bd556b6996
There were two issues with the existing code: 1. "1 << i" is computed as a 32-bit number so would overflow when executed on 64-bit machines (when mp_uint_t is 64-bit). This meant that *args beyond 32 positions would not be handled correctly. 2. star_args must fit as a positive small int so that it is encoded correctly in the emitted code. MP_SMALL_INT_BITS is too big because it overflows a small int by 1 bit. MP_SMALL_INT_BITS - 1 does not work because it produces a signed small int which is then sign extended when extracted (even by mp_obj_get_int_truncated), and this sign extension means that any position arg after *args is also treated as a star-arg. So the maximum bit position is MP_SMALL_INT_BITS - 2. This means that MP_OBJ_SMALL_INT_VALUE() can be used instead of mp_obj_get_int_truncated() to get the value of star_args. These issues are fixed by this commit, and a test added. Signed-off-by: Damien George <damien@micropython.org>
3690 lines
146 KiB
C
3690 lines
146 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013-2020 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "py/scope.h"
|
|
#include "py/emit.h"
|
|
#include "py/compile.h"
|
|
#include "py/runtime.h"
|
|
#include "py/asmbase.h"
|
|
#include "py/nativeglue.h"
|
|
#include "py/persistentcode.h"
|
|
#include "py/smallint.h"
|
|
|
|
#if MICROPY_ENABLE_COMPILER
|
|
|
|
// TODO need to mangle __attr names
|
|
|
|
#define INVALID_LABEL (0xffff)
|
|
|
|
typedef enum {
|
|
// define rules with a compile function
|
|
#define DEF_RULE(rule, comp, kind, ...) PN_##rule,
|
|
#define DEF_RULE_NC(rule, kind, ...)
|
|
#include "py/grammar.h"
|
|
#undef DEF_RULE
|
|
#undef DEF_RULE_NC
|
|
PN_const_object, // special node for a constant, generic Python object
|
|
// define rules without a compile function
|
|
#define DEF_RULE(rule, comp, kind, ...)
|
|
#define DEF_RULE_NC(rule, kind, ...) PN_##rule,
|
|
#include "py/grammar.h"
|
|
#undef DEF_RULE
|
|
#undef DEF_RULE_NC
|
|
} pn_kind_t;
|
|
|
|
// Whether a mp_parse_node_struct_t that has pns->kind == PN_testlist_comp
|
|
// corresponds to a list comprehension or generator.
|
|
#define MP_PARSE_NODE_TESTLIST_COMP_HAS_COMP_FOR(pns) \
|
|
(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2 && \
|
|
MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for))
|
|
|
|
#define NEED_METHOD_TABLE MICROPY_EMIT_NATIVE
|
|
|
|
#if NEED_METHOD_TABLE
|
|
|
|
// we need a method table to do the lookup for the emitter functions
|
|
#define EMIT(fun) (comp->emit_method_table->fun(comp->emit))
|
|
#define EMIT_ARG(fun, ...) (comp->emit_method_table->fun(comp->emit, __VA_ARGS__))
|
|
#define EMIT_LOAD_FAST(qst, local_num) (comp->emit_method_table->load_id.local(comp->emit, qst, local_num, MP_EMIT_IDOP_LOCAL_FAST))
|
|
#define EMIT_LOAD_GLOBAL(qst) (comp->emit_method_table->load_id.global(comp->emit, qst, MP_EMIT_IDOP_GLOBAL_GLOBAL))
|
|
|
|
#else
|
|
|
|
// if we only have the bytecode emitter enabled then we can do a direct call to the functions
|
|
#define EMIT(fun) (mp_emit_bc_##fun(comp->emit))
