC MP_DEFINE_CONST_DICT(time_module_globals, time_module_globals_table);
|
|
|
|
const mp_obj_module_t mp_module_utime = {
|
|
.base = { &mp_type_module },
|
|
.name = MP_QSTR_utime,
|
|
.globals = (mp_obj_dict_t*)&time_module_globals,
|
|
};
|