526 lines
20 KiB
C
526 lines
20 KiB
C
/*
|
|
* This file is part of the Micro Python project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <stm32f4xx_hal.h>
|
|
#include "usbd_cdc_msc_hid.h"
|
|
#include "usbd_cdc_interface.h"
|
|
|
|
#include "nlr.h"
|
|
#include "misc.h"
|
|
#include "mpconfig.h"
|
|
#include "qstr.h"
|
|
#include "gc.h"
|
|
#include "obj.h"
|
|
#include "runtime.h"
|
|
#include "timer.h"
|
|
#include "servo.h"
|
|
|
|
/// \moduleref pyb
|
|
/// \class Timer - periodically call a function
|
|
///
|
|
/// Timers can be used for a great variety of tasks. At the moment, only
|
|
/// the simplest case is implemented: that of calling a function periodically.
|
|
///
|
|
/// Each timer consists of a counter that counts up at a certain rate. The rate
|
|
/// at which it counts is the peripheral clock frequency (in Hz) divided by the
|
|
/// timer prescaler. When the counter reaches the timer period it triggers an
|
|
/// event, and the counter resets back to zero. By using the callback method,
|
|
/// the timer event can call a Python function.
|
|
///
|
|
/// Example usage to toggle an LED at a fixed frequency:
|
|
///
|
|
/// tim = pyb.Timer(4) # create a timer object using timer 4
|
|
/// tim.init(freq=2) # trigger at 2Hz
|
|
/// tim.callback(lambda t:pyb.LED(1).toggle())
|
|
///
|
|
/// Further examples:
|
|
///
|
|
/// tim = pyb.Timer(4, freq=100) # freq in Hz
|
|
/// tim = pyb.Timer(4, prescaler=1, period=100)
|
|
/// tim.counter() # get counter (can also set)
|
|
/// tim.prescaler(2) # set prescaler (can also get)
|
|
/// tim.period(200) # set period (can also get)
|
|
/// tim.callback(lambda t: ...) # set callback for update interrupt (t=tim instance)
|
|
/// tim.callback(None) # clear callback
|
|
///
|
|
/// *Note:* Timer 3 is reserved for internal use. Timer 5 controls
|
|
/// the servo driver, and Timer 6 is used for timed ADC/DAC reading/writing.
|
|
/// It is recommended to use the other timers in your programs.
|
|
|
|
// The timers can be used by multiple drivers, and need a common point for
|
|
// the interrupts to be dispatched, so they are all collected here.
|
|
//
|
|
// TIM3:
|
|
// - flash storage controller, to flush the cache
|
|
// - USB CDC interface, interval, to check for new data
|
|
// - LED 4, PWM to set the LED intensity
|
|
//
|
|
// TIM5:
|
|
// - servo controller, PWM
|
|
//
|
|
// TIM6:
|
|
// - ADC, DAC for read_timed and write_timed
|
|
|
|
typedef struct _pyb_timer_obj_t {
|
|
mp_obj_base_t base;
|
|
mp_uint_t tim_id;
|
|
mp_obj_t callback;
|
|
TIM_HandleTypeDef tim;
|
|
IRQn_Type irqn;
|
|
} pyb_timer_obj_t;
|
|
|
|
TIM_HandleTypeDef TIM3_Handle;
|
|
TIM_HandleTypeDef TIM5_Handle;
|
|
TIM_HandleTypeDef TIM6_Handle;
|
|
|
|
// Used to divide down TIM3 and periodically call the flash storage IRQ
|
|
static uint32_t tim3_counter = 0;
|
|
|
|
// Used to do callbacks to Python code on interrupt
|
|
STATIC pyb_timer_obj_t *pyb_timer_obj_all[14];
|
|
#define PYB_TIMER_OBJ_ALL_NUM MP_ARRAY_SIZE(pyb_timer_obj_all)
|
|
|
|
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in);
|
|
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback);
|
|
|
|
void timer_init0(void) {
|
|
tim3_counter = 0;
|
|
for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
|
|
pyb_timer_obj_all[i] = NULL;
|
|
}
|
|
}
|
|
|
|
// unregister all interrupt sources
|
|
void timer_deinit(void) {
|
|
for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
|
|
pyb_timer_obj_t *tim = pyb_timer_obj_all[i];
|
|
if (tim != NULL) {
|
|
pyb_timer_deinit(tim);
|
