2021-10-24 12:37:30 -07:00

265 lines
8.1 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016, 2017 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "supervisor/spi_flash_api.h"
#include <stdint.h>
#include <string.h>
#include "mpconfigboard.h" // for EXTERNAL_FLASH_QSPI_DUAL
#include "supervisor/shared/external_flash/common_commands.h"
#include "supervisor/shared/external_flash/qspi_flash.h"
#include "samd/cache.h"
#include "samd/dma.h"
#include "atmel_start_pins.h"
#include "hal_gpio.h"
bool spi_flash_command(uint8_t command) {
QSPI->INSTRCTRL.bit.INSTR = command;
QSPI->INSTRFRAME.reg = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI |
QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_READ |
QSPI_INSTRFRAME_INSTREN;
QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE | QSPI_CTRLA_LASTXFER;
while (!QSPI->INTFLAG.bit.INSTREND) {
;
}
QSPI->INTFLAG.reg = QSPI_INTFLAG_INSTREND;
return true;
}
bool spi_flash_read_command(uint8_t command, uint8_t *response, uint32_t length) {
samd_peripherals_disable_and_clear_cache();
QSPI->INSTRCTRL.bit.INSTR = command;
QSPI->INSTRFRAME.reg = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI |
QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_READ |
QSPI_INSTRFRAME_INSTREN |
QSPI_INSTRFRAME_DATAEN;
// Dummy read of INSTRFRAME needed to synchronize.
// See Instruction Transmission Flow Diagram, figure 37.9, page 995
// and Example 4, page 998, section 37.6.8.5.
(volatile uint32_t)QSPI->INSTRFRAME.reg;
memcpy(response, (uint8_t *)QSPI_AHB, length);
QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE | QSPI_CTRLA_LASTXFER;
while (!QSPI->INTFLAG.bit.INSTREND) {
;
}
QSPI->INTFLAG.reg = QSPI_INTFLAG_INSTREND;
samd_peripherals_enable_cache();
return true;
}
bool spi_flash_write_command(uint8_t command, uint8_t *data, uint32_t length) {
samd_peripherals_disable_and_clear_cache();
QSPI->INSTRCTRL.bit.INSTR = command;
QSPI->INSTRFRAME.reg = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI |
QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_WRITE |
QSPI_INSTRFRAME_INSTREN |
(data != NULL ? QSPI_INSTRFRAME_DATAEN : 0);
// Dummy read of INSTRFRAME needed to synchronize.
// See Instruction Transmission Flow Diagram, figure 37.9, page 995
// and Example 4, page 998, section 37.6.8.5.
(volatile uint32_t)QSPI->INSTRFRAME.reg;
if (data != NULL) {
memcpy((uint8_t *)QSPI_AHB, data, length);
}
QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE | QSPI_CTRLA_LASTXFER;
while (!QSPI->INTFLAG.bit.INSTREND) {
;
}
QSPI->INTFLAG.reg = QSPI_INTFLAG_INSTREND;
samd_peripherals_enable_cache();
return true;
}
bool spi_flash_sector_command(uint8_t command, uint32_t address) {
QSPI->INSTRCTRL.bit.INSTR = command;
QSPI->INSTRADDR.bit.ADDR = address;
QSPI->INSTRFRAME.reg = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI |
QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_WRITE |
QSPI_INSTRFRAME_INSTREN |
QSPI_INSTRFRAME_ADDREN;
QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE | QSPI_CTRLA_LASTXFER;
while (!QSPI->INTFLAG.bit.INSTREND) {
;
}
QSPI->INTFLAG.reg = QSPI_INTFLAG_INSTREND;
return true;
}
bool spi_flash_write_data(uint32_t address, uint8_t *data, uint32_t length) {
samd_peripherals_disable_and_clear_cache();
QSPI->INSTRCTRL.bit.INSTR = CMD_PAGE_PROGRAM;
uint32_t mode = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI;
QSPI->INSTRFRAME.reg = mode |
QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_WRITEMEMORY |
QSPI_INSTRFRAME_INSTREN |
QSPI_INSTRFRAME_ADDREN |
QSPI_INSTRFRAME_DATAEN;
memcpy(((uint8_t *)QSPI_AHB) + address, data, length);
// TODO(tannewt): Fix DMA and enable it.
