circuitpython/py/objtype.c

1192 lines
45 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2014-2016 Paul Sokolovsky
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stddef.h>
#include <string.h>
#include <assert.h>
#include "py/nlr.h"
#include "py/objtype.h"
#include "py/runtime0.h"
#include "py/runtime.h"
#if 0 // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#else // don't print debugging info
#define DEBUG_PRINT (0)
#define DEBUG_printf(...) (void)0
#endif
STATIC mp_obj_t static_class_method_make_new(const mp_obj_type_t *self_in, size_t n_args, size_t n_kw, const mp_obj_t *args);
/******************************************************************************/
// instance object
STATIC mp_obj_t mp_obj_new_instance(const mp_obj_type_t *class, size_t subobjs) {
mp_obj_instance_t *o = m_new_obj_var(mp_obj_instance_t, mp_obj_t, subobjs);
o->base.type = class;
mp_map_init(&o->members, 0);
mp_seq_clear(o->subobj, 0, subobjs, sizeof(*o->subobj));
return MP_OBJ_FROM_PTR(o);
}
STATIC int instance_count_native_bases(const mp_obj_type_t *type, const mp_obj_type_t **last_native_base) {
int count = 0;
for (;;) {
if (type == &mp_type_object) {
// Not a "real" type, end search here.
return count;
} else if (mp_obj_is_native_type(type)) {
// Native types don't have parents (at least not from our perspective) so end.
*last_native_base = type;
return count + 1;
} else if (type->parent == NULL) {
// No parents so end search here.
return count;
} else if (((mp_obj_base_t*)type->parent)->type == &mp_type_tuple) {
// Multiple parents, search through them all recursively.
const mp_obj_tuple_t *parent_tuple = type->parent;
const mp_obj_t *item = parent_tuple->items;
const mp_obj_t *top = item + parent_tuple->len;
for (; item < top; ++item) {
assert(MP_OBJ_IS_TYPE(*item, &mp_type_type));
const mp_obj_type_t *bt = (const mp_obj_type_t *)MP_OBJ_TO_PTR(*item);
count += instance_count_native_bases(bt, last_native_base);
}
return count;
} else {
// A single parent, use iteration to continue the search.
type = type->parent;
}
}
}
// TODO
// This implements depth-first left-to-right MRO, which is not compliant with Python3 MRO
// http://python-history.blogspot.com/2010/06/method-resolution-order.html
// https://www.python.org/download/releases/2.3/mro/
//
// will keep lookup->dest[0]'s value (should be MP_OBJ_NULL on invocation) if attribute
// is not found
// will set lookup->dest[0] to MP_OBJ_SENTINEL if special method was found in a native
// type base via slot id (as specified by lookup->meth_offset). As there can be only one
// native base, it's known that it applies to instance->subobj[0]. In most cases, we also
// don't need to know which type it was - because instance->subobj[0] is of that type.
// The only exception is when object is not yet constructed, then we need to know base
// native type to construct its instance->subobj[0] from. But this case is handled via
// instance_count_native_bases(), which returns a native base which it saw.
struct class_lookup_data {
mp_obj_instance_t *obj;
qstr attr;
size_t meth_offset;
mp_obj_t *dest;
bool is_type;
};
STATIC void mp_obj_class_lookup(struct class_lookup_data *lookup, const mp_obj_type_t *type) {
assert(lookup->dest[0] == MP_OBJ_NULL);
assert(lookup->dest[1] == MP_OBJ_NULL);
for (;;) {
// Optimize special method lookup for native types
// This avoids extra method_name => slot lookup. On the other hand,
// this should not be applied to class types, as will result in extra
// lookup either.
if (lookup->meth_offset != 0 && mp_obj_is_native_type(type)) {
if (*(void**)((char*)type + lookup->meth_offset) != NULL) {
DEBUG_printf("mp_obj_class_lookup: matched special meth slot for %s\n", qstr_str(lookup->attr));
lookup->dest[0] = MP_OBJ_SENTINEL;
return;
}
}
if (type->locals_dict != NULL) {
// search locals_dict (the set of methods/attributes)
assert(type->locals_dict->base.type == &mp_type_dict); // MicroPython restriction, for now
mp_map_t *locals_map = &type->locals_dict->map;
mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(lookup->attr), MP_MAP_LOOKUP);
if (elem != NULL) {
if (lookup->is_type) {
// If we look up a class method, we need to return original type for which we
// do a lookup, not a (base) type in which we found the class method.
const mp_obj_type_t *org_type = (const mp_obj_type_t*)lookup->obj;
mp_convert_member_lookup(MP_OBJ_NULL, org_type, elem->value, lookup->dest);
} else {
mp_obj_instance_t *obj = lookup->obj;
mp_obj_t obj_obj;
if (obj != NULL && mp_obj_is_native_type(type) && type != &mp_type_object /* object is not a real type */) {
// If we're dealing with native base class, then it applies to native sub-object
obj_obj = obj->subobj[0];
} else {
obj_obj = MP_OBJ_FROM_PTR(obj);
}
mp_convert_member_lookup(obj_obj, type, elem->value, lookup->dest);
}
#if DEBUG_PRINT
printf("mp_obj_class_lookup: Returning: ");
mp_obj_print(lookup->dest[0], PRINT_REPR); printf(" ");
mp_obj_print(lookup->dest[1], PRINT_REPR); printf("\n");
#endif
return;
}
}
// Previous code block takes care about attributes defined in .locals_dict,
// but some attributes of native types may be handled using .load_attr method,
// so make sure we try to lookup those too.
