8388ec4e35
This upgrades the HAL to the versions: - F4 V1.16.0 - F7 V1.7.0 - L4 V1.8.1 The main changes were in the SD card driver. The vendor changed the SD read/write functions to accept block number intead of byte address, so there is no longer any need for a custom patch for this in stm32lib. The CardType values also changed, so pyb.SDCard().info() will return different values for the 3rd element of the tuple, but this function was never documented.
548 lines
20 KiB
C
548 lines
20 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include "py/nlr.h"
|
|
#include "py/runtime.h"
|
|
#include "py/mphal.h"
|
|
#include "lib/oofatfs/ff.h"
|
|
#include "extmod/vfs_fat.h"
|
|
|
|
#include "sdcard.h"
|
|
#include "pin.h"
|
|
#include "genhdr/pins.h"
|
|
#include "bufhelper.h"
|
|
#include "dma.h"
|
|
#include "irq.h"
|
|
|
|
#if MICROPY_HW_HAS_SDCARD
|
|
|
|
#if defined(MCU_SERIES_F7) || defined(MCU_SERIES_L4)
|
|
|
|
// The F7 has 2 SDMMC units but at the moment we only support using one of them in
|
|
// a given build. If a boards config file defines MICROPY_HW_SDMMC2_CK then SDMMC2
|
|
// is used, otherwise SDMMC1 is used.
|
|
|
|
#if defined(MICROPY_HW_SDMMC2_CK)
|
|
#define SDIO SDMMC2
|
|
#define SDMMC_CLK_ENABLE() __HAL_RCC_SDMMC2_CLK_ENABLE()
|
|
#define SDMMC_CLK_DISABLE() __HAL_RCC_SDMMC2_CLK_DISABLE()
|
|
#define SDMMC_IRQn SDMMC2_IRQn
|
|
#define SDMMC_TX_DMA dma_SDMMC_2_TX
|
|
#define SDMMC_RX_DMA dma_SDMMC_2_RX
|
|
#else
|
|
#define SDIO SDMMC1
|
|
#define SDMMC_CLK_ENABLE() __HAL_RCC_SDMMC1_CLK_ENABLE()
|
|
#define SDMMC_CLK_DISABLE() __HAL_RCC_SDMMC1_CLK_DISABLE()
|
|
#define SDMMC_IRQn SDMMC1_IRQn
|
|
#define SDMMC_TX_DMA dma_SDIO_0_TX
|
|
#define SDMMC_RX_DMA dma_SDIO_0_RX
|
|
#endif
|
|
|
|
// The F7 & L4 series calls the peripheral SDMMC rather than SDIO, so provide some
|
|
// #defines for backwards compatability.
|
|
|
|
#define SDIO_CLOCK_EDGE_RISING SDMMC_CLOCK_EDGE_RISING
|
|
#define SDIO_CLOCK_EDGE_FALLING SDMMC_CLOCK_EDGE_FALLING
|
|
|
|
#define SDIO_CLOCK_BYPASS_DISABLE SDMMC_CLOCK_BYPASS_DISABLE
|
|
#define SDIO_CLOCK_BYPASS_ENABLE SDMMC_CLOCK_BYPASS_ENABLE
|
|
|
|
#define SDIO_CLOCK_POWER_SAVE_DISABLE SDMMC_CLOCK_POWER_SAVE_DISABLE
|
|
#define SDIO_CLOCK_POWER_SAVE_ENABLE SDMMC_CLOCK_POWER_SAVE_ENABLE
|
|
|
|
#define SDIO_BUS_WIDE_1B SDMMC_BUS_WIDE_1B
|
|
#define SDIO_BUS_WIDE_4B SDMMC_BUS_WIDE_4B
|
|
#define SDIO_BUS_WIDE_8B SDMMC_BUS_WIDE_8B
|
|
|
|
#define SDIO_HARDWARE_FLOW_CONTROL_DISABLE SDMMC_HARDWARE_FLOW_CONTROL_DISABLE
|
|
#define SDIO_HARDWARE_FLOW_CONTROL_ENABLE SDMMC_HARDWARE_FLOW_CONTROL_ENABLE
|
|
|
|
#define SDIO_TRANSFER_CLK_DIV SDMMC_TRANSFER_CLK_DIV
|
|
|
|
#else
|
|
|
|
// These are definitions for F4 MCUs so there is a common macro across all MCUs.
