circuitpython/ports/mimxrt10xx/common-hal/busio/SPI.c

325 lines
10 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
* Copyright (c) 2019 Artur Pacholec
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
//TODO
#include "shared-bindings/busio/SPI.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "periph.h"
#include "fsl_lpspi.h"
#include <stdio.h>
//bool never_reset_sercoms[SERCOM_INST_NUM];
//
//void never_reset_sercom(Sercom* sercom) {
// // Reset all SERCOMs except the ones being used by on-board devices.
// Sercom *sercom_instances[SERCOM_INST_NUM] = SERCOM_INSTS;
// for (int i = 0; i < SERCOM_INST_NUM; i++) {
// if (sercom_instances[i] == sercom) {
// never_reset_sercoms[i] = true;
// break;
// }
// }
//}
//
//void allow_reset_sercom(Sercom* sercom) {
// // Reset all SERCOMs except the ones being used by on-board devices.
// Sercom *sercom_instances[SERCOM_INST_NUM] = SERCOM_INSTS;
// for (int i = 0; i < SERCOM_INST_NUM; i++) {
// if (sercom_instances[i] == sercom) {
// never_reset_sercoms[i] = false;
// break;
// }
// }
//}
//
//void reset_sercoms(void) {
// // Reset all SERCOMs except the ones being used by on-board devices.
// Sercom *sercom_instances[SERCOM_INST_NUM] = SERCOM_INSTS;
// for (int i = 0; i < SERCOM_INST_NUM; i++) {
// if (never_reset_sercoms[i]) {
// continue;
// }
// #ifdef MICROPY_HW_APA102_SERCOM
// if (sercom_instances[i] == MICROPY_HW_APA102_SERCOM) {
// continue;
// }
// #endif
// // SWRST is same for all modes of SERCOMs.
// sercom_instances[i]->SPI.CTRLA.bit.SWRST = 1;
// }
//}
static void config_periph_pin(const mcu_periph_obj_t *periph) {
IOMUXC_SetPinMux(
periph->pin->mux_reg, periph->mux_mode,
periph->input_reg, periph->input_idx,
0,
0);
IOMUXC_SetPinConfig(0, 0, 0, 0,
periph->pin->cfg_reg,
IOMUXC_SW_PAD_CTL_PAD_HYS(0)
| IOMUXC_SW_PAD_CTL_PAD_PUS(0)
| IOMUXC_SW_PAD_CTL_PAD_PUE(0)
| IOMUXC_SW_PAD_CTL_PAD_PKE(1)
| IOMUXC_SW_PAD_CTL_PAD_ODE(0)
| IOMUXC_SW_PAD_CTL_PAD_SPEED(2)
| IOMUXC_SW_PAD_CTL_PAD_DSE(4)
| IOMUXC_SW_PAD_CTL_PAD_SRE(0));
}
#define LPSPI_MASTER_CLK_FREQ (CLOCK_GetFreq(kCLOCK_Usb1PllPfd0Clk) / (CLOCK_GetDiv(kCLOCK_LpspiDiv)))
void common_hal_busio_spi_construct(busio_spi_obj_t *self,
const mcu_pin_obj_t *clock, const mcu_pin_obj_t *mosi,
const mcu_pin_obj_t *miso) {
// TODO: Allow none mosi or miso
const uint32_t sck_count = sizeof(mcu_spi_sck_list) / sizeof(mcu_periph_obj_t);
const uint32_t miso_count = sizeof(mcu_spi_miso_list) / sizeof(mcu_periph_obj_t);
const uint32_t mosi_count = sizeof(mcu_spi_mosi_list) / sizeof(mcu_periph_obj_t);
for (uint32_t i = 0; i < sck_count; ++i) {
if (mcu_spi_sck_list[i].pin != clock)
continue;
for (uint32_t j = 0; j < miso_count; ++j) {
if (mcu_spi_miso_list[j].pin != miso)
continue;
if (mcu_spi_miso_list[j].bank_idx != mcu_spi_sck_list[i].bank_idx)
continue;
for (uint32_t k = 0; k < mosi_count; ++k) {
if (mcu_spi_mosi_list[k].pin != mosi)
continue;
if (mcu_spi_mosi_list[k].bank_idx != mcu_spi_miso_list[j].bank_idx)
continue;
self->clock_pin = &mcu_spi_sck_list[i];
self->miso_pin = &mcu_spi_miso_list[j];
self->mosi_pin = &mcu_spi_mosi_list[k];
break;
}
}
}
if(self->clock_pin == NULL || self->mosi_pin == NULL || self->miso_pin == NULL) {
mp_raise_RuntimeError(translate("Invalid SPI pin selection"));
} else {
self->spi = mcu_spi_banks[self->clock_pin->bank_idx - 1];
}
config_periph_pin(self->mosi_pin);
config_periph_pin(self->miso_pin);
config_periph_pin(self->clock_pin);
lpspi_master_config_t config = { 0 };
LPSPI_MasterGetDefaultConfig(&config);
// Always start at 250khz which is what SD cards need. They are sensitive to
// SPI bus noise before they are put into SPI mode.