if (lookup->obj != NULL && !lookup->is_type && mp_obj_is_native_type(type) && type != &mp_type_object /* object is not a real type */) {
mp_load_method_maybe(lookup->obj->subobj[0], lookup->attr, lookup->dest);
if (lookup->dest[0] != MP_OBJ_NULL) {
return;
}
}
// attribute not found, keep searching base classes
if (type->parent == NULL) {
return;
} else if (((mp_obj_base_t*)type->parent)->type == &mp_type_tuple) {
const mp_obj_tuple_t *parent_tuple = type->parent;
const mp_obj_t *item = parent_tuple->items;
const mp_obj_t *top = item + parent_tuple->len - 1;
for (; item < top; ++item) {
assert(MP_OBJ_IS_TYPE(*item, &mp_type_type));
mp_obj_type_t *bt = (mp_obj_type_t*)MP_OBJ_TO_PTR(*item);
if (bt == &mp_type_object) {
// Not a "real" type
continue;
}
mp_obj_class_lookup(lookup, bt);
if (lookup->dest[0] != MP_OBJ_NULL) {
return;
}
}
// search last base (simple tail recursion elimination)
assert(MP_OBJ_IS_TYPE(*item, &mp_type_type));
type = (mp_obj_type_t*)MP_OBJ_TO_PTR(*item);
} else {
type = type->parent;
}
if (type == &mp_type_object) {
// Not a "real" type
return;
}
}
}
STATIC void instance_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
mp_obj_instance_t *self = MP_OBJ_TO_PTR(self_in);
qstr meth = (kind == PRINT_STR) ? MP_QSTR___str__ : MP_QSTR___repr__;
mp_obj_t member[2] = {MP_OBJ_NULL};
struct class_lookup_data lookup = {
.obj = self,
.attr = meth,
.meth_offset = offsetof(mp_obj_type_t, print),
.dest = member,
.is_type = false,
};
mp_obj_class_lookup(&lookup, self->base.type);
if (member[0] == MP_OBJ_NULL && kind == PRINT_STR) {
// If there's no __str__, fall back to __repr__
lookup.attr = MP_QSTR___repr__;
lookup.meth_offset = 0;
mp_obj_class_lookup(&lookup, self->base.type);
}
if (member[0] == MP_OBJ_SENTINEL) {
// Handle Exception subclasses specially
if (mp_obj_is_native_exception_instance(self->subobj[0])) {
if (kind != PRINT_STR) {
mp_print_str(print, qstr_str(self->base.type->name));
}
mp_obj_print_helper(print, self->subobj[0], kind | PRINT_EXC_SUBCLASS);
} else {
mp_obj_print_helper(print, self->subobj[0], kind);
}
return;
}
if (member[0] != MP_OBJ_NULL) {
mp_obj_t r = mp_call_function_1(member[0], self_in);
mp_obj_print_helper(print, r, PRINT_STR);
return;
}
// TODO: CPython prints fully-qualified type name
mp_printf(print, "<%s object at %p>", mp_obj_get_type_str(self_in), self);
}
mp_obj_t mp_obj_instance_make_new(const mp_obj_type_t *self, size_t n_args, size_t n_kw, const mp_obj_t *args) {
assert(mp_obj_is_instance_type(self));
const mp_obj_type_t *native_base;
size_t num_native_bases = instance_count_native_bases(self, &native_base);
assert(num_native_bases < 2);
mp_obj_instance_t *o = MP_OBJ_TO_PTR(mp_obj_new_instance(self, num_native_bases));
// This executes only "__new__" part of obejection creation.
// TODO: This won't work will for classes with native bases.
// TODO: This is hack, should be resolved along the lines of
// https://github.com/micropython/micropython/issues/606#issuecomment-43685883
if (n_args == 1 && *args == MP_OBJ_SENTINEL) {
return MP_OBJ_FROM_PTR(o);
}
// look for __new__ function
mp_obj_t init_fn[2] = {MP_OBJ_NULL};
struct class_lookup_data lookup = {
.obj = NULL,
.attr = MP_QSTR___new__,
.meth_offset = offsetof(mp_obj_type_t, make_new),
.dest = init_fn,
.is_type = false,
};
mp_obj_class_lookup(&lookup, self);
mp_obj_t new_ret = MP_OBJ_FROM_PTR(o);
if (init_fn[0] == MP_OBJ_SENTINEL) {
// Native type's constructor is what wins - it gets all our arguments,
// and none Python classes are initialized at all.
o->subobj[0] = native_base->make_new(native_base, n_args, n_kw, args);
} else if (init_fn[0] != MP_OBJ_NULL) {
// now call Python class __new__ function with all args
if (n_args == 0 && n_kw == 0) {
mp_obj_t args2[1] = {MP_OBJ_FROM_PTR(self)};
new_ret = mp_call_function_n_kw(init_fn[0], 1, 0, args2);
} else {
mp_obj_t *args2 = m_new(mp_obj_t, 1 + n_args + 2 * n_kw);
args2[0] = MP_OBJ_FROM_PTR(self);
memcpy(args2 + 1, args, (n_args + 2 * n_kw) * sizeof(mp_obj_t));
new_ret = mp_call_function_n_kw(init_fn[0], n_args + 1, n_kw, args2);
m_del(mp_obj_t, args2, 1 + n_args + 2 * n_kw);
}
}
// https://docs.python.org/3.4/reference/datamodel.html#object.__new__
// "If __new__() does not return an instance of cls, then the new instance's __init__() method will not be invoked."