|
|
#define EMIT_ARG(fun, ...) (mp_emit_bc_##fun(comp->emit, __VA_ARGS__))
|
|
#define EMIT_LOAD_FAST(qst, local_num) (mp_emit_bc_load_local(comp->emit, qst, local_num, MP_EMIT_IDOP_LOCAL_FAST))
|
|
#define EMIT_LOAD_GLOBAL(qst) (mp_emit_bc_load_global(comp->emit, qst, MP_EMIT_IDOP_GLOBAL_GLOBAL))
|
|
|
|
#endif
|
|
|
|
#if MICROPY_EMIT_NATIVE && MICROPY_DYNAMIC_COMPILER
|
|
|
|
#define NATIVE_EMITTER(f) emit_native_table[mp_dynamic_compiler.native_arch]->emit_##f
|
|
#define NATIVE_EMITTER_TABLE (emit_native_table[mp_dynamic_compiler.native_arch])
|
|
|
|
STATIC const emit_method_table_t *emit_native_table[] = {
|
|
NULL,
|
|
&emit_native_x86_method_table,
|
|
&emit_native_x64_method_table,
|
|
&emit_native_arm_method_table,
|
|
&emit_native_thumb_method_table,
|
|
&emit_native_thumb_method_table,
|
|
&emit_native_thumb_method_table,
|
|
&emit_native_thumb_method_table,
|
|
&emit_native_thumb_method_table,
|
|
&emit_native_xtensa_method_table,
|
|
&emit_native_xtensawin_method_table,
|
|
};
|
|
|
|
#elif MICROPY_EMIT_NATIVE
|
|
// define a macro to access external native emitter
|
|
#if MICROPY_EMIT_X64
|
|
#define NATIVE_EMITTER(f) emit_native_x64_##f
|
|
#elif MICROPY_EMIT_X86
|
|
#define NATIVE_EMITTER(f) emit_native_x86_##f
|
|
#elif MICROPY_EMIT_THUMB
|
|
#define NATIVE_EMITTER(f) emit_native_thumb_##f
|
|
#elif MICROPY_EMIT_ARM
|
|
#define NATIVE_EMITTER(f) emit_native_arm_##f
|
|
#elif MICROPY_EMIT_XTENSA
|
|
#define NATIVE_EMITTER(f) emit_native_xtensa_##f
|
|
#elif MICROPY_EMIT_XTENSAWIN
|
|
#define NATIVE_EMITTER(f) emit_native_xtensawin_##f
|
|
#else
|
|
#error "unknown native emitter"
|
|
#endif
|
|
#define NATIVE_EMITTER_TABLE (&NATIVE_EMITTER(method_table))
|
|
#endif
|
|
|
|
#if MICROPY_EMIT_INLINE_ASM && MICROPY_DYNAMIC_COMPILER
|
|
|
|
#define ASM_EMITTER(f) emit_asm_table[mp_dynamic_compiler.native_arch]->asm_##f
|
|
#define ASM_EMITTER_TABLE emit_asm_table[mp_dynamic_compiler.native_arch]
|
|
|
|
STATIC const emit_inline_asm_method_table_t *emit_asm_table[] = {
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
&emit_inline_thumb_method_table,
|
|
&emit_inline_thumb_method_table,
|
|
&emit_inline_thumb_method_table,
|
|
&emit_inline_thumb_method_table,
|
|
&emit_inline_thumb_method_table,
|
|
&emit_inline_thumb_method_table,
|
|
&emit_inline_xtensa_method_table,
|
|
NULL,
|
|
};
|
|
|
|
#elif MICROPY_EMIT_INLINE_ASM
|
|
// define macros for inline assembler
|
|
#if MICROPY_EMIT_INLINE_THUMB
|
|
#define ASM_DECORATOR_QSTR MP_QSTR_asm_thumb
|
|
#define ASM_EMITTER(f) emit_inline_thumb_##f
|
|
#elif MICROPY_EMIT_INLINE_XTENSA
|
|
#define ASM_DECORATOR_QSTR MP_QSTR_asm_xtensa
|
|
#define ASM_EMITTER(f) emit_inline_xtensa_##f
|
|
#else
|
|
#error "unknown asm emitter"
|
|
#endif
|
|
#define ASM_EMITTER_TABLE &ASM_EMITTER(method_table)
|
|
#endif
|
|
|
|
#define EMIT_INLINE_ASM(fun) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm))
|
|
#define EMIT_INLINE_ASM_ARG(fun, ...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, __VA_ARGS__))
|
|
|
|
