circuitpython/py/objtype.c
Damien George c5966128c7 Implement proper exception type hierarchy.
Each built-in exception is now a type, with base type BaseException.
C exceptions are created by passing a pointer to the exception type to
make an instance of.  When raising an exception from the VM, an
instance is created automatically if an exception type is raised (as
opposed to an exception instance).

Exception matching (RT_BINARY_OP_EXCEPTION_MATCH) is now proper.

Handling of parse error changed to match new exceptions.

mp_const_type renamed to mp_type_type for consistency.
2014-02-15 16:10:44 +00:00

537 lines
19 KiB
C

#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include "nlr.h"
#include "misc.h"
#include "mpconfig.h"
#include "qstr.h"
#include "obj.h"
#include "map.h"
#include "runtime0.h"
#include "runtime.h"
/******************************************************************************/
// class object
// creating an instance of a class makes one of these objects
typedef struct _mp_obj_class_t {
mp_obj_base_t base;
mp_map_t members;
} mp_obj_class_t;
STATIC mp_obj_t mp_obj_new_class(mp_obj_t class) {
mp_obj_class_t *o = m_new_obj(mp_obj_class_t);
o->base.type = class;
mp_map_init(&o->members, 0);
return o;
}
// will return MP_OBJ_NULL if not found
STATIC mp_obj_t mp_obj_class_lookup(const mp_obj_type_t *type, qstr attr) {
for (;;) {
if (type->locals_dict != NULL) {
// search locals_dict (the dynamically created set of methods/attributes)
assert(MP_OBJ_IS_TYPE(type->locals_dict, &dict_type)); // Micro Python restriction, for now
mp_map_t *locals_map = mp_obj_dict_get_map(type->locals_dict);
mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
if (elem != NULL) {
return elem->value;
}
} else if (type->methods != NULL) {
// search methods (the const set of methods)
for (const mp_method_t *meth = type->methods; meth->name != NULL; meth++) {
if (strcmp(meth->name, qstr_str(attr)) == 0) {
return (mp_obj_t)meth->fun;
}
}
}
// attribute not found, keep searching base classes
// for a const struct, this entry might be NULL
if (type->bases_tuple == MP_OBJ_NULL) {
return NULL;
}
uint len;
mp_obj_t *items;
mp_obj_tuple_get(type->bases_tuple, &len, &items);
if (len == 0) {
return NULL;
}
for (uint i = 0; i < len - 1; i++) {
assert(MP_OBJ_IS_TYPE(items[i], &mp_type_type));
mp_obj_t obj = mp_obj_class_lookup((mp_obj_type_t*)items[i], attr);
if (obj != MP_OBJ_NULL) {
return obj;
}
}
// search last base (simple tail recursion elimination)
assert(MP_OBJ_IS_TYPE(items[len - 1], &mp_type_type));
type = (mp_obj_type_t*)items[len - 1];
}
}
STATIC void class_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
print(env, "<%s object at %p>", mp_obj_get_type_str(self_in), self_in);
}
STATIC mp_obj_t class_make_new(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_type));
mp_obj_type_t *self = self_in;
mp_obj_t o = mp_obj_new_class(self_in);
// look for __init__ function
mp_obj_t init_fn = mp_obj_class_lookup(self, MP_QSTR___init__);
if (init_fn != MP_OBJ_NULL) {
// call __init__ function
mp_obj_t init_ret;
if (n_args == 0 && n_kw == 0) {
init_ret = rt_call_function_n_kw(init_fn, 1, 0, (mp_obj_t*)&o);
} else {
mp_obj_t *args2 = m_new(mp_obj_t, 1 + n_args + 2 * n_kw);
args2[0] = o;
memcpy(args2 + 1, args, (n_args + 2 * n_kw) * sizeof(mp_obj_t));
init_ret = rt_call_function_n_kw(init_fn, n_args + 1, n_kw, args2);
m_del(mp_obj_t, args2, 1 + n_args + 2 * n_kw);
}
if (init_ret != mp_const_none) {
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "__init__() should return None, not '%s'", mp_obj_get_type_str(init_ret)));
}
} else {
// TODO
if (n_args != 0) {
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes 0 positional arguments but %d were given", n_args));
}
}
return o;
}
STATIC const qstr unary_op_method_name[] = {
[RT_UNARY_OP_BOOL] = MP_QSTR___bool__,
[RT_UNARY_OP_LEN] = MP_QSTR___len__,
//[RT_UNARY_OP_POSITIVE,
//[RT_UNARY_OP_NEGATIVE,
//[RT_UNARY_OP_INVERT,
[RT_UNARY_OP_NOT] = MP_QSTR_, // don't need to implement this, used to make sure array has full size
};
STATIC mp_obj_t class_unary_op(int op, mp_obj_t self_in) {