|
|
|
|
#define SDMMC_CLK_ENABLE() __SDIO_CLK_ENABLE()
|
|
#define SDMMC_CLK_DISABLE() __SDIO_CLK_DISABLE()
|
|
#define SDMMC_IRQn SDIO_IRQn
|
|
#define SDMMC_TX_DMA dma_SDIO_0_TX
|
|
#define SDMMC_RX_DMA dma_SDIO_0_RX
|
|
|
|
#endif
|
|
|
|
// If no custom SDIO pins defined, use the default ones
|
|
#ifndef MICROPY_HW_SDMMC_CK
|
|
|
|
#define MICROPY_HW_SDMMC_D0 (pin_C8)
|
|
#define MICROPY_HW_SDMMC_D1 (pin_C9)
|
|
#define MICROPY_HW_SDMMC_D2 (pin_C10)
|
|
#define MICROPY_HW_SDMMC_D3 (pin_C11)
|
|
#define MICROPY_HW_SDMMC_CK (pin_C12)
|
|
#define MICROPY_HW_SDMMC_CMD (pin_D2)
|
|
|
|
#endif
|
|
|
|
// TODO: Since SDIO is fundamentally half-duplex, we really only need to
|
|
// tie up one DMA channel. However, the HAL DMA API doesn't
|
|
// seem to provide a convenient way to change the direction. I believe that
|
|
// its as simple as changing the CR register and the Init.Direction field
|
|
// and make DMA_SetConfig public.
|
|
|
|
// TODO: I think that as an optimization, we can allocate these dynamically
|
|
// if an sd card is detected. This will save approx 260 bytes of RAM
|
|
// when no sdcard was being used.
|
|
static SD_HandleTypeDef sd_handle;
|
|
static DMA_HandleTypeDef sd_rx_dma, sd_tx_dma;
|
|
|
|
void sdcard_init(void) {
|
|
// invalidate the sd_handle
|
|
sd_handle.Instance = NULL;
|
|
|
|
// configure SD GPIO
|
|
// we do this here an not in HAL_SD_MspInit because it apparently
|
|
// makes it more robust to have the pins always pulled high
|
|
// Note: the mp_hal_pin_config function will configure the GPIO in
|
|
// fast mode which can do up to 50MHz. This should be plenty for SDIO
|
|
// which clocks up to 25MHz maximum.
|
|
#if defined(MICROPY_HW_SDMMC2_CK)
|
|
// Use SDMMC2 peripheral with pins provided by the board's config
|
|
mp_hal_pin_config_alt(&MICROPY_HW_SDMMC2_CK, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, AF_FN_SDMMC, 2);
|
|
mp_hal_pin_config_alt(&MICROPY_HW_SDMMC2_CMD, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, AF_FN_SDMMC, 2);
|
|
mp_hal_pin_config_alt(&MICROPY_HW_SDMMC2_D0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, AF_FN_SDMMC, 2);
|
|
mp_hal_pin_config_alt(&MICROPY_HW_SDMMC2_D1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, AF_FN_SDMMC, 2);
|
|
mp_hal_pin_config_alt(&MICROPY_HW_SDMMC2_D2, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, AF_FN_SDMMC, 2);
|
|
mp_hal_pin_config_alt(&MICROPY_HW_SDMMC2_D3, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, AF_FN_SDMMC, 2);
|
|
#else
|
|
// Default SDIO/SDMMC1 config
|
|
mp_hal_pin_config(&MICROPY_HW_SDMMC_D0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO);
|
|
mp_hal_pin_config(&MICROPY_HW_SDMMC_D1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO);
|
|
mp_hal_pin_config(&MICROPY_HW_SDMMC_D2, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO);
|
|
mp_hal_pin_config(&MICROPY_HW_SDMMC_D3, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO);
|
|
mp_hal_pin_config(&MICROPY_HW_SDMMC_CK, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO);
|
|
mp_hal_pin_config(&MICROPY_HW_SDMMC_CMD, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO);
|
|
#endif
|
|
|
|
// configure the SD card detect pin
|
|
// we do this here so we can detect if the SD card is inserted before powering it on
|
|
mp_hal_pin_config(&MICROPY_HW_SDCARD_DETECT_PIN, MP_HAL_PIN_MODE_INPUT, MICROPY_HW_SDCARD_DETECT_PULL, 0);
|
|
}
|
|
|
|
void HAL_SD_MspInit(SD_HandleTypeDef *hsd) {
|
|
// enable SDIO clock
|
|
SDMMC_CLK_ENABLE();
|
|
|
|
// NVIC configuration for SDIO interrupts