|
}
|
|
}
|
|
}
|
|
|
|
// TIM3 is set-up for the USB CDC interface
|
|
void timer_tim3_init(void) {
|
|
// set up the timer for USBD CDC
|
|
__TIM3_CLK_ENABLE();
|
|
|
|
TIM3_Handle.Instance = TIM3;
|
|
TIM3_Handle.Init.Period = (USBD_CDC_POLLING_INTERVAL*1000) - 1; // TIM3 fires every USBD_CDC_POLLING_INTERVAL ms
|
|
TIM3_Handle.Init.Prescaler = 84-1; // for System clock at 168MHz, TIM3 runs at 1MHz
|
|
TIM3_Handle.Init.ClockDivision = 0;
|
|
TIM3_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
|
|
HAL_TIM_Base_Init(&TIM3_Handle);
|
|
|
|
HAL_NVIC_SetPriority(TIM3_IRQn, 6, 0);
|
|
HAL_NVIC_EnableIRQ(TIM3_IRQn);
|
|
|
|
if (HAL_TIM_Base_Start(&TIM3_Handle) != HAL_OK) {
|
|
/* Starting Error */
|
|
}
|
|
}
|
|
|
|
/* unused
|
|
void timer_tim3_deinit(void) {
|
|
// reset TIM3 timer
|
|
__TIM3_FORCE_RESET();
|
|
__TIM3_RELEASE_RESET();
|
|
}
|
|
*/
|
|
|
|
// TIM5 is set-up for the servo controller
|
|
// This function inits but does not start the timer
|
|
void timer_tim5_init(void) {
|
|
// TIM5 clock enable
|
|
__TIM5_CLK_ENABLE();
|
|
|
|
// set up and enable interrupt
|
|
HAL_NVIC_SetPriority(TIM5_IRQn, 6, 0);
|
|
HAL_NVIC_EnableIRQ(TIM5_IRQn);
|
|
|
|
// PWM clock configuration
|
|
TIM5_Handle.Instance = TIM5;
|
|
TIM5_Handle.Init.Period = 2000; // timer cycles at 50Hz
|
|
TIM5_Handle.Init.Prescaler = ((SystemCoreClock / 2) / 100000) - 1; // timer runs at 100kHz
|
|
TIM5_Handle.Init.ClockDivision = 0;
|
|
TIM5_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
|
|
HAL_TIM_PWM_Init(&TIM5_Handle);
|
|
}
|
|
|
|
// Init TIM6 with a counter-overflow at the given frequency (given in Hz)
|
|
// TIM6 is used by the DAC and ADC for auto sampling at a given frequency
|
|
// This function inits but does not start the timer
|
|
void timer_tim6_init(uint freq) {
|
|
// TIM6 clock enable
|
|
__TIM6_CLK_ENABLE();
|
|
|
|
// Timer runs at SystemCoreClock / 2
|
|
// Compute the prescaler value so TIM6 triggers at freq-Hz
|
|
uint32_t period = MAX(1, (SystemCoreClock / 2) / freq);
|
|
uint32_t prescaler = 1;
|
|
while (period > 0xffff) {
|
|
period >>= 1;
|
|
prescaler <<= 1;
|
|
}
|
|
|
|
// Time base clock configuration
|
|
TIM6_Handle.Instance = TIM6;
|
|
TIM6_Handle.Init.Period = period - 1;
|
|
TIM6_Handle.Init.Prescaler = prescaler - 1;
|
|
TIM6_Handle.Init.ClockDivision = 0; // unused for TIM6
|
|
TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6
|
|
HAL_TIM_Base_Init(&TIM6_Handle);
|
|
}
|
|
|
|
// Interrupt dispatch
|
|
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
|
|
if (htim == &TIM3_Handle) {
|
|
USBD_CDC_HAL_TIM_PeriodElapsedCallback();
|
|
|
|
// Periodically raise a flash IRQ for the flash storage controller
|
|
if (tim3_counter++ >= 500 / USBD_CDC_POLLING_INTERVAL) {
|
|
tim3_counter = 0;
|
|
NVIC->STIR = FLASH_IRQn;
|
|
}
|
|
|
|
} else if (htim == &TIM5_Handle) {
|
|
servo_timer_irq_callback();
|
|
}
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* Micro Python bindings */
|
|
|
|
STATIC void pyb_timer_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
|
|
pyb_timer_obj_t *self = self_in;
|
|
|
|
if (self->tim.State == HAL_TIM_STATE_RESET) {
|
|
print(env, "Timer(%u)", self->tim_id);
|
|
} else {
|
|
print(env, "Timer(%u, prescaler=%u, period=%u, mode=%u, div=%u)",
|
|
self->tim_id,
|
|
self->tim.Init.Prescaler,
|
|
self->tim.Init.Period,
|
|
self->tim.Init.CounterMode,
|
|
self->tim.Init.ClockDivision
|
|
);
|
|
}
|
|
}
|
|
|
|
/// \method init(*, freq, prescaler, period)
|
|
/// Initialise the timer. Initialisation must be either by frequency (in Hz)