if (mp_obj_get_type(new_ret) != self) {
return new_ret;
}
o = MP_OBJ_TO_PTR(new_ret);
// now call Python class __init__ function with all args
init_fn[0] = init_fn[1] = MP_OBJ_NULL;
lookup.obj = o;
lookup.attr = MP_QSTR___init__;
lookup.meth_offset = 0;
mp_obj_class_lookup(&lookup, self);
if (init_fn[0] != MP_OBJ_NULL) {
mp_obj_t init_ret;
if (n_args == 0 && n_kw == 0) {
init_ret = mp_call_method_n_kw(0, 0, init_fn);
} else {
mp_obj_t *args2 = m_new(mp_obj_t, 2 + n_args + 2 * n_kw);
args2[0] = init_fn[0];
args2[1] = init_fn[1];
memcpy(args2 + 2, args, (n_args + 2 * n_kw) * sizeof(mp_obj_t));
init_ret = mp_call_method_n_kw(n_args, n_kw, args2);
m_del(mp_obj_t, args2, 2 + n_args + 2 * n_kw);
}
if (init_ret != mp_const_none) {
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
mp_raise_TypeError("__init__() should return None");
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"__init__() should return None, not '%s'", mp_obj_get_type_str(init_ret)));
}
}
}
return MP_OBJ_FROM_PTR(o);
}
const qstr mp_unary_op_method_name[] = {
[MP_UNARY_OP_BOOL] = MP_QSTR___bool__,
[MP_UNARY_OP_LEN] = MP_QSTR___len__,
[MP_UNARY_OP_HASH] = MP_QSTR___hash__,
#if MICROPY_PY_ALL_SPECIAL_METHODS
[MP_UNARY_OP_POSITIVE] = MP_QSTR___pos__,
[MP_UNARY_OP_NEGATIVE] = MP_QSTR___neg__,
[MP_UNARY_OP_INVERT] = MP_QSTR___invert__,
#endif
[MP_UNARY_OP_NOT] = MP_QSTR_, // don't need to implement this, used to make sure array has full size
};
STATIC mp_obj_t instance_unary_op(mp_uint_t op, mp_obj_t self_in) {
mp_obj_instance_t *self = MP_OBJ_TO_PTR(self_in);
qstr op_name = mp_unary_op_method_name[op];
/* Still try to lookup native slot
if (op_name == 0) {
return MP_OBJ_NULL;
}
*/
mp_obj_t member[2] = {MP_OBJ_NULL};
struct class_lookup_data lookup = {
.obj = self,
.attr = op_name,
.meth_offset = offsetof(mp_obj_type_t, unary_op),
.dest = member,
.is_type = false,
};
mp_obj_class_lookup(&lookup, self->base.type);
if (member[0] == MP_OBJ_SENTINEL) {
return mp_unary_op(op, self->subobj[0]);
} else if (member[0] != MP_OBJ_NULL) {
mp_obj_t val = mp_call_function_1(member[0], self_in);
// __hash__ must return a small int
if (op == MP_UNARY_OP_HASH) {
val = MP_OBJ_NEW_SMALL_INT(mp_obj_get_int_truncated(val));
}
return val;
} else {
if (op == MP_UNARY_OP_HASH) {
lookup.attr = MP_QSTR___eq__;
mp_obj_class_lookup(&lookup, self->base.type);
if (member[0] == MP_OBJ_NULL) {
// https://docs.python.org/3/reference/datamodel.html#object.__hash__
// "User-defined classes have __eq__() and __hash__() methods by default;
// with them, all objects compare unequal (except with themselves) and
// x.__hash__() returns an appropriate value such that x == y implies
// both that x is y and hash(x) == hash(y)."
return MP_OBJ_NEW_SMALL_INT((mp_uint_t)self_in);
}
// "A class that overrides __eq__() and does not define __hash__() will have its __hash__() implicitly set to None.
// When the __hash__() method of a class is None, instances of the class will raise an appropriate TypeError"
}
return MP_OBJ_NULL; // op not supported
}
}
const qstr mp_binary_op_method_name[] = {
/*
MP_BINARY_OP_OR,
MP_BINARY_OP_XOR,
MP_BINARY_OP_AND,
MP_BINARY_OP_LSHIFT,
MP_BINARY_OP_RSHIFT,
*/
[MP_BINARY_OP_ADD] = MP_QSTR___add__,
[MP_BINARY_OP_SUBTRACT] = MP_QSTR___sub__,
#if MICROPY_PY_ALL_SPECIAL_METHODS
[MP_BINARY_OP_MULTIPLY] = MP_QSTR___mul__,
[MP_BINARY_OP_FLOOR_DIVIDE] = MP_QSTR___floordiv__,
[MP_BINARY_OP_TRUE_DIVIDE] = MP_QSTR___truediv__,
#endif
/*
MP_BINARY_OP_MODULO,
MP_BINARY_OP_POWER,
MP_BINARY_OP_DIVMOD,
MP_BINARY_OP_INPLACE_OR,
MP_BINARY_OP_INPLACE_XOR,
MP_BINARY_OP_INPLACE_AND,
MP_BINARY_OP_INPLACE_LSHIFT,
MP_BINARY_OP_INPLACE_RSHIFT,*/
#if MICROPY_PY_ALL_SPECIAL_METHODS
[MP_BINARY_OP_INPLACE_ADD] = MP_QSTR___iadd__,
[MP_BINARY_OP_INPLACE_SUBTRACT] = MP_QSTR___isub__,
#endif
/*MP_BINARY_OP_INPLACE_MULTIPLY,
MP_BINARY_OP_INPLACE_FLOOR_DIVIDE,
MP_BINARY_OP_INPLACE_TRUE_DIVIDE,
MP_BINARY_OP_INPLACE_MODULO,
MP_BINARY_OP_INPLACE_POWER,*/
[MP_BINARY_OP_LESS] = MP_QSTR___lt__,
[MP_BINARY_OP_MORE] = MP_QSTR___gt__,
[MP_BINARY_OP_EQUAL] = MP_QSTR___eq__,
[MP_BINARY_OP_LESS_EQUAL] = MP_QSTR___le__,
[MP_BINARY_OP_MORE_EQUAL] = MP_QSTR___ge__,
/*
MP_BINARY_OP_NOT_EQUAL, // a != b calls a == b and inverts result
*/
[MP_BINARY_OP_IN] = MP_QSTR___contains__,
/*
MP_BINARY_OP_IS,
*/
[MP_BINARY_OP_EXCEPTION_MATCH] = MP_QSTR_, // not implemented, used to make sure array has full size
};
STATIC mp_obj_t instance_binary_op(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
// Note: For ducktyping, CPython does not look in the instance members or use
// __getattr__ or __getattribute__. It only looks in the class dictionary.