|
|
HAL_NVIC_SetPriority(SDMMC_IRQn, IRQ_PRI_SDIO, IRQ_SUBPRI_SDIO);
|
|
HAL_NVIC_EnableIRQ(SDMMC_IRQn);
|
|
|
|
// GPIO have already been initialised by sdcard_init
|
|
}
|
|
|
|
void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) {
|
|
HAL_NVIC_DisableIRQ(SDMMC_IRQn);
|
|
SDMMC_CLK_DISABLE();
|
|
}
|
|
|
|
bool sdcard_is_present(void) {
|
|
return HAL_GPIO_ReadPin(MICROPY_HW_SDCARD_DETECT_PIN.gpio, MICROPY_HW_SDCARD_DETECT_PIN.pin_mask) == MICROPY_HW_SDCARD_DETECT_PRESENT;
|
|
}
|
|
|
|
bool sdcard_power_on(void) {
|
|
if (!sdcard_is_present()) {
|
|
return false;
|
|
}
|
|
if (sd_handle.Instance) {
|
|
return true;
|
|
}
|
|
|
|
// SD device interface configuration
|
|
sd_handle.Instance = SDIO;
|
|
sd_handle.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING;
|
|
sd_handle.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE;
|
|
sd_handle.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_ENABLE;
|
|
sd_handle.Init.BusWide = SDIO_BUS_WIDE_1B;
|
|
sd_handle.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE;
|
|
sd_handle.Init.ClockDiv = SDIO_TRANSFER_CLK_DIV;
|
|
|
|
// init the SD interface, with retry if it's not ready yet
|
|
for (int retry = 10; HAL_SD_Init(&sd_handle) != HAL_OK; retry--) {
|
|
if (retry == 0) {
|
|
goto error;
|
|
}
|
|
mp_hal_delay_ms(50);
|
|
}
|
|
|
|
// configure the SD bus width for wide operation
|
|
if (HAL_SD_ConfigWideBusOperation(&sd_handle, SDIO_BUS_WIDE_4B) != HAL_OK) {
|
|
HAL_SD_DeInit(&sd_handle);
|
|
goto error;
|
|
}
|
|
|
|
return true;
|
|
|
|
error:
|
|
sd_handle.Instance = NULL;
|
|
return false;
|
|
}
|
|
|
|
void sdcard_power_off(void) {
|
|
if (!sd_handle.Instance) {
|
|
return;
|
|
}
|
|
HAL_SD_DeInit(&sd_handle);
|
|
sd_handle.Instance = NULL;
|
|
}
|
|
|
|
uint64_t sdcard_get_capacity_in_bytes(void) {
|
|
if (sd_handle.Instance == NULL) {
|
|
return 0;
|
|
}
|
|
HAL_SD_CardInfoTypeDef cardinfo;
|
|
HAL_SD_GetCardInfo(&sd_handle, &cardinfo);
|
|
return (uint64_t)cardinfo.LogBlockNbr * (uint64_t)cardinfo.LogBlockSize;
|
|
}
|
|
|
|
void SDIO_IRQHandler(void) {
|
|
IRQ_ENTER(SDIO_IRQn);
|
|
HAL_SD_IRQHandler(&sd_handle);
|
|
IRQ_EXIT(SDIO_IRQn);
|
|
}
|
|
|
|
#if defined(MCU_SERIES_F7)
|
|
void SDMMC2_IRQHandler(void) {
|
|
IRQ_ENTER(SDMMC2_IRQn);
|
|
HAL_SD_IRQHandler(&sd_handle);
|
|
IRQ_EXIT(SDMMC2_IRQn);
|
|
}
|
|
#endif
|
|
|
|
STATIC HAL_StatusTypeDef sdcard_wait_finished(SD_HandleTypeDef *sd, uint32_t timeout) {
|
|
// Wait for HAL driver to be ready (eg for DMA to finish)
|
|
uint32_t start = HAL_GetTick();
|
|
while (sd->State == HAL_SD_STATE_BUSY) {
|
|
if (HAL_GetTick() - start >= timeout) {
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
// Wait for SD card to complete the operation
|
|
for (;;) {
|
|
HAL_SD_CardStateTypeDef state = HAL_SD_GetCardState(sd);
|
|
if (state == HAL_SD_CARD_TRANSFER) {
|
|
return HAL_OK;
|
|
}
|
|
if (!(state == HAL_SD_CARD_SENDING || state == HAL_SD_CARD_RECEIVING || state == HAL_SD_CARD_PROGRAMMING)) {
|
|
return HAL_ERROR;
|
|
}
|
|
if (HAL_GetTick() - start >= timeout) {
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
mp_uint_t sdcard_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
|
|
// check that SD card is initialised
|
|
if (sd_handle.Instance == NULL) {
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
HAL_StatusTypeDef err = HAL_OK;
|
|
|
|
// check that dest pointer is aligned on a 4-byte boundary
|
|
uint8_t *orig_dest = NULL;
|
|
uint32_t saved_word;
|
|
if (((uint32_t)dest & 3) != 0) {
|
|
// Pointer is not aligned so it needs fixing.
