circuitpython/ports/raspberrypi/common-hal/memorymap/AddressRange.c
2023-09-07 09:25:02 -07:00

137 lines
6.3 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020 microDev
* Copyright (c) 2023 Bob Abeles
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "shared-bindings/memorymap/AddressRange.h"
#include "py/runtime.h"
#include "hardware/regs/addressmap.h"
// RP2 address map ranges, must be arranged in order by ascending start address
addressmap_rp2_range_t rp2_ranges[] = {
{(uint8_t *)ROM_BASE, 0x00004000, ROM}, // boot ROM
{(uint8_t *)XIP_BASE, 0x00100000, XIP}, // XIP normal cache operation
{(uint8_t *)XIP_NOALLOC_BASE, 0x00100000, XIP}, // XIP check for hit, no update on miss
{(uint8_t *)XIP_NOCACHE_BASE, 0x00100000, XIP}, // XIP don't check for hit, no update on miss
{(uint8_t *)XIP_NOCACHE_NOALLOC_BASE, 0x00100000, XIP}, // XIP bypass cache completely
{(uint8_t *)XIP_CTRL_BASE, 0x00004000, IO}, // XIP control registers
{(uint8_t *)XIP_SRAM_BASE, 0x00004000, SRAM}, // XIP SRAM 16KB XIP cache
{(uint8_t *)XIP_SSI_BASE, 0x00004000, IO}, // XIP SSI registers
{(uint8_t *)SRAM_BASE, 0x00042000, SRAM}, // SRAM 256KB striped plus 16KB contiguous
{(uint8_t *)SRAM0_BASE, 0x00040000, SRAM}, // SRAM0 to SRAM3 256KB non-striped
{(uint8_t *)SYSINFO_BASE, 0x00070000, IO}, // APB peripherals
{(uint8_t *)DMA_BASE, 0x00004000, IO}, // DMA registers
{(uint8_t *)USBCTRL_DPRAM_BASE, 0x00001000, SRAM}, // USB DPSRAM 4KB
{(uint8_t *)USBCTRL_REGS_BASE, 0x00004000, IO}, // USB registers
{(uint8_t *)PIO0_BASE, 0x00004000, IO}, // PIO0 registers
{(uint8_t *)PIO1_BASE, 0x00004000, IO}, // PIO1 registers
{(uint8_t *)SIO_BASE, 0x00001000, IO}, // SIO registers, no aliases
{(uint8_t *)PPB_BASE, 0x00004000, IO} // PPB registers
};
void common_hal_memorymap_addressrange_construct(memorymap_addressrange_obj_t *self,
uint8_t *start_address, size_t length) {
for (size_t i = 0; i < MP_ARRAY_SIZE(rp2_ranges); i++) {
if (start_address <= rp2_ranges[i].start_address) {
uint8_t *range_end_address = rp2_ranges[i].start_address + rp2_ranges[i].len - 1;
uint8_t *end_address = start_address + length - 1;
if (start_address > range_end_address || end_address > range_end_address) {
break;
}
self->start_address = start_address;
self->len = length;
self->type = rp2_ranges[i].type;
return;
}
}
mp_raise_ValueError(translate("Address range not allowed"));
}
size_t common_hal_memorymap_addressrange_get_length(const memorymap_addressrange_obj_t *self) {
return self->len;
}
void common_hal_memorymap_addressrange_set_bytes(const memorymap_addressrange_obj_t *self,
size_t start_index, uint8_t *values, size_t len) {
uint8_t *dest_addr = self->start_address + start_index;
switch (self->type) {
case SRAM:
// Writes to SRAM may be arbitrary length and alignment. We use memcpy() which
// may optimize aligned writes depending on CIRCUITPY_FULL_BUILD of the CP build.
memcpy(dest_addr, values, len);
break;
case IO:
if ((size_t)dest_addr & 0x03 || len & 0x03) {
// Unaligned access or unaligned length not supported by RP2 for IO registers
mp_raise_RuntimeError(translate("Unable to access unaligned IO register"));
} else {
// Aligned access and length, use 32-bit writes
uint32_t *dest_addr32 = (uint32_t *)dest_addr;
size_t access_count = len >> 2;
for (size_t i = 0; i < access_count; i++) {
*dest_addr32++ = ((uint32_t *)values)[i];
}
}
break;
case XIP:
case ROM:
// XIP and ROM are read-only
mp_raise_RuntimeError(translate("Unable to write to read-only memory"));
break;
}
}
void common_hal_memorymap_addressrange_get_bytes(const memorymap_addressrange_obj_t *self,
size_t start_index, size_t len, uint8_t *values) {
uint8_t *src_addr = self->start_address + start_index;
switch (self->type) {
case SRAM:
case XIP:
case ROM:
// Reads from these sources may be arbitrary length and alignment. We use memcpy()
// which may optimize aligned writes depending on CIRCUITPY_FULL_BUILD of the CP build.
memcpy(values, src_addr, len);
break;
case IO:
if ((size_t)src_addr & 0x03 || len & 0x03) {
// Unaligned access or unaligned length not supported by RP2 for IO registers
mp_raise_RuntimeError(translate("Unable to access unaligned IO register"));
} else {
// Aligned access and length, use 32-bit reads
uint32_t *src_addr32 = (uint32_t *)src_addr;
size_t access_count = len >> 2;
for (size_t i = 0; i < access_count; i++) {
((uint32_t *)values)[i] = *src_addr32++;
}
}
break;
}
}