mp_obj_instance_t *lhs = MP_OBJ_TO_PTR(lhs_in);
qstr op_name = mp_binary_op_method_name[op];
/* Still try to lookup native slot
if (op_name == 0) {
return MP_OBJ_NULL;
}
*/
mp_obj_t dest[3] = {MP_OBJ_NULL};
struct class_lookup_data lookup = {
.obj = lhs,
.attr = op_name,
.meth_offset = offsetof(mp_obj_type_t, binary_op),
.dest = dest,
.is_type = false,
};
mp_obj_class_lookup(&lookup, lhs->base.type);
if (dest[0] == MP_OBJ_SENTINEL) {
return mp_binary_op(op, lhs->subobj[0], rhs_in);
} else if (dest[0] != MP_OBJ_NULL) {
dest[2] = rhs_in;
return mp_call_method_n_kw(1, 0, dest);
} else {
return MP_OBJ_NULL; // op not supported
}
}
STATIC void mp_obj_instance_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
// logic: look in instance members then class locals
assert(mp_obj_is_instance_type(mp_obj_get_type(self_in)));
mp_obj_instance_t *self = MP_OBJ_TO_PTR(self_in);
mp_map_elem_t *elem = mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
if (elem != NULL) {
// object member, always treated as a value
// TODO should we check for properties?
dest[0] = elem->value;
return;
}
#if MICROPY_CPYTHON_COMPAT
if (attr == MP_QSTR___dict__) {
// Create a new dict with a copy of the instance's map items.
// This creates, unlike CPython, a 'read-only' __dict__: modifying
// it will not result in modifications to the actual instance members.
mp_map_t *map = &self->members;
mp_obj_t attr_dict = mp_obj_new_dict(map->used);
for (size_t i = 0; i < map->alloc; ++i) {
if (MP_MAP_SLOT_IS_FILLED(map, i)) {
mp_obj_dict_store(attr_dict, map->table[i].key, map->table[i].value);
}
}
dest[0] = attr_dict;
return;
}
#endif
struct class_lookup_data lookup = {
.obj = self,
.attr = attr,
.meth_offset = 0,
.dest = dest,
.is_type = false,
};
mp_obj_class_lookup(&lookup, self->base.type);
mp_obj_t member = dest[0];
if (member != MP_OBJ_NULL) {
#if MICROPY_PY_BUILTINS_PROPERTY
if (MP_OBJ_IS_TYPE(member, &mp_type_property)) {
// object member is a property; delegate the load to the property
// Note: This is an optimisation for code size and execution time.
// The proper way to do it is have the functionality just below
// in a __get__ method of the property object, and then it would
// be called by the descriptor code down below. But that way
// requires overhead for the nested mp_call's and overhead for
// the code.
const mp_obj_t *proxy = mp_obj_property_get(member);
if (proxy[0] == mp_const_none) {
mp_raise_msg(&mp_type_AttributeError, "unreadable attribute");
} else {
dest[0] = mp_call_function_n_kw(proxy[0], 1, 0, &self_in);
}
return;
}
#endif
#if MICROPY_PY_DESCRIPTORS
// found a class attribute; if it has a __get__ method then call it with the
// class instance and class as arguments and return the result
// Note that this is functionally correct but very slow: each load_attr
// requires an extra mp_load_method_maybe to check for the __get__.
mp_obj_t attr_get_method[4];
mp_load_method_maybe(member, MP_QSTR___get__, attr_get_method);
if (attr_get_method[0] != MP_OBJ_NULL) {
attr_get_method[2] = self_in;
attr_get_method[3] = MP_OBJ_FROM_PTR(mp_obj_get_type(self_in));
dest[0] = mp_call_method_n_kw(2, 0, attr_get_method);
}
#endif
return;
}
// try __getattr__
if (attr != MP_QSTR___getattr__) {
#if MICROPY_PY_DELATTR_SETATTR
// If the requested attr is __setattr__/__delattr__ then don't delegate the lookup
// to __getattr__. If we followed CPython's behaviour then __setattr__/__delattr__
// would have already been found in the "object" base class.
if (attr == MP_QSTR___setattr__ || attr == MP_QSTR___delattr__) {
return;
}
#endif
mp_obj_t dest2[3];
mp_load_method_maybe(self_in, MP_QSTR___getattr__, dest2);
if (dest2[0] != MP_OBJ_NULL) {
// __getattr__ exists, call it and return its result
// XXX if this fails to load the requested attr, should we catch the attribute error and return silently?
dest2[2] = MP_OBJ_NEW_QSTR(attr);
dest[0] = mp_call_method_n_kw(1, 0, dest2);
return;
}
}
}
STATIC bool mp_obj_instance_store_attr(mp_obj_t self_in, qstr attr, mp_obj_t value) {
mp_obj_instance_t *self = MP_OBJ_TO_PTR(self_in);
#if MICROPY_PY_BUILTINS_PROPERTY || MICROPY_PY_DESCRIPTORS
// With property and/or descriptors enabled we need to do a lookup
// first in the class dict for the attribute to see if the store should
// be delegated.