|
|
// We could allocate a temporary block of RAM (as sdcard_write_blocks
|
|
// does) but instead we are going to use the dest buffer inplace. We
|
|
// are going to align the pointer, save the initial word at the aligned
|
|
// location, read into the aligned memory, move the memory back to the
|
|
// unaligned location, then restore the initial bytes at the aligned
|
|
// location. We should have no trouble doing this as those initial
|
|
// bytes at the aligned location should be able to be changed for the
|
|
// duration of this function call.
|
|
orig_dest = dest;
|
|
dest = (uint8_t*)((uint32_t)dest & ~3);
|
|
saved_word = *(uint32_t*)dest;
|
|
}
|
|
|
|
if (query_irq() == IRQ_STATE_ENABLED) {
|
|
// we must disable USB irqs to prevent MSC contention with SD card
|
|
uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS);
|
|
|
|
dma_init(&sd_rx_dma, &SDMMC_RX_DMA, &sd_handle);
|
|
sd_handle.hdmarx = &sd_rx_dma;
|
|
|
|
// make sure cache is flushed and invalidated so when DMA updates the RAM
|
|
// from reading the peripheral the CPU then reads the new data
|
|
MP_HAL_CLEANINVALIDATE_DCACHE(dest, num_blocks * SDCARD_BLOCK_SIZE);
|
|
|
|
err = HAL_SD_ReadBlocks_DMA(&sd_handle, dest, block_num, num_blocks);
|
|
if (err == HAL_OK) {
|
|
err = sdcard_wait_finished(&sd_handle, 60000);
|
|
}
|
|
|
|
dma_deinit(&SDMMC_RX_DMA);
|
|
sd_handle.hdmarx = NULL;
|
|
|
|
restore_irq_pri(basepri);
|
|
} else {
|
|
err = HAL_SD_ReadBlocks(&sd_handle, dest, block_num, num_blocks, 60000);
|
|
if (err == HAL_OK) {
|
|
err = sdcard_wait_finished(&sd_handle, 60000);
|
|
}
|
|
}
|
|
|
|
if (orig_dest != NULL) {
|
|
// move the read data to the non-aligned position, and restore the initial bytes
|
|
memmove(orig_dest, dest, num_blocks * SDCARD_BLOCK_SIZE);
|
|
memcpy(dest, &saved_word, orig_dest - dest);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
mp_uint_t sdcard_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
|
|
// check that SD card is initialised
|
|
if (sd_handle.Instance == NULL) {
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
HAL_StatusTypeDef err = HAL_OK;
|
|
|
|
// check that src pointer is aligned on a 4-byte boundary
|
|
if (((uint32_t)src & 3) != 0) {
|
|
// pointer is not aligned, so allocate a temporary block to do the write
|
|
uint8_t *src_aligned = m_new_maybe(uint8_t, SDCARD_BLOCK_SIZE);
|
|
if (src_aligned == NULL) {
|
|
return HAL_ERROR;
|
|
}
|
|
for (size_t i = 0; i < num_blocks; ++i) {
|
|
memcpy(src_aligned, src + i * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE);
|
|
err = sdcard_write_blocks(src_aligned, block_num + i, 1);
|
|
if (err != HAL_OK) {
|
|
break;
|
|
}
|
|
}
|
|
m_del(uint8_t, src_aligned, SDCARD_BLOCK_SIZE);
|
|
return err;
|
|
}
|
|
|
|
if (query_irq() == IRQ_STATE_ENABLED) {
|
|
// we must disable USB irqs to prevent MSC contention with SD card
|
|
uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS);
|
|
|
|
dma_init(&sd_tx_dma, &SDMMC_TX_DMA, &sd_handle);
|
|
sd_handle.hdmatx = &sd_tx_dma;
|
|
|
|
// make sure cache is flushed to RAM so the DMA can read the correct data
|
|
MP_HAL_CLEAN_DCACHE(src, num_blocks * SDCARD_BLOCK_SIZE);
|
|
|
|
err = HAL_SD_WriteBlocks_DMA(&sd_handle, (uint8_t*)src, block_num, num_blocks);
|
|
if (err == HAL_OK) {
|
|
err = sdcard_wait_finished(&sd_handle, 60000);
|
|
}
|
|
dma_deinit(&SDMMC_TX_DMA);
|
|
sd_handle.hdmatx = NULL;
|
|
|
|
restore_irq_pri(basepri);
|
|
} else {
|
|
err = HAL_SD_WriteBlocks(&sd_handle, (uint8_t*)src, block_num, num_blocks, 60000);
|
|
if (err == HAL_OK) {
|
|
err = sdcard_wait_finished(&sd_handle, 60000);
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
// MicroPython bindings
|
|
//
|
|
// Expose the SD card as an object with the block protocol.