mp_obj_class_t *self = self_in;
qstr op_name = unary_op_method_name[op];
if (op_name == 0) {
return MP_OBJ_NULL;
}
mp_obj_t member = mp_obj_class_lookup(self->base.type, op_name);
if (member != MP_OBJ_NULL) {
return rt_call_function_1(member, self_in);
} else {
return MP_OBJ_NULL;
}
}
STATIC const qstr binary_op_method_name[] = {
[RT_BINARY_OP_SUBSCR] = MP_QSTR___getitem__,
/*
RT_BINARY_OP_OR,
RT_BINARY_OP_XOR,
RT_BINARY_OP_AND,
RT_BINARY_OP_LSHIFT,
RT_BINARY_OP_RSHIFT,
*/
[RT_BINARY_OP_ADD] = MP_QSTR___add__,
[RT_BINARY_OP_SUBTRACT] = MP_QSTR___sub__,
/*
RT_BINARY_OP_MULTIPLY,
RT_BINARY_OP_FLOOR_DIVIDE,
RT_BINARY_OP_TRUE_DIVIDE,
RT_BINARY_OP_MODULO,
RT_BINARY_OP_POWER,
RT_BINARY_OP_INPLACE_OR,
RT_BINARY_OP_INPLACE_XOR,
RT_BINARY_OP_INPLACE_AND,
RT_BINARY_OP_INPLACE_LSHIFT,
RT_BINARY_OP_INPLACE_RSHIFT,
RT_BINARY_OP_INPLACE_ADD,
RT_BINARY_OP_INPLACE_SUBTRACT,
RT_BINARY_OP_INPLACE_MULTIPLY,
RT_BINARY_OP_INPLACE_FLOOR_DIVIDE,
RT_BINARY_OP_INPLACE_TRUE_DIVIDE,
RT_BINARY_OP_INPLACE_MODULO,
RT_BINARY_OP_INPLACE_POWER,
RT_BINARY_OP_LESS,
RT_BINARY_OP_MORE,
RT_BINARY_OP_EQUAL,
RT_BINARY_OP_LESS_EQUAL,
RT_BINARY_OP_MORE_EQUAL,
RT_BINARY_OP_NOT_EQUAL,
RT_BINARY_OP_IN,
RT_BINARY_OP_IS,
*/
[RT_BINARY_OP_EXCEPTION_MATCH] = MP_QSTR_, // not implemented, used to make sure array has full size
};
STATIC mp_obj_t class_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
mp_obj_class_t *lhs = lhs_in;
qstr op_name = binary_op_method_name[op];
if (op_name == 0) {
return MP_OBJ_NULL;
}
mp_obj_t member = mp_obj_class_lookup(lhs->base.type, op_name);
if (member != MP_OBJ_NULL) {
return rt_call_function_2(member, lhs_in, rhs_in);
} else {
return MP_OBJ_NULL;
}
}
STATIC void class_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
// logic: look in obj members then class locals (TODO check this against CPython)
mp_obj_class_t *self = self_in;
mp_map_elem_t *elem = mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
if (elem != NULL) {
// object member, always treated as a value
dest[0] = elem->value;
return;
}
mp_obj_t member = mp_obj_class_lookup(self->base.type, attr);
if (member != MP_OBJ_NULL) {
if (mp_obj_is_callable(member)) {
// class member is callable so build a bound method
// check if the methods are functions, static or class methods
// see http://docs.python.org/3.3/howto/descriptor.html
// TODO check that this is the correct place to have this logic
if (MP_OBJ_IS_TYPE(member, &mp_type_staticmethod)) {
// return just the function
dest[0] = ((mp_obj_static_class_method_t*)member)->fun;
} else if (MP_OBJ_IS_TYPE(member, &mp_type_classmethod)) {
// return a bound method, with self being the type of this object
dest[0] = ((mp_obj_static_class_method_t*)member)->fun;
dest[1] = mp_obj_get_type(self_in);
} else {
// return a bound method, with self being this object
dest[0] = member;
dest[1] = self_in;
}
return;
} else {
// class member is a value, so just return that value
dest[0] = member;
return;
}
}
}
STATIC bool class_store_attr(mp_obj_t self_in, qstr attr, mp_obj_t value) {
mp_obj_class_t *self = self_in;
mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value;
return true;
}
bool class_store_item(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) {
mp_obj_class_t *self = self_in;
mp_obj_t member = mp_obj_class_lookup(self->base.type, MP_QSTR___setitem__);
if (member != MP_OBJ_NULL) {
mp_obj_t args[3] = {self_in, index, value};
rt_call_function_n_kw(member, 3, 0, args);
return true;
} else {
return false;
}
}
/******************************************************************************/
// type object
// - the struct is mp_obj_type_t and is defined in obj.h so const types can be made
// - there is a constant mp_obj_type_t (called mp_type_type) for the 'type' object
// - creating a new class (a new type) creates a new mp_obj_type_t
STATIC void type_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
mp_obj_type_t *self = self_in;
print(env, "<class '%s'>", qstr_str(self->name));
}
STATIC mp_obj_t type_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// TODO check n_kw == 0
switch (n_args) {
case 1:
return mp_obj_get_type(args[0]);
case 3:
// args[0] = name
// args[1] = bases tuple
// args[2] = locals dict
return mp_obj_new_type(mp_obj_str_get_qstr(args[0]), args[1], args[2]);
default:
nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError, "type takes 1 or 3 arguments"));
}
}
STATIC mp_obj_t type_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// instantiate an instance of a class
mp_obj_type_t *self = self_in;
if (self->make_new == NULL) {
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "cannot create '%s' instances", qstr_str(self->name)));
}
// make new instance
mp_obj_t o = self->make_new(self, n_args, n_kw, args);
// return new instance
return o;
}
// for fail, do nothing; for attr, dest[0] = value; for method, dest[0] = method, dest[1] = self
STATIC void type_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_type));
mp_obj_type_t *self = self_in;
mp_obj_t member = mp_obj_class_lookup(self, attr);
if (member != MP_OBJ_NULL) {
// check if the methods are functions, static or class methods
// see http://docs.python.org/3.3/howto/descriptor.html
if (MP_OBJ_IS_TYPE(member, &mp_type_staticmethod)) {
// return just the function
dest[0] = ((mp_obj_static_class_method_t*)member)->fun;
} else if (MP_OBJ_IS_TYPE(member, &mp_type_classmethod)) {
// return a bound method, with self being this class
dest[0] = ((mp_obj_static_class_method_t*)member)->fun;
dest[1] = self_in;
} else {
// return just the function
// TODO need to wrap in a type check for the first argument; eg list.append(1,1) needs to throw an exception
dest[0] = (mp_obj_t)member;
}
}
}
STATIC bool type_store_attr(mp_obj_t self_in, qstr attr, mp_obj_t value) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_type));
mp_obj_type_t *self = self_in;
// TODO CPython allows STORE_ATTR to a class, but is this the correct implementation?
if (self->locals_dict != NULL) {
assert(MP_OBJ_IS_TYPE(self->locals_dict, &dict_type)); // Micro Python restriction, for now
mp_map_t *locals_map = ((void*)self->locals_dict + sizeof(mp_obj_base_t)); // XXX hack to get map object from dict object
mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value;
return true;
} else {
return false;
}
}
const mp_obj_type_t mp_type_type = {
{ &mp_type_type },
.name = MP_QSTR_type,
.print = type_print,
.make_new = type_make_new,
.call = type_call,
.load_attr = type_load_attr,
.store_attr = type_store_attr,
};
mp_obj_t mp_obj_new_type(qstr name, mp_obj_t bases_tuple, mp_obj_t locals_dict) {
assert(MP_OBJ_IS_TYPE(bases_tuple, &tuple_type)); // Micro Python restriction, for now
assert(MP_OBJ_IS_TYPE(locals_dict, &dict_type)); // Micro Python restriction, for now
mp_obj_type_t *o = m_new0(mp_obj_type_t, 1);
o->base.type = &mp_type_type;
o->name = name;
o->print = class_print;
o->make_new = class_make_new;
o->unary_op = class_unary_op;
o->binary_op = class_binary_op;
o->load_attr = class_load_attr;
o->store_attr = class_store_attr;
o->store_item = class_store_item;
o->bases_tuple = bases_tuple;
o->locals_dict = locals_dict;
return o;
}
/******************************************************************************/
// super object
typedef struct _mp_obj_super_t {
mp_obj_base_t base;
mp_obj_t type;
mp_obj_t obj;
} mp_obj_super_t;
STATIC void super_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
mp_obj_super_t *self = self_in;
print(env, "<super: ");
mp_obj_print_helper(print, env, self->type, PRINT_STR);
print(env, ", ");
mp_obj_print_helper(print, env, self->obj, PRINT_STR);
print(env, ">");
}
STATIC mp_obj_t super_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
if (n_args != 2 || n_kw != 0) {
// 0 arguments are turned into 2 in the compiler
// 1 argument is not yet implemented
nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError, "super() requires 2 arguments"));
}
return mp_obj_new_super(args[0], args[1]);
}
// for fail, do nothing; for attr, dest[0] = value; for method, dest[0] = method, dest[1] = self
STATIC void super_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
assert(MP_OBJ_IS_TYPE(self_in, &super_type));
mp_obj_super_t *self = self_in;
assert(MP_OBJ_IS_TYPE(self->type, &mp_type_type));
mp_obj_type_t *type = self->type;