// Note: this makes all stores slow... how to fix?
mp_obj_t member[2] = {MP_OBJ_NULL};
struct class_lookup_data lookup = {
.obj = self,
.attr = attr,
.meth_offset = 0,
.dest = member,
.is_type = false,
};
mp_obj_class_lookup(&lookup, self->base.type);
if (member[0] != MP_OBJ_NULL) {
#if MICROPY_PY_BUILTINS_PROPERTY
if (MP_OBJ_IS_TYPE(member[0], &mp_type_property)) {
// attribute exists and is a property; delegate the store/delete
// Note: This is an optimisation for code size and execution time.
// The proper way to do it is have the functionality just below in
// a __set__/__delete__ method of the property object, and then it
// would be called by the descriptor code down below. But that way
// requires overhead for the nested mp_call's and overhead for
// the code.
const mp_obj_t *proxy = mp_obj_property_get(member[0]);
mp_obj_t dest[2] = {self_in, value};
if (value == MP_OBJ_NULL) {
// delete attribute
if (proxy[2] == mp_const_none) {
// TODO better error message?
return false;
} else {
mp_call_function_n_kw(proxy[2], 1, 0, dest);
return true;
}
} else {
// store attribute
if (proxy[1] == mp_const_none) {
// TODO better error message?
return false;
} else {
mp_call_function_n_kw(proxy[1], 2, 0, dest);
return true;
}
}
}
#endif
#if MICROPY_PY_DESCRIPTORS
// found a class attribute; if it has a __set__/__delete__ method then
// call it with the class instance (and value) as arguments
if (value == MP_OBJ_NULL) {
// delete attribute
mp_obj_t attr_delete_method[3];
mp_load_method_maybe(member[0], MP_QSTR___delete__, attr_delete_method);
if (attr_delete_method[0] != MP_OBJ_NULL) {
attr_delete_method[2] = self_in;
mp_call_method_n_kw(1, 0, attr_delete_method);
return true;
}
} else {
// store attribute
mp_obj_t attr_set_method[4];
mp_load_method_maybe(member[0], MP_QSTR___set__, attr_set_method);
if (attr_set_method[0] != MP_OBJ_NULL) {
attr_set_method[2] = self_in;
attr_set_method[3] = value;
mp_call_method_n_kw(2, 0, attr_set_method);
return true;
}
}
#endif
}
#endif
if (value == MP_OBJ_NULL) {
// delete attribute
#if MICROPY_PY_DELATTR_SETATTR
// try __delattr__ first
mp_obj_t attr_delattr_method[3];
mp_load_method_maybe(self_in, MP_QSTR___delattr__, attr_delattr_method);
if (attr_delattr_method[0] != MP_OBJ_NULL) {
// __delattr__ exists, so call it
attr_delattr_method[2] = MP_OBJ_NEW_QSTR(attr);
mp_call_method_n_kw(1, 0, attr_delattr_method);
return true;
}
#endif
mp_map_elem_t *elem = mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_REMOVE_IF_FOUND);
return elem != NULL;
} else {
// store attribute
#if MICROPY_PY_DELATTR_SETATTR
// try __setattr__ first
mp_obj_t attr_setattr_method[4];
mp_load_method_maybe(self_in, MP_QSTR___setattr__, attr_setattr_method);
if (attr_setattr_method[0] != MP_OBJ_NULL) {
// __setattr__ exists, so call it
attr_setattr_method[2] = MP_OBJ_NEW_QSTR(attr);
attr_setattr_method[3] = value;
mp_call_method_n_kw(2, 0, attr_setattr_method);
return true;
}
#endif
mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value;
return true;
}
}
void mp_obj_instance_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
if (dest[0] == MP_OBJ_NULL) {
mp_obj_instance_load_attr(self_in, attr, dest);
} else {
if (mp_obj_instance_store_attr(self_in, attr, dest[1])) {
dest[0] = MP_OBJ_NULL; // indicate success
}
}
}
STATIC mp_obj_t instance_subscr(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) {
mp_obj_instance_t *self = MP_OBJ_TO_PTR(self_in);
mp_obj_t member[2] = {MP_OBJ_NULL};
struct class_lookup_data lookup = {
.obj = self,
.meth_offset = offsetof(mp_obj_type_t, subscr),
.dest = member,
.is_type = false,
};
size_t meth_args;
if (value == MP_OBJ_NULL) {
// delete item
lookup.attr = MP_QSTR___delitem__;
mp_obj_class_lookup(&lookup, self->base.type);
meth_args = 2;
} else if (value == MP_OBJ_SENTINEL) {
// load item
lookup.attr = MP_QSTR___getitem__;
mp_obj_class_lookup(&lookup, self->base.type);
meth_args = 2;
} else {
// store item
lookup.attr = MP_QSTR___setitem__;
mp_obj_class_lookup(&lookup, self->base.type);
meth_args = 3;
}
if (member[0] == MP_OBJ_SENTINEL) {
return mp_obj_subscr(self->subobj[0], index, value);
} else if (member[0] != MP_OBJ_NULL) {
mp_obj_t args[3] = {self_in, index, value};
// TODO probably need to call mp_convert_member_lookup, and use mp_call_method_n_kw
mp_obj_t ret = mp_call_function_n_kw(member[0], meth_args, 0, args);
if (value == MP_OBJ_SENTINEL) {
return ret;
} else {
return mp_const_none;
}
} else {
return MP_OBJ_NULL; // op not supported
}
}