|
|
|
|
// there is a singleton SDCard object
|
|
const mp_obj_base_t pyb_sdcard_obj = {&pyb_sdcard_type};
|
|
|
|
STATIC mp_obj_t pyb_sdcard_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
// check arguments
|
|
mp_arg_check_num(n_args, n_kw, 0, 0, false);
|
|
|
|
// return singleton object
|
|
return (mp_obj_t)&pyb_sdcard_obj;
|
|
}
|
|
|
|
STATIC mp_obj_t sd_present(mp_obj_t self) {
|
|
return mp_obj_new_bool(sdcard_is_present());
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(sd_present_obj, sd_present);
|
|
|
|
STATIC mp_obj_t sd_power(mp_obj_t self, mp_obj_t state) {
|
|
bool result;
|
|
if (mp_obj_is_true(state)) {
|
|
result = sdcard_power_on();
|
|
} else {
|
|
sdcard_power_off();
|
|
result = true;
|
|
}
|
|
return mp_obj_new_bool(result);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(sd_power_obj, sd_power);
|
|
|
|
STATIC mp_obj_t sd_info(mp_obj_t self) {
|
|
if (sd_handle.Instance == NULL) {
|
|
return mp_const_none;
|
|
}
|
|
HAL_SD_CardInfoTypeDef cardinfo;
|
|
HAL_SD_GetCardInfo(&sd_handle, &cardinfo);
|
|
// cardinfo.SD_csd and cardinfo.SD_cid have lots of info but we don't use them
|
|
mp_obj_t tuple[3] = {
|
|
mp_obj_new_int_from_ull((uint64_t)cardinfo.LogBlockNbr * (uint64_t)cardinfo.LogBlockSize),
|
|
mp_obj_new_int_from_uint(cardinfo.LogBlockSize),
|
|
mp_obj_new_int(cardinfo.CardType),
|
|
};
|
|
return mp_obj_new_tuple(3, tuple);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(sd_info_obj, sd_info);
|
|
|
|
// now obsolete, kept for backwards compatibility
|
|
STATIC mp_obj_t sd_read(mp_obj_t self, mp_obj_t block_num) {
|
|
uint8_t *dest = m_new(uint8_t, SDCARD_BLOCK_SIZE);
|
|
mp_uint_t ret = sdcard_read_blocks(dest, mp_obj_get_int(block_num), 1);
|
|
|
|
if (ret != 0) {
|
|
m_del(uint8_t, dest, SDCARD_BLOCK_SIZE);
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "sdcard_read_blocks failed [%u]", ret));
|
|
}
|
|
|
|
return mp_obj_new_bytearray_by_ref(SDCARD_BLOCK_SIZE, dest);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(sd_read_obj, sd_read);
|
|
|
|
// now obsolete, kept for backwards compatibility
|
|
STATIC mp_obj_t sd_write(mp_obj_t self, mp_obj_t block_num, mp_obj_t data) {
|
|
mp_buffer_info_t bufinfo;
|
|
mp_get_buffer_raise(data, &bufinfo, MP_BUFFER_READ);
|
|
if (bufinfo.len % SDCARD_BLOCK_SIZE != 0) {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "writes must be a multiple of %d bytes", SDCARD_BLOCK_SIZE));
|
|
}
|
|
|
|
mp_uint_t ret = sdcard_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE);
|
|
|
|
if (ret != 0) {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "sdcard_write_blocks failed [%u]", ret));
|
|
}
|
|
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_3(sd_write_obj, sd_write);
|
|
|
|
STATIC mp_obj_t pyb_sdcard_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
|
|
mp_buffer_info_t bufinfo;
|
|
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE);
|
|
mp_uint_t ret = sdcard_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE);
|
|