// qspi_dma_write(address, data, length);
QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE | QSPI_CTRLA_LASTXFER;
while (!QSPI->INTFLAG.bit.INSTREND) {
;
}
QSPI->INTFLAG.reg = QSPI_INTFLAG_INSTREND;
samd_peripherals_enable_cache();
return true;
}
bool spi_flash_read_data(uint32_t address, uint8_t *data, uint32_t length) {
samd_peripherals_disable_and_clear_cache();
#ifdef EXTERNAL_FLASH_QSPI_SINGLE
QSPI->INSTRCTRL.bit.INSTR = CMD_READ_DATA;
uint32_t mode = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI;
#elif defined(EXTERNAL_FLASH_QSPI_DUAL)
QSPI->INSTRCTRL.bit.INSTR = CMD_DUAL_READ;
uint32_t mode = QSPI_INSTRFRAME_WIDTH_DUAL_OUTPUT;
#else
QSPI->INSTRCTRL.bit.INSTR = CMD_QUAD_READ;
uint32_t mode = QSPI_INSTRFRAME_WIDTH_QUAD_OUTPUT;
#endif
#ifdef EXTERNAL_FLASH_QSPI_SINGLE
QSPI->INSTRFRAME.reg = mode |
QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_READMEMORY |
QSPI_INSTRFRAME_INSTREN |
QSPI_INSTRFRAME_ADDREN |
QSPI_INSTRFRAME_DATAEN |
QSPI_INSTRFRAME_DUMMYLEN(0);
#else
QSPI->INSTRFRAME.reg = mode |
QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_READMEMORY |
QSPI_INSTRFRAME_INSTREN |
QSPI_INSTRFRAME_ADDREN |
QSPI_INSTRFRAME_DATAEN |
QSPI_INSTRFRAME_DUMMYLEN(8);
#endif
memcpy(data, ((uint8_t *)QSPI_AHB) + address, length);
// TODO(tannewt): Fix DMA and enable it.
// qspi_dma_read(address, data, length);
QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE | QSPI_CTRLA_LASTXFER;
while (!QSPI->INTFLAG.bit.INSTREND) {
;
}
QSPI->INTFLAG.reg = QSPI_INTFLAG_INSTREND;
samd_peripherals_enable_cache();
return true;
}
void spi_flash_init(void) {
MCLK->APBCMASK.bit.QSPI_ = true;
MCLK->AHBMASK.bit.QSPI_ = true;
MCLK->AHBMASK.bit.QSPI_2X_ = false; // Only true if we are doing DDR.
QSPI->CTRLA.reg = QSPI_CTRLA_SWRST;
// We don't need to wait because we're running as fast as the CPU.
// Slow, good for debugging with Saleae
// QSPI->BAUD.bit.BAUD = 32;
// Super fast, may be unreliable when Saleae is connected to high speed lines.
QSPI->BAUD.bit.BAUD = 2;
QSPI->CTRLB.reg = QSPI_CTRLB_MODE_MEMORY | // Serial memory mode (map to QSPI_AHB)
QSPI_CTRLB_DATALEN_8BITS |
QSPI_CTRLB_CSMODE_LASTXFER;
QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE;
// The QSPI is only connected to one set of pins in the SAMD51 so we can hard code it.
#ifdef EXTERNAL_FLASH_QSPI_SINGLE
uint32_t pins[] = {PIN_PA08, PIN_PA09, PIN_PA10, PIN_PA11, PIN_PB10, PIN_PB11};
#elif defined(EXTERNAL_FLASH_QSPI_DUAL)
uint32_t pins[] = {PIN_PA08, PIN_PA09, PIN_PB10, PIN_PB11};
#else
uint32_t pins[] = {PIN_PA08, PIN_PA09, PIN_PA10, PIN_PA11, PIN_PB10, PIN_PB11};
#endif
for (uint8_t i = 0; i < MP_ARRAY_SIZE(pins); i++) {
gpio_set_pin_direction(pins[i], GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(pins[i], GPIO_PULL_OFF);
gpio_set_pin_function(pins[i], GPIO_PIN_FUNCTION_H);
never_reset_pin_number(pins[i]);
}
}
void spi_flash_init_device(const external_flash_device *device) {
check_quad_enable(device);
// TODO(tannewt): Adjust the speed for the found device.
}