STATIC mp_obj_t mp_obj_instance_get_call(mp_obj_t self_in, mp_obj_t *member) {
mp_obj_instance_t *self = MP_OBJ_TO_PTR(self_in);
struct class_lookup_data lookup = {
.obj = self,
.attr = MP_QSTR___call__,
.meth_offset = offsetof(mp_obj_type_t, call),
.dest = member,
.is_type = false,
};
mp_obj_class_lookup(&lookup, self->base.type);
return member[0];
}
bool mp_obj_instance_is_callable(mp_obj_t self_in) {
mp_obj_t member[2] = {MP_OBJ_NULL, MP_OBJ_NULL};
return mp_obj_instance_get_call(self_in, member) != MP_OBJ_NULL;
}
mp_obj_t mp_obj_instance_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_obj_t member[2] = {MP_OBJ_NULL, MP_OBJ_NULL};
mp_obj_t call = mp_obj_instance_get_call(self_in, member);
if (call == MP_OBJ_NULL) {
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
mp_raise_TypeError("object not callable");
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"'%s' object is not callable", mp_obj_get_type_str(self_in)));
}
}
mp_obj_instance_t *self = MP_OBJ_TO_PTR(self_in);
if (call == MP_OBJ_SENTINEL) {
return mp_call_function_n_kw(self->subobj[0], n_args, n_kw, args);
}
return mp_call_method_self_n_kw(member[0], member[1], n_args, n_kw, args);
}
STATIC mp_obj_t instance_getiter(mp_obj_t self_in, mp_obj_iter_buf_t *iter_buf) {
mp_obj_instance_t *self = MP_OBJ_TO_PTR(self_in);
mp_obj_t member[2] = {MP_OBJ_NULL};
struct class_lookup_data lookup = {
.obj = self,
.attr = MP_QSTR___iter__,
.meth_offset = offsetof(mp_obj_type_t, getiter),
.dest = member,
.is_type = false,
};
mp_obj_class_lookup(&lookup, self->base.type);
if (member[0] == MP_OBJ_NULL) {
return MP_OBJ_NULL;
} else if (member[0] == MP_OBJ_SENTINEL) {
mp_obj_type_t *type = mp_obj_get_type(self->subobj[0]);
return type->getiter(self->subobj[0], iter_buf);
} else {
return mp_call_method_n_kw(0, 0, member);
}
}
STATIC mp_int_t instance_get_buffer(mp_obj_t self_in, mp_buffer_info_t *bufinfo, mp_uint_t flags) {
mp_obj_instance_t *self = MP_OBJ_TO_PTR(self_in);
mp_obj_t member[2] = {MP_OBJ_NULL};
struct class_lookup_data lookup = {
.obj = self,
.attr = MP_QSTR_, // don't actually look for a method
.meth_offset = offsetof(mp_obj_type_t, buffer_p.get_buffer),
.dest = member,
.is_type = false,
};
mp_obj_class_lookup(&lookup, self->base.type);
if (member[0] == MP_OBJ_SENTINEL) {
mp_obj_type_t *type = mp_obj_get_type(self->subobj[0]);
return type->buffer_p.get_buffer(self->subobj[0], bufinfo, flags);
} else {
return 1; // object does not support buffer protocol
}
}
/******************************************************************************/
// type object
// - the struct is mp_obj_type_t and is defined in obj.h so const types can be made
// - there is a constant mp_obj_type_t (called mp_type_type) for the 'type' object
// - creating a new class (a new type) creates a new mp_obj_type_t
STATIC void type_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
(void)kind;
mp_obj_type_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "<class '%q'>", self->name);
}
STATIC mp_obj_t type_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
(void)type_in;
mp_arg_check_num(n_args, n_kw, 1, 3, false);
switch (n_args) {
case 1:
return MP_OBJ_FROM_PTR(mp_obj_get_type(args[0]));
case 3:
// args[0] = name
// args[1] = bases tuple
// args[2] = locals dict
return mp_obj_new_type(mp_obj_str_get_qstr(args[0]), args[1], args[2]);
default:
mp_raise_TypeError("type takes 1 or 3 arguments");
}
}
STATIC mp_obj_t type_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// instantiate an instance of a class
mp_obj_type_t *self = MP_OBJ_TO_PTR(self_in);
if (self->make_new == NULL) {
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
mp_raise_TypeError("cannot create instance");
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"cannot create '%q' instances", self->name));
}
}
// make new instance
mp_obj_t o = self->make_new(self, n_args, n_kw, args);
// return new instance
return o;
}
STATIC void type_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_type));
mp_obj_type_t *self = MP_OBJ_TO_PTR(self_in);
if (dest[0] == MP_OBJ_NULL) {
// load attribute
#if MICROPY_CPYTHON_COMPAT
if (attr == MP_QSTR___name__) {
dest[0] = MP_OBJ_NEW_QSTR(self->name);
return;
}
#endif
struct class_lookup_data lookup = {
.obj = (mp_obj_instance_t*)self,
.attr = attr,
.meth_offset = 0,
.dest = dest,
.is_type = true,
};
mp_obj_class_lookup(&lookup, self);
} else {
// delete/store attribute
// TODO CPython allows STORE_ATTR to a class, but is this the correct implementation?