return mp_obj_new_bool(ret == 0);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_readblocks_obj, pyb_sdcard_readblocks);
|
|
|
|
STATIC mp_obj_t pyb_sdcard_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
|
|
mp_buffer_info_t bufinfo;
|
|
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
|
|
mp_uint_t ret = sdcard_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE);
|
|
return mp_obj_new_bool(ret == 0);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_writeblocks_obj, pyb_sdcard_writeblocks);
|
|
|
|
STATIC mp_obj_t pyb_sdcard_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) {
|
|
mp_int_t cmd = mp_obj_get_int(cmd_in);
|
|
switch (cmd) {
|
|
case BP_IOCTL_INIT:
|
|
if (!sdcard_power_on()) {
|
|
return MP_OBJ_NEW_SMALL_INT(-1); // error
|
|
}
|
|
return MP_OBJ_NEW_SMALL_INT(0); // success
|
|
|
|
case BP_IOCTL_DEINIT:
|
|
sdcard_power_off();
|
|
return MP_OBJ_NEW_SMALL_INT(0); // success
|
|
|
|
case BP_IOCTL_SYNC:
|
|
// nothing to do
|
|
return MP_OBJ_NEW_SMALL_INT(0); // success
|
|
|
|
case BP_IOCTL_SEC_COUNT:
|
|
return MP_OBJ_NEW_SMALL_INT(0); // TODO
|
|
|
|
case BP_IOCTL_SEC_SIZE:
|
|
return MP_OBJ_NEW_SMALL_INT(SDCARD_BLOCK_SIZE);
|
|
|
|
default: // unknown command
|
|
return MP_OBJ_NEW_SMALL_INT(-1); // error
|
|
}
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_ioctl_obj, pyb_sdcard_ioctl);
|
|
|
|
STATIC const mp_rom_map_elem_t pyb_sdcard_locals_dict_table[] = {
|
|
{ MP_ROM_QSTR(MP_QSTR_present), MP_ROM_PTR(&sd_present_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_power), MP_ROM_PTR(&sd_power_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&sd_info_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&sd_read_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&sd_write_obj) },
|
|
// block device protocol
|
|
{ MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&pyb_sdcard_readblocks_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&pyb_sdcard_writeblocks_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&pyb_sdcard_ioctl_obj) },
|
|
};
|
|
|
|
STATIC MP_DEFINE_CONST_DICT(pyb_sdcard_locals_dict, pyb_sdcard_locals_dict_table);
|
|
|
|
const mp_obj_type_t pyb_sdcard_type = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_SDCard,
|
|
.make_new = pyb_sdcard_make_new,
|
|
.locals_dict = (mp_obj_dict_t*)&pyb_sdcard_locals_dict,
|
|
};
|
|
|
|
void sdcard_init_vfs(fs_user_mount_t *vfs, int part) {
|
|
vfs->base.type = &mp_fat_vfs_type;
|
|
vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL;
|
|
vfs->fatfs.drv = vfs;
|
|
vfs->fatfs.part = part;
|
|
vfs->readblocks[0] = (mp_obj_t)&pyb_sdcard_readblocks_obj;
|
|
vfs->readblocks[1] = (mp_obj_t)&pyb_sdcard_obj;
|
|
vfs->readblocks[2] = (mp_obj_t)sdcard_read_blocks; // native version
|
|
vfs->writeblocks[0] = (mp_obj_t)&pyb_sdcard_writeblocks_obj;
|
|
vfs->writeblocks[1] = (mp_obj_t)&pyb_sdcard_obj;
|
|
vfs->writeblocks[2] = (mp_obj_t)sdcard_write_blocks; // native version
|
|
vfs->u.ioctl[0] = (mp_obj_t)&pyb_sdcard_ioctl_obj;
|
|
vfs->u.ioctl[1] = (mp_obj_t)&pyb_sdcard_obj;
|
|
}
|
|
|
|
#endif // MICROPY_HW_HAS_SDCARD
|