circuitpython/py/parse.c
Damien George a4c52c5a3d py: Optimise lexer by exposing lexer type.
mp_lexer_t type is exposed, mp_token_t type is removed, and simple lexer
functions (like checking current token kind) are now inlined.

This saves 784 bytes ROM on 32-bit unix, 348 bytes on stmhal, and 460
bytes on bare-arm.  It also saves a tiny bit of RAM since mp_lexer_t
is a bit smaller.  Also will run a bit more efficiently.
2014-12-05 19:35:18 +00:00

765 lines
30 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include "mpconfig.h"
#include "misc.h"
#include "qstr.h"
#include "lexer.h"
#include "parsenumbase.h"
#include "parse.h"
#include "smallint.h"
#define RULE_ACT_KIND_MASK (0xf0)
#define RULE_ACT_ARG_MASK (0x0f)
#define RULE_ACT_OR (0x10)
#define RULE_ACT_AND (0x20)
#define RULE_ACT_LIST (0x30)
#define RULE_ARG_BLANK (0x0000)
#define RULE_ARG_KIND_MASK (0xf000)
#define RULE_ARG_ARG_MASK (0x0fff)
#define RULE_ARG_TOK (0x1000)
#define RULE_ARG_RULE (0x2000)
#define RULE_ARG_OPT_TOK (0x3000)
#define RULE_ARG_OPT_RULE (0x4000)
#define ADD_BLANK_NODE(rule_id) ((rule_id) == RULE_funcdef || (rule_id) == RULE_classdef || (rule_id) == RULE_comp_for || (rule_id) == RULE_lambdef || (rule_id) == RULE_lambdef_nocond)
// (un)comment to use rule names; for debugging
//#define USE_RULE_NAME (1)
typedef struct _rule_t {
byte rule_id;
byte act;
#ifdef USE_RULE_NAME
const char *rule_name;
#endif
uint16_t arg[];
} rule_t;
enum {
RULE_none = 0,
#define DEF_RULE(rule, comp, kind, ...) RULE_##rule,
#include "grammar.h"
#undef DEF_RULE
RULE_maximum_number_of,
RULE_string, // special node for non-interned string
};
#define or(n) (RULE_ACT_OR | n)
#define and(n) (RULE_ACT_AND | n)
#define one_or_more (RULE_ACT_LIST | 2)
#define list (RULE_ACT_LIST | 1)
#define list_with_end (RULE_ACT_LIST | 3)
#define tok(t) (RULE_ARG_TOK | MP_TOKEN_##t)
#define rule(r) (RULE_ARG_RULE | RULE_##r)
#define opt_tok(t) (RULE_ARG_OPT_TOK | MP_TOKEN_##t)
#define opt_rule(r) (RULE_ARG_OPT_RULE | RULE_##r)
#ifdef USE_RULE_NAME
#define DEF_RULE(rule, comp, kind, ...) static const rule_t rule_##rule = { RULE_##rule, kind, #rule, { __VA_ARGS__ } };
#else
#define DEF_RULE(rule, comp, kind, ...) static const rule_t rule_##rule = { RULE_##rule, kind, { __VA_ARGS__ } };
#endif
#include "grammar.h"
#undef or
#undef and
#undef list
#undef list_with_end
#undef tok
#undef rule
#undef opt_tok
#undef opt_rule
#undef one_or_more
#undef DEF_RULE
STATIC const rule_t *rules[] = {
NULL,
#define DEF_RULE(rule, comp, kind, ...) &rule_##rule,
#include "grammar.h"
#undef DEF_RULE
};
typedef struct _rule_stack_t {
mp_uint_t src_line : 24;
mp_uint_t rule_id : 8;
mp_uint_t arg_i : 32; // what should the bit-size be?