|
|
/// or by prescaler and period:
|
|
///
|
|
/// tim.init(freq=100) # set the timer to trigger at 100Hz
|
|
/// tim.init(prescaler=100, period=300) # set the prescaler and period directly
|
|
STATIC const mp_arg_t pyb_timer_init_args[] = {
|
|
{ MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
|
|
{ MP_QSTR_prescaler, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
|
|
{ MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
|
|
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_COUNTERMODE_UP} },
|
|
{ MP_QSTR_div, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_CLOCKDIVISION_DIV1} },
|
|
};
|
|
#define PYB_TIMER_INIT_NUM_ARGS MP_ARRAY_SIZE(pyb_timer_init_args)
|
|
|
|
STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
|
|
// parse args
|
|
mp_arg_val_t vals[PYB_TIMER_INIT_NUM_ARGS];
|
|
mp_arg_parse_all(n_args, args, kw_args, PYB_TIMER_INIT_NUM_ARGS, pyb_timer_init_args, vals);
|
|
|
|
// set the TIM configuration values
|
|
TIM_Base_InitTypeDef *init = &self->tim.Init;
|
|
|
|
if (vals[0].u_int != 0xffffffff) {
|
|
// set prescaler and period from frequency
|
|
|
|
if (vals[0].u_int == 0) {
|
|
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't have 0 frequency"));
|
|
}
|
|
|
|
// work out TIM's clock source
|
|
uint tim_clock;
|
|
if (self->tim_id == 1 || (8 <= self->tim_id && self->tim_id <= 11)) {
|
|
// TIM{1,8,9,10,11} are on APB2
|
|
tim_clock = HAL_RCC_GetPCLK2Freq();
|
|
} else {
|
|
// TIM{2,3,4,5,6,7,12,13,14} are on APB1
|
|
tim_clock = HAL_RCC_GetPCLK1Freq();
|
|
}
|
|
|
|
// Compute the prescaler value so TIM triggers at freq-Hz
|
|
// On STM32F405/407/415/417 there are 2 cases for how the clock freq is set.
|
|
// If the APB prescaler is 1, then the timer clock is equal to its respective
|
|
// APB clock. Otherwise (APB prescaler > 1) the timer clock is twice its
|
|
// respective APB clock. See DM00031020 Rev 4, page 115.
|
|
uint32_t period = MAX(1, 2 * tim_clock / vals[0].u_int);
|
|
uint32_t prescaler = 1;
|
|
while (period > 0xffff) {
|
|
period >>= 1;
|
|
prescaler <<= 1;
|
|
}
|
|
init->Prescaler = prescaler - 1;
|
|
init->Period = period - 1;
|
|
} else if (vals[1].u_int != 0xffffffff && vals[2].u_int != 0xffffffff) {
|
|
// set prescaler and period directly
|
|
init->Prescaler = vals[1].u_int;
|
|
init->Period = vals[2].u_int;
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "must specify either freq, or prescaler and period"));
|
|
}
|
|
|
|
init->CounterMode = vals[3].u_int;
|
|
init->ClockDivision = vals[4].u_int;
|
|
init->RepetitionCounter = 0;
|
|
|
|
// init the TIM peripheral
|
|
switch (self->tim_id) {
|
|
case 1: __TIM1_CLK_ENABLE(); break;
|
|
case 2: __TIM2_CLK_ENABLE(); break;
|
|
case 3: __TIM3_CLK_ENABLE(); break;
|
|
case 4: __TIM4_CLK_ENABLE(); break;
|
|
case 5: __TIM5_CLK_ENABLE(); break;
|
|
case 6: __TIM6_CLK_ENABLE(); break;
|
|
case 7: __TIM7_CLK_ENABLE(); break;
|
|
case 8: __TIM8_CLK_ENABLE(); break;
|
|
case 9: __TIM9_CLK_ENABLE(); break;
|
|
case 10: __TIM10_CLK_ENABLE(); break;
|
|
case 11: __TIM11_CLK_ENABLE(); break;
|
|
case 12: __TIM12_CLK_ENABLE(); break;
|
|
case 13: __TIM13_CLK_ENABLE(); break;
|
|
case 14: __TIM14_CLK_ENABLE(); break;
|
|
}
|
|
HAL_TIM_Base_Init(&self->tim);
|
|
HAL_TIM_Base_Start(&self->tim);
|
|
|
|
// set the priority (if not a special timer)
|
|
if (self->tim_id != 3 && self->tim_id != 5) {
|
|
HAL_NVIC_SetPriority(self->irqn, 0xe, 0xe); // next-to lowest priority
|
|
}
|
|
|
|
return mp_const_none;
|
|
}
|
|
|
|
/// \classmethod \constructor(id, ...)