// for a const struct, this entry might be NULL
if (type->bases_tuple == MP_OBJ_NULL) {
return;
}
uint len;
mp_obj_t *items;
mp_obj_tuple_get(type->bases_tuple, &len, &items);
for (uint i = 0; i < len; i++) {
assert(MP_OBJ_IS_TYPE(items[i], &mp_type_type));
mp_obj_t member = mp_obj_class_lookup((mp_obj_type_t*)items[i], attr);
if (member != MP_OBJ_NULL) {
// XXX this and the code in class_load_attr need to be factored out
if (mp_obj_is_callable(member)) {
// class member is callable so build a bound method
// check if the methods are functions, static or class methods
// see http://docs.python.org/3.3/howto/descriptor.html
// TODO check that this is the correct place to have this logic
if (MP_OBJ_IS_TYPE(member, &mp_type_staticmethod)) {
// return just the function
dest[0] = ((mp_obj_static_class_method_t*)member)->fun;
} else if (MP_OBJ_IS_TYPE(member, &mp_type_classmethod)) {
// return a bound method, with self being the type of this object
dest[0] = ((mp_obj_static_class_method_t*)member)->fun;
dest[1] = mp_obj_get_type(self->obj);
} else {
// return a bound method, with self being this object
dest[0] = member;
dest[1] = self->obj;
}
return;
} else {
// class member is a value, so just return that value
dest[0] = member;
return;
}
}
}
}
const mp_obj_type_t super_type = {
{ &mp_type_type },
.name = MP_QSTR_super,
.print = super_print,
.make_new = super_make_new,
.load_attr = super_load_attr,
};
mp_obj_t mp_obj_new_super(mp_obj_t type, mp_obj_t obj) {
mp_obj_super_t *o = m_new_obj(mp_obj_super_t);
*o = (mp_obj_super_t){{&super_type}, type, obj};
return o;
}
/******************************************************************************/
// subclassing and built-ins specific to types
bool mp_obj_is_subclass(mp_obj_t object, mp_obj_t classinfo) {
if (!MP_OBJ_IS_TYPE(object, &mp_type_type)) {
nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError, "issubclass() arg 1 must be a class"));
}
// TODO support a tuple of classes for second argument
if (!MP_OBJ_IS_TYPE(classinfo, &mp_type_type)) {
nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError, "issubclass() arg 2 must be a class"));
}
for (;;) {
if (object == classinfo) {
return true;
}
// not equivalent classes, keep searching base classes
assert(MP_OBJ_IS_TYPE(object, &mp_type_type));
mp_obj_type_t *self = object;
// for a const struct, this entry might be NULL
if (self->bases_tuple == MP_OBJ_NULL) {
return false;
}
uint len;
mp_obj_t *items;
mp_obj_tuple_get(self->bases_tuple, &len, &items);
if (len == 0) {
return false;
}
for (uint i = 0; i < len - 1; i++) {
if (mp_obj_is_subclass(items[i], classinfo)) {
return true;
}
}
// search last base (simple tail recursion elimination)
object = items[len - 1];
}
}
STATIC mp_obj_t mp_builtin_issubclass(mp_obj_t object, mp_obj_t classinfo) {
return MP_BOOL(mp_obj_is_subclass(object, classinfo));
}
MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_issubclass_obj, mp_builtin_issubclass);
STATIC mp_obj_t mp_builtin_isinstance(mp_obj_t object, mp_obj_t classinfo) {
return MP_BOOL(mp_obj_is_subclass(mp_obj_get_type(object), classinfo));
}
MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_isinstance_obj, mp_builtin_isinstance);
/******************************************************************************/
// staticmethod and classmethod types (probably should go in a different file)
STATIC mp_obj_t static_class_method_make_new(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
assert(self_in == &mp_type_staticmethod || self_in == &mp_type_classmethod);
if (n_args != 1 || n_kw != 0) {
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes 1 positional argument but %d were given", n_args));
}
mp_obj_static_class_method_t *o = m_new_obj(mp_obj_static_class_method_t);
*o = (mp_obj_static_class_method_t){{(mp_obj_type_t*)self_in}, args[0]};
return o;
}
const mp_obj_type_t mp_type_staticmethod = {
{ &mp_type_type },
.name = MP_QSTR_staticmethod,
.make_new = static_class_method_make_new
};
const mp_obj_type_t mp_type_classmethod = {
{ &mp_type_type },
.name = MP_QSTR_classmethod,
.make_new = static_class_method_make_new
};