} rule_stack_t;
typedef struct _parser_t {
bool had_memory_error;
mp_uint_t rule_stack_alloc;
mp_uint_t rule_stack_top;
rule_stack_t *rule_stack;
mp_uint_t result_stack_alloc;
mp_uint_t result_stack_top;
mp_parse_node_t *result_stack;
mp_lexer_t *lexer;
} parser_t;
STATIC inline void memory_error(parser_t *parser) {
parser->had_memory_error = true;
}
STATIC void push_rule(parser_t *parser, mp_uint_t src_line, const rule_t *rule, mp_uint_t arg_i) {
if (parser->had_memory_error) {
return;
}
if (parser->rule_stack_top >= parser->rule_stack_alloc) {
rule_stack_t *rs = m_renew_maybe(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc, parser->rule_stack_alloc + MICROPY_ALLOC_PARSE_RULE_INC);
if (rs == NULL) {
memory_error(parser);
return;
}
parser->rule_stack = rs;
parser->rule_stack_alloc += MICROPY_ALLOC_PARSE_RULE_INC;
}
rule_stack_t *rs = &parser->rule_stack[parser->rule_stack_top++];
rs->src_line = src_line;
rs->rule_id = rule->rule_id;
rs->arg_i = arg_i;
}
STATIC void push_rule_from_arg(parser_t *parser, mp_uint_t arg) {
assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE);
mp_uint_t rule_id = arg & RULE_ARG_ARG_MASK;
assert(rule_id < RULE_maximum_number_of);
push_rule(parser, parser->lexer->tok_line, rules[rule_id], 0);
}
STATIC void pop_rule(parser_t *parser, const rule_t **rule, mp_uint_t *arg_i, mp_uint_t *src_line) {
assert(!parser->had_memory_error);
parser->rule_stack_top -= 1;
*rule = rules[parser->rule_stack[parser->rule_stack_top].rule_id];
*arg_i = parser->rule_stack[parser->rule_stack_top].arg_i;
*src_line = parser->rule_stack[parser->rule_stack_top].src_line;
}
mp_parse_node_t mp_parse_node_new_leaf(mp_int_t kind, mp_int_t arg) {
if (kind == MP_PARSE_NODE_SMALL_INT) {
return (mp_parse_node_t)(kind | (arg << 1));
}
return (mp_parse_node_t)(kind | (arg << 5));
}
void mp_parse_node_free(mp_parse_node_t pn) {
if (MP_PARSE_NODE_IS_STRUCT(pn)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
mp_uint_t n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
mp_uint_t rule_id = MP_PARSE_NODE_STRUCT_KIND(pns);
if (rule_id == RULE_string) {
m_del(char, (char*)pns->nodes[0], (mp_uint_t)pns->nodes[1]);
} else {
bool adjust = ADD_BLANK_NODE(rule_id);
if (adjust) {
n--;
}
for (mp_uint_t i = 0; i < n; i++) {
mp_parse_node_free(pns->nodes[i]);
}
if (adjust) {
n++;
}
}
m_del_var(mp_parse_node_struct_t, mp_parse_node_t, n, pns);
}
}
#if MICROPY_DEBUG_PRINTERS
void mp_parse_node_print(mp_parse_node_t pn, mp_uint_t indent) {
if (MP_PARSE_NODE_IS_STRUCT(pn)) {
printf("[% 4d] ", (int)((mp_parse_node_struct_t*)pn)->source_line);
} else {
printf(" ");
}
for (mp_uint_t i = 0; i < indent; i++) {
printf(" ");
}
if (MP_PARSE_NODE_IS_NULL(pn)) {
printf("NULL\n");
} else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
printf("int(" INT_FMT ")\n", arg);
} else if (MP_PARSE_NODE_IS_LEAF(pn)) {
mp_uint_t arg = MP_PARSE_NODE_LEAF_ARG(pn);
switch (MP_PARSE_NODE_LEAF_KIND(pn)) {
case MP_PARSE_NODE_ID: printf("id(%s)\n", qstr_str(arg)); break;
case MP_PARSE_NODE_INTEGER: printf("int(%s)\n", qstr_str(arg)); break;
case MP_PARSE_NODE_DECIMAL: printf("dec(%s)\n", qstr_str(arg)); break;
case MP_PARSE_NODE_STRING: printf("str(%s)\n", qstr_str(arg)); break;
case MP_PARSE_NODE_BYTES: printf("bytes(%s)\n", qstr_str(arg)); break;
case MP_PARSE_NODE_TOKEN: printf("tok(" INT_FMT ")\n", arg); break;
default: assert(0);
}
} else {
// node must be a mp_parse_node_struct_t
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_string) {
printf("literal str(%.*s)\n", (int)pns->nodes[1], (char*)pns->nodes[0]);
} else {
mp_uint_t n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
#ifdef USE_RULE_NAME