if (self->locals_dict != NULL) {
assert(self->locals_dict->base.type == &mp_type_dict); // MicroPython restriction, for now
mp_map_t *locals_map = &self->locals_dict->map;
if (dest[1] == MP_OBJ_NULL) {
// delete attribute
mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_REMOVE_IF_FOUND);
// note that locals_map may be in ROM, so remove will fail in that case
if (elem != NULL) {
dest[0] = MP_OBJ_NULL; // indicate success
}
} else {
// store attribute
mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
// note that locals_map may be in ROM, so add will fail in that case
if (elem != NULL) {
elem->value = dest[1];
dest[0] = MP_OBJ_NULL; // indicate success
}
}
}
}
}
const mp_obj_type_t mp_type_type = {
{ &mp_type_type },
.name = MP_QSTR_type,
.print = type_print,
.make_new = type_make_new,
.call = type_call,
.unary_op = mp_generic_unary_op,
.attr = type_attr,
};
mp_obj_t mp_obj_new_type(qstr name, mp_obj_t bases_tuple, mp_obj_t locals_dict) {
assert(MP_OBJ_IS_TYPE(bases_tuple, &mp_type_tuple)); // MicroPython restriction, for now
assert(MP_OBJ_IS_TYPE(locals_dict, &mp_type_dict)); // MicroPython restriction, for now
// TODO might need to make a copy of locals_dict; at least that's how CPython does it
// Basic validation of base classes
size_t len;
mp_obj_t *items;
mp_obj_tuple_get(bases_tuple, &len, &items);
for (size_t i = 0; i < len; i++) {
assert(MP_OBJ_IS_TYPE(items[i], &mp_type_type));
mp_obj_type_t *t = MP_OBJ_TO_PTR(items[i]);
// TODO: Verify with CPy, tested on function type
if (t->make_new == NULL) {
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
mp_raise_TypeError("type is not an acceptable base type");
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"type '%q' is not an acceptable base type", t->name));
}
}
}
mp_obj_type_t *o = m_new0(mp_obj_type_t, 1);
o->base.type = &mp_type_type;
o->name = name;
o->print = instance_print;
o->make_new = mp_obj_instance_make_new;
o->call = mp_obj_instance_call;
o->unary_op = instance_unary_op;
o->binary_op = instance_binary_op;
o->attr = mp_obj_instance_attr;
o->subscr = instance_subscr;
o->getiter = instance_getiter;
//o->iternext = ; not implemented
o->buffer_p.get_buffer = instance_get_buffer;
if (len > 0) {
// Inherit protocol from a base class. This allows to define an
// abstract base class which would translate C-level protocol to
// Python method calls, and any subclass inheriting from it will
// support this feature.
o->protocol = ((mp_obj_type_t*)MP_OBJ_TO_PTR(items[0]))->protocol;
if (len >= 2) {
o->parent = MP_OBJ_TO_PTR(bases_tuple);
} else {
o->parent = MP_OBJ_TO_PTR(items[0]);
}
}
o->locals_dict = MP_OBJ_TO_PTR(locals_dict);
const mp_obj_type_t *native_base;
size_t num_native_bases = instance_count_native_bases(o, &native_base);
if (num_native_bases > 1) {
mp_raise_TypeError("multiple bases have instance lay-out conflict");
}
mp_map_t *locals_map = &o->locals_dict->map;
mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(MP_QSTR___new__), MP_MAP_LOOKUP);
if (elem != NULL) {
// __new__ slot exists; check if it is a function
if (MP_OBJ_IS_FUN(elem->value)) {
// __new__ is a function, wrap it in a staticmethod decorator
elem->value = static_class_method_make_new(&mp_type_staticmethod, 1, 0, &elem->value);
}
}
return MP_OBJ_FROM_PTR(o);
}
/******************************************************************************/
// super object
typedef struct _mp_obj_super_t {
mp_obj_base_t base;
mp_obj_t type;
mp_obj_t obj;
} mp_obj_super_t;
STATIC void super_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
(void)kind;
mp_obj_super_t *self = MP_OBJ_TO_PTR(self_in);
mp_print_str(print, "<super: ");
mp_obj_print_helper(print, self->type, PRINT_STR);
mp_print_str(print, ", ");
mp_obj_print_helper(print, self->obj, PRINT_STR);
mp_print_str(print, ">");
}
STATIC mp_obj_t super_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
(void)type_in;
// 0 arguments are turned into 2 in the compiler
// 1 argument is not yet implemented
mp_arg_check_num(n_args, n_kw, 2, 2, false);
mp_obj_super_t *o = m_new_obj(mp_obj_super_t);
*o = (mp_obj_super_t){{type_in}, args[0], args[1]};
return MP_OBJ_FROM_PTR(o);
}
STATIC void super_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
if (dest[0] != MP_OBJ_NULL) {
// not load attribute
return;
}
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_super));
mp_obj_super_t *self = MP_OBJ_TO_PTR(self_in);
assert(MP_OBJ_IS_TYPE(self->type, &mp_type_type));
mp_obj_type_t *type = MP_OBJ_TO_PTR(self->type);
struct class_lookup_data lookup = {
.obj = MP_OBJ_TO_PTR(self->obj),
.attr = attr,
.meth_offset = 0,