config.baudRate = 250000;
LPSPI_MasterInit(self->spi, &config, LPSPI_MASTER_CLK_FREQ);
LPSPI_Enable(self->spi, false);
uint32_t tcrPrescaleValue;
self->baudrate = LPSPI_MasterSetBaudRate(self->spi, config.baudRate, LPSPI_MASTER_CLK_FREQ, &tcrPrescaleValue);
LPSPI_Enable(self->spi, true);
claim_pin(self->clock_pin->pin);
// if (mosi_none) {
// self->MOSI_pin = NO_PIN;
// } else {
// gpio_set_pin_direction(mosi->number, GPIO_DIRECTION_OUT);
// gpio_set_pin_pull_mode(mosi->number, GPIO_PULL_OFF);
// gpio_set_pin_function(mosi->number, mosi_pinmux);
// self->MOSI_pin = mosi->number;
claim_pin(self->mosi_pin->pin);
// }
// if (miso_none) {
// self->MISO_pin = NO_PIN;
// } else {
// gpio_set_pin_direction(miso->number, GPIO_DIRECTION_IN);
// gpio_set_pin_pull_mode(miso->number, GPIO_PULL_OFF);
// gpio_set_pin_function(miso->number, miso_pinmux);
// self->MISO_pin = miso->number;
claim_pin(self->miso_pin->pin);
// }
}
void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) {
// never_reset_sercom(self->spi_desc.dev.prvt);
// never_reset_pin_number(self->clock_pin);
// never_reset_pin_number(self->MOSI_pin);
// never_reset_pin_number(self->MISO_pin);
}
bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) {
return self->clock_pin == NULL;
}
void common_hal_busio_spi_deinit(busio_spi_obj_t *self) {
if (common_hal_busio_spi_deinited(self)) {
return;
}
// allow_reset_sercom(self->spi_desc.dev.prvt);
// spi_m_sync_disable(&self->spi_desc);
// spi_m_sync_deinit(&self->spi_desc);
// reset_pin_number(self->clock_pin);
// reset_pin_number(self->MOSI_pin);
// reset_pin_number(self->MISO_pin);
self->clock_pin = NULL;
}
bool common_hal_busio_spi_configure(busio_spi_obj_t *self,
uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) {
LPSPI_Enable(self->spi, false);
uint32_t tcrPrescaleValue;
self->baudrate = LPSPI_MasterSetBaudRate(self->spi, baudrate, LPSPI_MASTER_CLK_FREQ, &tcrPrescaleValue);
LPSPI_Enable(self->spi, true);
if ((polarity == common_hal_busio_spi_get_polarity(self)) &&
(phase == common_hal_busio_spi_get_phase(self)) &&
(bits == ((self->spi->TCR & LPSPI_TCR_FRAMESZ_MASK) >> LPSPI_TCR_FRAMESZ_SHIFT)) + 1) {
return true;
}
lpspi_master_config_t config = { 0 };
LPSPI_MasterGetDefaultConfig(&config);
config.baudRate = baudrate;
config.cpol = polarity;
config.cpha = phase;
config.bitsPerFrame = bits;
LPSPI_Deinit(self->spi);
LPSPI_MasterInit(self->spi, &config, LPSPI_MASTER_CLK_FREQ);
return true;
}
bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) {
bool grabbed_lock = false;
// CRITICAL_SECTION_ENTER()
if (!self->has_lock) {
grabbed_lock = true;
self->has_lock = true;
}
// CRITICAL_SECTION_LEAVE();
return grabbed_lock;
}
bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) {
return self->has_lock;
}
void common_hal_busio_spi_unlock(busio_spi_obj_t *self) {
self->has_lock = false;
}
bool common_hal_busio_spi_write(busio_spi_obj_t *self,
const uint8_t *data, size_t len) {
if (len == 0) {
return true;
}
lpspi_transfer_t xfer = { 0 };
xfer.txData = (uint8_t*)data;
xfer.dataSize = len;
xfer.configFlags = kLPSPI_MasterPcs0;
const status_t status = LPSPI_MasterTransferBlocking(self->spi, &xfer);
if (status != kStatus_Success)
printf("%s: status %ld\r\n", __func__, status);
return (status == kStatus_Success);
}
bool common_hal_busio_spi_read(busio_spi_obj_t *self,
uint8_t *data, size_t len, uint8_t write_value) {
if (len == 0) {
return true;
}
LPSPI_SetDummyData(self->spi, write_value);
lpspi_transfer_t xfer = { 0 };
xfer.rxData = data;
xfer.dataSize = len;
const status_t status = LPSPI_MasterTransferBlocking(self->spi, &xfer);
if (status != kStatus_Success)
printf("%s: status %ld\r\n", __func__, status);
return (status == kStatus_Success);
}
bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, uint8_t *data_out, uint8_t *data_in, size_t len) {
if (len == 0) {
return true;
}
LPSPI_SetDummyData(self->spi, 0xFF);
lpspi_transfer_t xfer = { 0 };
xfer.txData = data_out;
xfer.rxData = data_in;
xfer.dataSize = len;
const status_t status = LPSPI_MasterTransferBlocking(self->spi, &xfer);
if (status != kStatus_Success)
printf("%s: status %ld\r\n", __func__, status);
return (status == kStatus_Success);
}
uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t* self) {
return self->baudrate;
}
uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t* self) {
return ((self->spi->TCR & LPSPI_TCR_CPHA_MASK) == LPSPI_TCR_CPHA_MASK);
}
uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t* self) {
return ((self->spi->TCR & LPSPI_TCR_CPOL_MASK) == LPSPI_TCR_CPOL_MASK);
}