printf("%s(" UINT_FMT ") (n=" UINT_FMT ")\n", rules[MP_PARSE_NODE_STRUCT_KIND(pns)]->rule_name, (mp_uint_t)MP_PARSE_NODE_STRUCT_KIND(pns), n);
#else
printf("rule(" UINT_FMT ") (n=" UINT_FMT ")\n", (mp_uint_t)MP_PARSE_NODE_STRUCT_KIND(pns), n);
#endif
for (mp_uint_t i = 0; i < n; i++) {
mp_parse_node_print(pns->nodes[i], indent + 2);
}
}
}
}
#endif // MICROPY_DEBUG_PRINTERS
/*
STATIC void result_stack_show(parser_t *parser) {
printf("result stack, most recent first\n");
for (mp_int_t i = parser->result_stack_top - 1; i >= 0; i--) {
mp_parse_node_print(parser->result_stack[i], 0);
}
}
*/
STATIC mp_parse_node_t pop_result(parser_t *parser) {
if (parser->had_memory_error) {
return MP_PARSE_NODE_NULL;
}
assert(parser->result_stack_top > 0);
return parser->result_stack[--parser->result_stack_top];
}
STATIC mp_parse_node_t peek_result(parser_t *parser, mp_uint_t pos) {
if (parser->had_memory_error) {
return MP_PARSE_NODE_NULL;
}
assert(parser->result_stack_top > pos);
return parser->result_stack[parser->result_stack_top - 1 - pos];
}
STATIC void push_result_node(parser_t *parser, mp_parse_node_t pn) {
if (parser->had_memory_error) {
return;
}
if (parser->result_stack_top >= parser->result_stack_alloc) {
mp_parse_node_t *pn = m_renew_maybe(mp_parse_node_t, parser->result_stack, parser->result_stack_alloc, parser->result_stack_alloc + MICROPY_ALLOC_PARSE_RESULT_INC);
if (pn == NULL) {
memory_error(parser);
return;
}
parser->result_stack = pn;
parser->result_stack_alloc += MICROPY_ALLOC_PARSE_RESULT_INC;
}
parser->result_stack[parser->result_stack_top++] = pn;
}
STATIC void push_result_string(parser_t *parser, mp_uint_t src_line, const char *str, mp_uint_t len) {
mp_parse_node_struct_t *pn = m_new_obj_var_maybe(mp_parse_node_struct_t, mp_parse_node_t, 2);
if (pn == NULL) {
memory_error(parser);
return;
}
pn->source_line = src_line;
pn->kind_num_nodes = RULE_string | (2 << 8);
char *p = m_new(char, len);
memcpy(p, str, len);
pn->nodes[0] = (mp_int_t)p;
pn->nodes[1] = len;
push_result_node(parser, (mp_parse_node_t)pn);
}
STATIC void push_result_token(parser_t *parser) {
mp_parse_node_t pn;
mp_lexer_t *lex = parser->lexer;
if (lex->tok_kind == MP_TOKEN_NAME) {
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, qstr_from_strn(lex->vstr.buf, lex->vstr.len));
} else if (lex->tok_kind == MP_TOKEN_NUMBER) {
bool dec = false;
bool small_int = true;
mp_int_t int_val = 0;
mp_uint_t len = lex->vstr.len;
const char *str = lex->vstr.buf;
mp_uint_t base = 0;
mp_uint_t i = mp_parse_num_base(str, len, &base);
bool overflow = false;
for (; i < len; i++) {
mp_uint_t dig;
if (unichar_isdigit(str[i]) && str[i] - '0' < base) {
dig = str[i] - '0';
} else if (base == 16 && 'a' <= str[i] && str[i] <= 'f') {
dig = str[i] - 'a' + 10;
} else if (base == 16 && 'A' <= str[i] && str[i] <= 'F') {
dig = str[i] - 'A' + 10;
} else if (str[i] == '.' || str[i] == 'e' || str[i] == 'E' || str[i] == 'j' || str[i] == 'J') {
dec = true;
break;
} else {
small_int = false;
break;
}
// add next digi and check for overflow
if (mp_small_int_mul_overflow(int_val, base)) {
overflow = true;
}
int_val = int_val * base + dig;
if (!MP_SMALL_INT_FITS(int_val)) {
overflow = true;
}
}
if (dec) {
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_DECIMAL, qstr_from_strn(str, len));
} else if (small_int && !overflow && MP_SMALL_INT_FITS(int_val)) {
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, int_val);
} else {
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_INTEGER, qstr_from_strn(str, len));
}
} else if (lex->tok_kind == MP_TOKEN_STRING) {
// Don't automatically intern all strings. doc strings (which are usually large)
// will be discarded by the compiler, and so we shouldn't intern them.