.dest = dest,
.is_type = false,
};
if (type->parent == NULL) {
// no parents, do nothing
} else if (((mp_obj_base_t*)type->parent)->type == &mp_type_tuple) {
const mp_obj_tuple_t *parent_tuple = type->parent;
size_t len = parent_tuple->len;
const mp_obj_t *items = parent_tuple->items;
for (size_t i = 0; i < len; i++) {
assert(MP_OBJ_IS_TYPE(items[i], &mp_type_type));
mp_obj_class_lookup(&lookup, (mp_obj_type_t*)MP_OBJ_TO_PTR(items[i]));
if (dest[0] != MP_OBJ_NULL) {
return;
}
}
} else {
mp_obj_class_lookup(&lookup, type->parent);
if (dest[0] != MP_OBJ_NULL) {
return;
}
}
mp_obj_class_lookup(&lookup, &mp_type_object);
}
const mp_obj_type_t mp_type_super = {
{ &mp_type_type },
.name = MP_QSTR_super,
.print = super_print,
.make_new = super_make_new,
.attr = super_attr,
};
void mp_load_super_method(qstr attr, mp_obj_t *dest) {
mp_obj_super_t super = {{&mp_type_super}, dest[1], dest[2]};
mp_load_method(MP_OBJ_FROM_PTR(&super), attr, dest);
}
/******************************************************************************/
// subclassing and built-ins specific to types
// object and classinfo should be type objects
// (but the function will fail gracefully if they are not)
bool mp_obj_is_subclass_fast(mp_const_obj_t object, mp_const_obj_t classinfo) {
for (;;) {
if (object == classinfo) {
return true;
}
// not equivalent classes, keep searching base classes
// object should always be a type object, but just return false if it's not
if (!MP_OBJ_IS_TYPE(object, &mp_type_type)) {
return false;
}
const mp_obj_type_t *self = MP_OBJ_TO_PTR(object);
if (self->parent == NULL) {
// type has no parents
return false;
} else if (((mp_obj_base_t*)self->parent)->type == &mp_type_tuple) {
// get the base objects (they should be type objects)
const mp_obj_tuple_t *parent_tuple = self->parent;
const mp_obj_t *item = parent_tuple->items;
const mp_obj_t *top = item + parent_tuple->len - 1;
// iterate through the base objects
for (; item < top; ++item) {
if (mp_obj_is_subclass_fast(*item, classinfo)) {
return true;
}
}
// search last base (simple tail recursion elimination)
object = *item;
} else {
// type has 1 parent
object = MP_OBJ_FROM_PTR(self->parent);
}
}
}
STATIC mp_obj_t mp_obj_is_subclass(mp_obj_t object, mp_obj_t classinfo) {
size_t len;
mp_obj_t *items;
if (MP_OBJ_IS_TYPE(classinfo, &mp_type_type)) {
len = 1;
items = &classinfo;
} else if (MP_OBJ_IS_TYPE(classinfo, &mp_type_tuple)) {
mp_obj_tuple_get(classinfo, &len, &items);
} else {
mp_raise_TypeError("issubclass() arg 2 must be a class or a tuple of classes");
}
for (size_t i = 0; i < len; i++) {
// We explicitly check for 'object' here since no-one explicitly derives from it
if (items[i] == MP_OBJ_FROM_PTR(&mp_type_object) || mp_obj_is_subclass_fast(object, items[i])) {
return mp_const_true;
}
}
return mp_const_false;
}
STATIC mp_obj_t mp_builtin_issubclass(mp_obj_t object, mp_obj_t classinfo) {
if (!MP_OBJ_IS_TYPE(object, &mp_type_type)) {
mp_raise_TypeError("issubclass() arg 1 must be a class");
}
return mp_obj_is_subclass(object, classinfo);
}
MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_issubclass_obj, mp_builtin_issubclass);
STATIC mp_obj_t mp_builtin_isinstance(mp_obj_t object, mp_obj_t classinfo) {
return mp_obj_is_subclass(MP_OBJ_FROM_PTR(mp_obj_get_type(object)), classinfo);
}
MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_isinstance_obj, mp_builtin_isinstance);
mp_obj_t mp_instance_cast_to_native_base(mp_const_obj_t self_in, mp_const_obj_t native_type) {
mp_obj_type_t *self_type = mp_obj_get_type(self_in);
if (!mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(self_type), native_type)) {
return MP_OBJ_NULL;
}
mp_obj_instance_t *self = (mp_obj_instance_t*)MP_OBJ_TO_PTR(self_in);
return self->subobj[0];
}
/******************************************************************************/
// staticmethod and classmethod types (probably should go in a different file)
STATIC mp_obj_t static_class_method_make_new(const mp_obj_type_t *self, size_t n_args, size_t n_kw, const mp_obj_t *args) {
assert(self == &mp_type_staticmethod || self == &mp_type_classmethod);
mp_arg_check_num(n_args, n_kw, 1, 1, false);
mp_obj_static_class_method_t *o = m_new_obj(mp_obj_static_class_method_t);
*o = (mp_obj_static_class_method_t){{self}, args[0]};
return MP_OBJ_FROM_PTR(o);
}
const mp_obj_type_t mp_type_staticmethod = {
{ &mp_type_type },
.name = MP_QSTR_staticmethod,
.make_new = static_class_method_make_new,
};
const mp_obj_type_t mp_type_classmethod = {
{ &mp_type_type },
.name = MP_QSTR_classmethod,
.make_new = static_class_method_make_new,
};