// elements in this struct are ordered to make it compact
|
|
typedef struct _compiler_t {
|
|
uint8_t is_repl;
|
|
uint8_t pass; // holds enum type pass_kind_t
|
|
uint8_t have_star;
|
|
|
|
// try to keep compiler clean from nlr
|
|
mp_obj_t compile_error; // set to an exception object if there's an error
|
|
size_t compile_error_line; // set to best guess of line of error
|
|
|
|
uint next_label;
|
|
|
|
uint16_t num_dict_params;
|
|
uint16_t num_default_params;
|
|
|
|
uint16_t break_label; // highest bit set indicates we are breaking out of a for loop
|
|
uint16_t continue_label;
|
|
uint16_t cur_except_level; // increased for SETUP_EXCEPT, SETUP_FINALLY; decreased for POP_BLOCK, POP_EXCEPT
|
|
uint16_t break_continue_except_level;
|
|
|
|
scope_t *scope_head;
|
|
scope_t *scope_cur;
|
|
|
|
mp_emit_common_t emit_common;
|
|
|
|
emit_t *emit; // current emitter
|
|
emit_t *emit_bc;
|
|
#if NEED_METHOD_TABLE
|
|
const emit_method_table_t *emit_method_table; // current emit method table
|
|
#endif
|
|
|
|
#if MICROPY_EMIT_INLINE_ASM
|
|
emit_inline_asm_t *emit_inline_asm; // current emitter for inline asm
|
|
const emit_inline_asm_method_table_t *emit_inline_asm_method_table; // current emit method table for inline asm
|
|
#endif
|
|
} compiler_t;
|
|
|
|
/******************************************************************************/
|
|
// mp_emit_common_t helper functions
|
|
// These are defined here so they can be inlined, to reduce code size.
|
|
|
|
STATIC void mp_emit_common_init(mp_emit_common_t *emit, qstr source_file) {
|
|
#if MICROPY_EMIT_BYTECODE_USES_QSTR_TABLE
|
|
mp_map_init(&emit->qstr_map, 1);
|
|
|
|
// add the source file as the first entry in the qstr table
|
|
mp_map_elem_t *elem = mp_map_lookup(&emit->qstr_map, MP_OBJ_NEW_QSTR(source_file), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
|
|
elem->value = MP_OBJ_NEW_SMALL_INT(0);
|
|
#endif
|
|
}
|
|
|
|
STATIC void mp_emit_common_start_pass(mp_emit_common_t *emit, pass_kind_t pass) {
|
|
emit->pass = pass;
|
|
if (pass == MP_PASS_STACK_SIZE) {
|
|
emit->ct_cur_obj_base = emit->ct_cur_obj;
|
|
} else if (pass > MP_PASS_STACK_SIZE) {
|
|
emit->ct_cur_obj = emit->ct_cur_obj_base;
|
|
}
|
|
if (pass == MP_PASS_CODE_SIZE) {
|
|
if (emit->ct_cur_child == 0) {
|
|
emit->children = NULL;
|
|
} else {
|
|
emit->children = m_new0(mp_raw_code_t *, emit->ct_cur_child);
|
|
}
|
|
}
|
|
emit->ct_cur_child = 0;
|
|
}
|
|
|
|
STATIC void mp_emit_common_finalise(mp_emit_common_t *emit, bool has_native_code) {
|
|
emit->ct_cur_obj += has_native_code; // allocate an additional slot for &mp_fun_table
|
|
emit->const_table = m_new0(mp_uint_t, emit->ct_cur_obj);
|
|
emit->ct_cur_obj = has_native_code; // reserve slot 0 for &mp_fun_table
|
|
#if MICROPY_EMIT_NATIVE
|
|
if (has_native_code) {
|
|
// store mp_fun_table pointer at the start of the constant table
|
|
emit->const_table[0] = (mp_uint_t)(uintptr_t)&mp_fun_table;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
STATIC void mp_emit_common_populate_module_context(mp_emit_common_t *emit, qstr source_file, mp_module_context_t *context) {