qstr qst = MP_QSTR_NULL;
if (lex->vstr.len <= MICROPY_ALLOC_PARSE_INTERN_STRING_LEN) {
// intern short strings
qst = qstr_from_strn(lex->vstr.buf, lex->vstr.len);
} else {
// check if this string is already interned
qst = qstr_find_strn(lex->vstr.buf, lex->vstr.len);
}
if (qst != MP_QSTR_NULL) {
// qstr exists, make a leaf node
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_STRING, qst);
} else {
// not interned, make a node holding a pointer to the string data
push_result_string(parser, lex->tok_line, lex->vstr.buf, lex->vstr.len);
return;
}
} else if (lex->tok_kind == MP_TOKEN_BYTES) {
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_BYTES, qstr_from_strn(lex->vstr.buf, lex->vstr.len));
} else {
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, lex->tok_kind);
}
push_result_node(parser, pn);
}
STATIC void push_result_rule(parser_t *parser, mp_uint_t src_line, const rule_t *rule, mp_uint_t num_args) {
mp_parse_node_struct_t *pn = m_new_obj_var_maybe(mp_parse_node_struct_t, mp_parse_node_t, num_args);
if (pn == NULL) {
memory_error(parser);
return;
}
pn->source_line = src_line;
pn->kind_num_nodes = (rule->rule_id & 0xff) | (num_args << 8);
for (mp_uint_t i = num_args; i > 0; i--) {
pn->nodes[i - 1] = pop_result(parser);
}
push_result_node(parser, (mp_parse_node_t)pn);
}
mp_parse_node_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind, mp_parse_error_kind_t *parse_error_kind_out) {
// initialise parser and allocate memory for its stacks
parser_t parser;
parser.had_memory_error = false;
parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT;
parser.rule_stack_top = 0;
parser.rule_stack = m_new_maybe(rule_stack_t, parser.rule_stack_alloc);
parser.result_stack_alloc = MICROPY_ALLOC_PARSE_RESULT_INIT;
parser.result_stack_top = 0;
parser.result_stack = m_new_maybe(mp_parse_node_t, parser.result_stack_alloc);
parser.lexer = lex;
// check if we could allocate the stacks
if (parser.rule_stack == NULL || parser.result_stack == NULL) {
goto memory_error;
}
// work out the top-level rule to use, and push it on the stack
mp_uint_t top_level_rule;
switch (input_kind) {
case MP_PARSE_SINGLE_INPUT: top_level_rule = RULE_single_input; break;
case MP_PARSE_EVAL_INPUT: top_level_rule = RULE_eval_input; break;
default: top_level_rule = RULE_file_input;
}
push_rule(&parser, lex->tok_line, rules[top_level_rule], 0);
// parse!
mp_uint_t n, i; // state for the current rule
mp_uint_t rule_src_line; // source line for the first token matched by the current rule
bool backtrack = false;
const rule_t *rule = NULL;
mp_token_kind_t tok_kind;
bool emit_rule;
bool had_trailing_sep;
for (;;) {
next_rule:
if (parser.rule_stack_top == 0 || parser.had_memory_error) {
break;
}
pop_rule(&parser, &rule, &i, &rule_src_line);
n = rule->act & RULE_ACT_ARG_MASK;
/*
// debugging
printf("depth=%d ", parser.rule_stack_top);
for (int j = 0; j < parser.rule_stack_top; ++j) {
printf(" ");
}
printf("%s n=%d i=%d bt=%d\n", rule->rule_name, n, i, backtrack);
*/
switch (rule->act & RULE_ACT_KIND_MASK) {
case RULE_ACT_OR:
if (i > 0 && !backtrack) {
goto next_rule;
} else {
backtrack = false;
}
for (; i < n - 1; ++i) {
switch (rule->arg[i] & RULE_ARG_KIND_MASK) {
case RULE_ARG_TOK:
if (lex->tok_kind == (rule->arg[i] & RULE_ARG_ARG_MASK)) {
push_result_token(&parser);
mp_lexer_to_next(lex);
goto next_rule;
}
break;
case RULE_ARG_RULE:
push_rule(&parser, rule_src_line, rule, i + 1); // save this or-rule
push_rule_from_arg(&parser, rule->arg[i]); // push child of or-rule
goto next_rule;
default:
assert(0);
}
}
if ((rule->arg[i] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
if (lex->tok_kind == (rule->arg[i] & RULE_ARG_ARG_MASK)) {
push_result_token(&parser);
mp_lexer_to_next(lex);
} else {
backtrack = true;
goto next_rule;
}
} else {
push_rule_from_arg(&parser, rule->arg[i]);
}
break;
case RULE_ACT_AND:
// failed, backtrack if we can, else syntax error
if (backtrack) {
assert(i > 0);
if ((rule->arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) {
// an optional rule that failed, so continue with next arg
push_result_node(&parser, MP_PARSE_NODE_NULL);
backtrack = false;
} else {
// a mandatory rule that failed, so propagate backtrack
if (i > 1) {
// already eaten tokens so can't backtrack
goto syntax_error;
} else {
goto next_rule;
}
}
}
// progress through the rule
for (; i < n; ++i) {
switch (rule->arg[i] & RULE_ARG_KIND_MASK) {
case RULE_ARG_TOK:
// need to match a token
tok_kind = rule->arg[i] & RULE_ARG_ARG_MASK;
if (lex->tok_kind == tok_kind) {
// matched token
if (tok_kind == MP_TOKEN_NAME) {
push_result_token(&parser);
}
mp_lexer_to_next(lex);
} else {
// failed to match token
if (i > 0) {
// already eaten tokens so can't backtrack
goto syntax_error;
} else {
// this rule failed, so backtrack
backtrack = true;
goto next_rule;
}
}
break;
case RULE_ARG_RULE:
case RULE_ARG_OPT_RULE:
push_rule(&parser, rule_src_line, rule, i + 1); // save this and-rule
push_rule_from_arg(&parser, rule->arg[i]); // push child of and-rule
goto next_rule;
default:
assert(0);
}
}
assert(i == n);
// matched the rule, so now build the corresponding parse_node
// count number of arguments for the parse_node
i = 0;
emit_rule = false;
for (mp_uint_t x = 0; x < n; ++x) {
if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK;
if (tok_kind >= MP_TOKEN_NAME) {
emit_rule = true;
}
if (tok_kind == MP_TOKEN_NAME) {
// only tokens which were names are pushed to stack
i += 1;
}
} else {
// rules are always pushed
i += 1;
}
}
#if !MICROPY_EMIT_CPYTHON && !MICROPY_ENABLE_DOC_STRING
// this code discards lonely statements, such as doc strings
if (input_kind != MP_PARSE_SINGLE_INPUT && rule->rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) {
mp_parse_node_t p = peek_result(&parser, 1);
if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p)) || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_string)) {
pop_result(&parser); // MP_PARSE_NODE_NULL
mp_parse_node_free(pop_result(&parser)); // RULE_string
push_result_rule(&parser, rule_src_line, rules[RULE_pass_stmt], 0);
break;
}
}
#endif
// always emit these rules, even if they have only 1 argument
if (rule->rule_id == RULE_expr_stmt || rule->rule_id == RULE_yield_stmt) {
emit_rule = true;
}
// never emit these rules if they have only 1 argument
// NOTE: can't put atom_paren here because we need it to distinguisg, for example, [a,b] from [(a,b)]
// TODO possibly put varargslist_name, varargslist_equal here as well
if (rule->rule_id == RULE_else_stmt || rule->rule_id == RULE_testlist_comp_3b || rule->rule_id == RULE_import_as_names_paren || rule->rule_id == RULE_typedargslist_name || rule->rule_id == RULE_typedargslist_colon || rule->rule_id == RULE_typedargslist_equal || rule->rule_id == RULE_dictorsetmaker_colon || rule->rule_id == RULE_classdef_2 || rule->rule_id == RULE_with_item_as || rule->rule_id == RULE_assert_stmt_extra || rule->rule_id == RULE_as_name || rule->rule_id == RULE_raise_stmt_from || rule->rule_id == RULE_vfpdef || rule->rule_id == RULE_funcdefrettype) {
emit_rule = false;
}
// always emit these rules, and add an extra blank node at the end (to be used by the compiler to store data)
if (ADD_BLANK_NODE(rule->rule_id)) {
emit_rule = true;
push_result_node(&parser, MP_PARSE_NODE_NULL);
i += 1;
}
mp_uint_t num_not_nil = 0;
for (mp_uint_t x = 0; x < i; ++x) {
if (peek_result(&parser, x) != MP_PARSE_NODE_NULL) {
num_not_nil += 1;
}
}
//printf("done and %s n=%d i=%d notnil=%d\n", rule->rule_name, n, i, num_not_nil);
if (emit_rule) {
push_result_rule(&parser, rule_src_line, rule, i);
} else if (num_not_nil == 0) {
push_result_rule(&parser, rule_src_line, rule, i); // needed for, eg, atom_paren, testlist_comp_3b
//result_stack_show(parser);