|
|
/// Construct a new timer object of the given id. If additional
|
|
/// arguments are given, then the timer is initialised by `init(...)`.
|
|
/// `id` can be 1 to 14, excluding 3.
|
|
STATIC mp_obj_t pyb_timer_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
|
|
// check arguments
|
|
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
|
|
|
|
// create new Timer object
|
|
pyb_timer_obj_t *tim = m_new_obj(pyb_timer_obj_t);
|
|
tim->base.type = &pyb_timer_type;
|
|
tim->callback = mp_const_none;
|
|
memset(&tim->tim, 0, sizeof(tim->tim));
|
|
|
|
// get TIM number
|
|
tim->tim_id = mp_obj_get_int(args[0]);
|
|
|
|
switch (tim->tim_id) {
|
|
case 1: tim->tim.Instance = TIM1; tim->irqn = TIM1_UP_TIM10_IRQn; break;
|
|
case 2: tim->tim.Instance = TIM2; tim->irqn = TIM2_IRQn; break;
|
|
case 3: nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "Timer 3 is for internal use only")); // TIM3 used for low-level stuff; go via regs if necessary
|
|
case 4: tim->tim.Instance = TIM4; tim->irqn = TIM4_IRQn; break;
|
|
case 5: tim->tim.Instance = TIM5; tim->irqn = TIM5_IRQn; break;
|
|
case 6: tim->tim.Instance = TIM6; tim->irqn = TIM6_DAC_IRQn; break;
|
|
case 7: tim->tim.Instance = TIM7; tim->irqn = TIM7_IRQn; break;
|
|
case 8: tim->tim.Instance = TIM8; tim->irqn = TIM8_UP_TIM13_IRQn; break;
|
|
case 9: tim->tim.Instance = TIM9; tim->irqn = TIM1_BRK_TIM9_IRQn; break;
|
|
case 10: tim->tim.Instance = TIM10; tim->irqn = TIM1_UP_TIM10_IRQn; break;
|
|
case 11: tim->tim.Instance = TIM11; tim->irqn = TIM1_TRG_COM_TIM11_IRQn; break;
|
|
case 12: tim->tim.Instance = TIM12; tim->irqn = TIM8_BRK_TIM12_IRQn; break;
|
|
case 13: tim->tim.Instance = TIM13; tim->irqn = TIM8_UP_TIM13_IRQn; break;
|
|
case 14: tim->tim.Instance = TIM14; tim->irqn = TIM8_TRG_COM_TIM14_IRQn; break;
|
|
default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Timer %d does not exist", tim->tim_id));
|
|
}
|
|
|
|
if (n_args > 1 || n_kw > 0) {
|
|
// start the peripheral
|
|
mp_map_t kw_args;
|
|
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
|
|
pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args);
|
|
}
|
|
|
|
// set the global variable for interrupt callbacks
|
|
if (tim->tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) {
|
|
pyb_timer_obj_all[tim->tim_id - 1] = tim;
|
|
}
|
|
|
|
return (mp_obj_t)tim;
|
|
}
|
|
|
|
STATIC mp_obj_t pyb_timer_init(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
|
|
return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);
|
|
|
|
/// \method deinit()
|
|
/// Deinitialises the timer.
|
|
///
|
|
/// Disables the callback (and the associated irq).
|
|
/// Stops the timer, and disables the timer peripheral.
|
|
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
|
|
pyb_timer_obj_t *self = self_in;
|
|
|
|
// Disable the interrupt
|
|
pyb_timer_callback(self_in, mp_const_none);
|
|
|
|
HAL_TIM_Base_DeInit(&self->tim);
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);
|
|
|
|
/// \method counter([value])
|
|
/// Get or set the timer counter.
|
|
mp_obj_t pyb_timer_counter(uint n_args, const mp_obj_t *args) {
|
|
pyb_timer_obj_t *self = args[0];
|
|
if (n_args == 1) {
|
|
// get
|
|
return mp_obj_new_int(self->tim.Instance->CNT);
|
|
} else {
|
|
// set
|
|
__HAL_TIM_SetCounter(&self->tim, mp_obj_get_int(args[1]));
|
|
return mp_const_none;
|
|
}
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_counter_obj, 1, 2, pyb_timer_counter);
|
|
|
|
/// \method prescaler([value])
|
|
/// Get or set the prescaler for the timer.
