Scott Shawcroft 4a6bdb6fe4
Track a dirty area for in-memory bitmaps
This fixes the bug that bitmap changes do not cause screen updates
and optimizes the refresh when the bitmap is simply shown on the
screen. If the bitmap is used in tiles, then changing it will
cause all TileGrids using it to do a full refresh.

Fixes #1981
2019-07-18 16:47:28 -07:00

165 lines
6.0 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/displayio/Bitmap.h"
#include <string.h>
#include "py/runtime.h"
void common_hal_displayio_bitmap_construct(displayio_bitmap_t *self, uint32_t width,
uint32_t height, uint32_t bits_per_value) {
uint32_t row_width = width * bits_per_value;
// align to size_t
uint8_t align_bits = 8 * sizeof(size_t);
if (row_width % align_bits != 0) {
self->stride = (row_width / align_bits + 1);
} else {
self->stride = row_width / align_bits;
}
self->width = width;
self->height = height;
self->data = m_malloc(self->stride * height * sizeof(size_t), false);
self->read_only = false;
self->bits_per_value = bits_per_value;
if (bits_per_value > 8 && bits_per_value != 16 && bits_per_value != 32) {
mp_raise_NotImplementedError(translate("Invalid bits per value"));
}
// Division and modulus can be slow because it has to handle any integer. We know bits_per_value
// is a power of two. We divide and mod by bits_per_value to compute the offset into the byte
// array. So, we can the offset computation to simplify to a shift for division and mask for mod.
self->x_shift = 0; // Used to divide the index by the number of pixels per word. Its used in a
// shift which effectively divides by 2 ** x_shift.
uint32_t power_of_two = 1;
while (power_of_two < align_bits / bits_per_value ) {
self->x_shift++;
power_of_two <<= 1;
}
self->x_mask = (1 << self->x_shift) - 1; // Used as a modulus on the x value
self->bitmask = (1 << bits_per_value) - 1;
self->dirty_area.x1 = 0;
self->dirty_area.x2 = width;
self->dirty_area.y1 = 0;
self->dirty_area.y2 = height;
}
uint16_t common_hal_displayio_bitmap_get_height(displayio_bitmap_t *self) {
return self->height;
}
uint16_t common_hal_displayio_bitmap_get_width(displayio_bitmap_t *self) {
return self->width;
}
uint32_t common_hal_displayio_bitmap_get_bits_per_value(displayio_bitmap_t *self) {
return self->bits_per_value;
}
uint32_t common_hal_displayio_bitmap_get_pixel(displayio_bitmap_t *self, int16_t x, int16_t y) {
if (x >= self->width || x < 0 || y >= self->height || y < 0) {
return 0;
}
int32_t row_start = y * self->stride;
uint32_t bytes_per_value = self->bits_per_value / 8;
if (bytes_per_value < 1) {
size_t word = self->data[row_start + (x >> self->x_shift)];
return (word >> (sizeof(size_t) * 8 - ((x & self->x_mask) + 1) * self->bits_per_value)) & self->bitmask;
} else {
size_t* row = self->data + row_start;
if (bytes_per_value == 1) {
return ((uint8_t*) row)[x];
} else if (bytes_per_value == 2) {
return ((uint16_t*) row)[x];
} else if (bytes_per_value == 4) {
return ((uint32_t*) row)[x];
}
}
return 0;
}
void common_hal_displayio_bitmap_set_pixel(displayio_bitmap_t *self, int16_t x, int16_t y, uint32_t value) {
if (self->read_only) {
mp_raise_RuntimeError(translate("Read-only object"));
}
// Update the dirty area.
if (self->dirty_area.x1 == self->dirty_area.x2) {
self->dirty_area.x1 = x;
self->dirty_area.x2 = x + 1;
self->dirty_area.y1 = y;
self->dirty_area.y2 = y + 1;
} else {
if (x < self->dirty_area.x1) {
self->dirty_area.x1 = x;
} else if (x >= self->dirty_area.x2) {
self->dirty_area.x2 = x + 1;
}
if (y < self->dirty_area.y1) {
self->dirty_area.y1 = y;
} else if (y >= self->dirty_area.y2) {
self->dirty_area.y2 = y + 1;
}
}
// Update our data
int32_t row_start = y * self->stride;
uint32_t bytes_per_value = self->bits_per_value / 8;
if (bytes_per_value < 1) {
uint32_t bit_position = (sizeof(size_t) * 8 - ((x & self->x_mask) + 1) * self->bits_per_value);
uint32_t index = row_start + (x >> self->x_shift);
uint32_t word = self->data[index];
word &= ~(self->bitmask << bit_position);
word |= (value & self->bitmask) << bit_position;
self->data[index] = word;
} else {
size_t* row = self->data + row_start;
if (bytes_per_value == 1) {
((uint8_t*) row)[x] = value;
} else if (bytes_per_value == 2) {
((uint16_t*) row)[x] = value;
} else if (bytes_per_value == 4) {
((uint32_t*) row)[x] = value;
}
}
}
displayio_area_t* displayio_bitmap_get_refresh_areas(displayio_bitmap_t *self, displayio_area_t* tail) {
if (self->dirty_area.x1 == self->dirty_area.x2) {
return tail;
}
self->dirty_area.next = tail;
return &self->dirty_area;
}
void displayio_bitmap_finish_refresh(displayio_bitmap_t *self) {
self->dirty_area.x1 = 0;
self->dirty_area.x2 = 0;
}