|
|
#if MICROPY_EMIT_BYTECODE_USES_QSTR_TABLE
|
|
size_t qstr_map_used = emit->qstr_map.used;
|
|
mp_module_context_alloc_tables(context, qstr_map_used, emit->ct_cur_obj);
|
|
for (size_t i = 0; i < emit->qstr_map.alloc; ++i) {
|
|
if (mp_map_slot_is_filled(&emit->qstr_map, i)) {
|
|
size_t idx = MP_OBJ_SMALL_INT_VALUE(emit->qstr_map.table[i].value);
|
|
qstr qst = MP_OBJ_QSTR_VALUE(emit->qstr_map.table[i].key);
|
|
context->constants.qstr_table[idx] = qst;
|
|
}
|
|
}
|
|
#else
|
|
mp_module_context_alloc_tables(context, 0, emit->ct_cur_obj);
|
|
context->constants.source_file = source_file;
|
|
#endif
|
|
|
|
if (emit->ct_cur_obj > 0) {
|
|
memcpy(context->constants.obj_table, emit->const_table, emit->ct_cur_obj * sizeof(mp_uint_t));
|
|
}
|
|
}
|
|
|
|
/******************************************************************************/
|
|
|
|
STATIC void compile_error_set_line(compiler_t *comp, mp_parse_node_t pn) {
|
|
// if the line of the error is unknown then try to update it from the pn
|
|
if (comp->compile_error_line == 0 && MP_PARSE_NODE_IS_STRUCT(pn)) {
|
|
comp->compile_error_line = ((mp_parse_node_struct_t *)pn)->source_line;
|
|
}
|
|
}
|
|
|
|
STATIC void compile_syntax_error(compiler_t *comp, mp_parse_node_t pn, mp_rom_error_text_t msg) {
|
|
// only register the error if there has been no other error
|
|
if (comp->compile_error == MP_OBJ_NULL) {
|
|
comp->compile_error = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg);
|
|
compile_error_set_line(comp, pn);
|
|
}
|
|
}
|
|
|
|
STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra);
|
|
STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind);
|
|
STATIC void compile_atom_brace_helper(compiler_t *comp, mp_parse_node_struct_t *pns, bool create_map);
|
|
STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn);
|
|
|
|
STATIC uint comp_next_label(compiler_t *comp) {
|
|
return comp->next_label++;
|
|
}
|
|
|
|
#if MICROPY_EMIT_NATIVE
|
|
STATIC void reserve_labels_for_native(compiler_t *comp, int n) {
|
|
if (comp->scope_cur->emit_options != MP_EMIT_OPT_BYTECODE) {
|
|
comp->next_label += n;
|
|
}
|
|
}
|
|
#else
|
|
#define reserve_labels_for_native(comp, n)
|
|
#endif
|
|
|
|
STATIC void compile_increase_except_level(compiler_t *comp, uint label, int kind) {
|
|
EMIT_ARG(setup_block, label, kind);
|
|
comp->cur_except_level += 1;
|
|
if (comp->cur_except_level > comp->scope_cur->exc_stack_size) {
|
|
comp->scope_cur->exc_stack_size = comp->cur_except_level;
|
|
}
|
|
}
|
|
|
|
STATIC void compile_decrease_except_level(compiler_t *comp) {
|
|
assert(comp->cur_except_level > 0);
|
|
comp->cur_except_level -= 1;
|
|
EMIT(end_finally);
|
|
reserve_labels_for_native(comp, 1);
|
|
}
|
|
|
|
STATIC scope_t *scope_new_and_link(compiler_t *comp, scope_kind_t kind, mp_parse_node_t pn, uint emit_options) {
|
|
scope_t *scope = scope_new(kind, pn, emit_options);
|
|
scope->parent = comp->scope_cur;
|
|
scope->next = NULL;
|
|
if (comp->scope_head == NULL) {
|
|
comp->scope_head = scope;
|
|
} else {
|