//assert(0);
} else if (num_not_nil == 1) {
// single result, leave it on stack
mp_parse_node_t pn = MP_PARSE_NODE_NULL;
for (mp_uint_t x = 0; x < i; ++x) {
mp_parse_node_t pn2 = pop_result(&parser);
if (pn2 != MP_PARSE_NODE_NULL) {
pn = pn2;
}
}
push_result_node(&parser, pn);
} else {
push_result_rule(&parser, rule_src_line, rule, i);
}
break;
case RULE_ACT_LIST:
// n=2 is: item item*
// n=1 is: item (sep item)*
// n=3 is: item (sep item)* [sep]
if (backtrack) {
list_backtrack:
had_trailing_sep = false;
if (n == 2) {
if (i == 1) {
// fail on item, first time round; propagate backtrack
goto next_rule;
} else {
// fail on item, in later rounds; finish with this rule
backtrack = false;
}
} else {
if (i == 1) {
// fail on item, first time round; propagate backtrack
goto next_rule;
} else if ((i & 1) == 1) {
// fail on item, in later rounds; have eaten tokens so can't backtrack
if (n == 3) {
// list allows trailing separator; finish parsing list
had_trailing_sep = true;
backtrack = false;
} else {
// list doesn't allowing trailing separator; fail
goto syntax_error;
}
} else {
// fail on separator; finish parsing list
backtrack = false;
}
}
} else {
for (;;) {
mp_uint_t arg = rule->arg[i & 1 & n];
switch (arg & RULE_ARG_KIND_MASK) {
case RULE_ARG_TOK:
if (lex->tok_kind == (arg & RULE_ARG_ARG_MASK)) {
if (i & 1 & n) {
// separators which are tokens are not pushed to result stack
} else {
push_result_token(&parser);
}
mp_lexer_to_next(lex);
// got element of list, so continue parsing list
i += 1;
} else {
// couldn't get element of list
i += 1;
backtrack = true;
goto list_backtrack;
}
break;
case RULE_ARG_RULE:
push_rule(&parser, rule_src_line, rule, i + 1); // save this list-rule
push_rule_from_arg(&parser, arg); // push child of list-rule
goto next_rule;
default:
assert(0);
}
}
}
assert(i >= 1);
// compute number of elements in list, result in i
i -= 1;
if ((n & 1) && (rule->arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
// don't count separators when they are tokens
i = (i + 1) / 2;
}
if (i == 1) {
// list matched single item
if (had_trailing_sep) {
// if there was a trailing separator, make a list of a single item
push_result_rule(&parser, rule_src_line, rule, i);
} else {
// just leave single item on stack (ie don't wrap in a list)
}
} else {
//printf("done list %s %d %d\n", rule->rule_name, n, i);
push_result_rule(&parser, rule_src_line, rule, i);
}
break;
default:
assert(0);
}
}
mp_parse_node_t result;
// check if we had a memory error
if (parser.had_memory_error) {
memory_error:
*parse_error_kind_out = MP_PARSE_ERROR_MEMORY;
result = MP_PARSE_NODE_NULL;
goto finished;
}
// check we are at the end of the token stream
if (lex->tok_kind != MP_TOKEN_END) {
goto syntax_error;
}
//printf("--------------\n");
//result_stack_show(parser);
//printf("rule stack alloc: %d\n", parser.rule_stack_alloc);
//printf("result stack alloc: %d\n", parser.result_stack_alloc);
//printf("number of parse nodes allocated: %d\n", num_parse_nodes_allocated);
// get the root parse node that we created
assert(parser.result_stack_top == 1);
result = parser.result_stack[0];
finished:
// free the memory that we don't need anymore
m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc);
m_del(mp_parse_node_t, parser.result_stack, parser.result_stack_alloc);
// return the result
return result;
syntax_error:
if (lex->tok_kind == MP_TOKEN_INDENT) {
*parse_error_kind_out = MP_PARSE_ERROR_UNEXPECTED_INDENT;
} else if (lex->tok_kind == MP_TOKEN_DEDENT_MISMATCH) {
*parse_error_kind_out = MP_PARSE_ERROR_UNMATCHED_UNINDENT;
} else {
*parse_error_kind_out = MP_PARSE_ERROR_INVALID_SYNTAX;
#ifdef USE_RULE_NAME
// debugging: print the rule name that failed and the token
printf("rule: %s\n", rule->rule_name);
#if MICROPY_DEBUG_PRINTERS
mp_token_show(lex);
#endif
#endif
}
result = MP_PARSE_NODE_NULL;
goto finished;
}