|
|
mp_obj_t pyb_timer_prescaler(uint n_args, const mp_obj_t *args) {
|
|
pyb_timer_obj_t *self = args[0];
|
|
if (n_args == 1) {
|
|
// get
|
|
return mp_obj_new_int(self->tim.Instance->PSC & 0xffff);
|
|
} else {
|
|
// set
|
|
self->tim.Init.Prescaler = self->tim.Instance->PSC = mp_obj_get_int(args[1]) & 0xffff;
|
|
return mp_const_none;
|
|
}
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_prescaler_obj, 1, 2, pyb_timer_prescaler);
|
|
|
|
/// \method period([value])
|
|
/// Get or set the period of the timer.
|
|
mp_obj_t pyb_timer_period(uint n_args, const mp_obj_t *args) {
|
|
pyb_timer_obj_t *self = args[0];
|
|
if (n_args == 1) {
|
|
// get
|
|
return mp_obj_new_int(self->tim.Instance->ARR & 0xffff);
|
|
} else {
|
|
// set
|
|
__HAL_TIM_SetAutoreload(&self->tim, mp_obj_get_int(args[1]) & 0xffff);
|
|
return mp_const_none;
|
|
}
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_period_obj, 1, 2, pyb_timer_period);
|
|
|
|
/// \method callback(fun)
|
|
/// Set the function to be called when the timer triggers.
|
|
/// `fun` is passed 1 argument, the timer object.
|
|
/// If `fun` is `None` then the callback will be disabled.
|
|
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback) {
|
|
pyb_timer_obj_t *self = self_in;
|
|
if (callback == mp_const_none) {
|
|
// stop interrupt (but not timer)
|
|
__HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
|
|
self->callback = mp_const_none;
|
|
} else if (mp_obj_is_callable(callback)) {
|
|
self->callback = callback;
|
|
HAL_NVIC_EnableIRQ(self->irqn);
|
|
// start timer, so that it interrupts on overflow
|
|
HAL_TIM_Base_Start_IT(&self->tim);
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object"));
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_callback_obj, pyb_timer_callback);
|
|
|
|
STATIC const mp_map_elem_t pyb_timer_locals_dict_table[] = {
|
|
// instance methods
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_timer_init_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_timer_deinit_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_counter), (mp_obj_t)&pyb_timer_counter_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_prescaler), (mp_obj_t)&pyb_timer_prescaler_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_period), (mp_obj_t)&pyb_timer_period_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_callback_obj },
|
|
};
|
|
|
|
STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table);
|
|
|
|
const mp_obj_type_t pyb_timer_type = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_Timer,
|
|
.print = pyb_timer_print,
|
|
.make_new = pyb_timer_make_new,
|
|
.locals_dict = (mp_obj_t)&pyb_timer_locals_dict,
|
|
};
|
|
|
|
void timer_irq_handler(uint tim_id) {
|
|
if (tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) {
|
|
// get the timer object
|
|
pyb_timer_obj_t *tim = pyb_timer_obj_all[tim_id - 1];
|
|
|
|
if (tim == NULL) {
|
|
// timer object has not been set, so we can't do anything
|
|
return;
|
|
}
|
|
|
|
// see if it was a TIM update event (the only event we currently interrupt on)
|
|
if (__HAL_TIM_GET_FLAG(&tim->tim, TIM_FLAG_UPDATE) != RESET) {
|
|
if (__HAL_TIM_GET_ITSTATUS(&tim->tim, TIM_IT_UPDATE) != RESET) {
|
|
// clear the interrupt
|
|
__HAL_TIM_CLEAR_IT(&tim->tim, TIM_IT_UPDATE);
|
|
|
|
// execute callback if it's set
|
|
if (tim->callback != mp_const_none) {
|
|
// When executing code within a handler we must lock the GC to prevent
|
|
// any memory allocations. We must also catch any exceptions.
|
|
gc_lock();
|
|
nlr_buf_t nlr;
|
|
if (nlr_push(&nlr) == 0) {
|
|
mp_call_function_1(tim->callback, tim);
|
|
nlr_pop();
|
|
} else {
|
|
// Uncaught exception; disable the callback so it doesn't run again.
|
|
tim->callback = mp_const_none;
|
|
__HAL_TIM_DISABLE_IT(&tim->tim, TIM_IT_UPDATE);
|
|
printf("Uncaught exception in Timer(" UINT_FMT ") interrupt handler\n", tim->tim_id);
|
|
mp_obj_print_exception((mp_obj_t)nlr.ret_val);
|
|
}
|
|
gc_unlock();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|