|
scope_t *s = comp->scope_head;
|
|
while (s->next != NULL) {
|
|
s = s->next;
|
|
}
|
|
s->next = scope;
|
|
}
|
|
return scope;
|
|
}
|
|
|
|
typedef void (*apply_list_fun_t)(compiler_t *comp, mp_parse_node_t pn);
|
|
|
|
STATIC void apply_to_single_or_list(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_list_kind, apply_list_fun_t f) {
|
|
if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, pn_list_kind)) {
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
|
|
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
|
|
for (int i = 0; i < num_nodes; i++) {
|
|
f(comp, pns->nodes[i]);
|
|
}
|
|
} else if (!MP_PARSE_NODE_IS_NULL(pn)) {
|
|
f(comp, pn);
|
|
}
|
|
}
|
|
|
|
STATIC void compile_generic_all_nodes(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
|
|
for (int i = 0; i < num_nodes; i++) {
|
|
compile_node(comp, pns->nodes[i]);
|
|
if (comp->compile_error != MP_OBJ_NULL) {
|
|
// add line info for the error in case it didn't have a line number
|
|
compile_error_set_line(comp, pns->nodes[i]);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC void compile_load_id(compiler_t *comp, qstr qst) {
|
|
if (comp->pass == MP_PASS_SCOPE) {
|
|
mp_emit_common_get_id_for_load(comp->scope_cur, qst);
|
|
}
|
|
{
|
|
#if NEED_METHOD_TABLE
|
|
mp_emit_common_id_op(comp->emit, &comp->emit_method_table->load_id, comp->scope_cur, qst);
|
|
#else
|
|
mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_load_id_ops, comp->scope_cur, qst);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
STATIC void compile_store_id(compiler_t *comp, qstr qst) {
|
|
if (comp->pass == MP_PASS_SCOPE) {
|
|
mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
|
|
}
|
|
{
|
|
#if NEED_METHOD_TABLE
|
|
mp_emit_common_id_op(comp->emit, &comp->emit_method_table->store_id, comp->scope_cur, qst);
|
|
#else
|
|
mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_store_id_ops, comp->scope_cur, qst);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
STATIC void compile_delete_id(compiler_t *comp, qstr qst) {
|
|
if (comp->pass == MP_PASS_SCOPE) {
|
|
mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
|
|
}
|
|
{
|
|
#if NEED_METHOD_TABLE
|
|
mp_emit_common_id_op(comp->emit, &comp->emit_method_table->delete_id, comp->scope_cur, qst);
|
|
#else
|
|
mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_delete_id_ops, comp->scope_cur, qst);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
STATIC void compile_generic_tuple(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
// a simple tuple expression
|
|
size_t num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
|
|
for (size_t i = 0; i < num_nodes; i++) {
|
|
compile_node(comp, pns->nodes[i]);
|
|
}
|
|
EMIT_ARG(build, num_nodes, MP_EMIT_BUILD_TUPLE);
|
|
}
|
|
|
|
STATIC void c_if_cond(compiler_t *comp, mp_parse_node_t pn, bool jump_if, int label) {
|
|
if (mp_parse_node_is_const_false(pn)) {
|
|
if (jump_if == false) {
|
|
EMIT_ARG(jump, label);
|
|
}
|
|
return;
|
|
} else if (mp_parse_node_is_const_true(pn)) {
|
|
if (jump_if == true) {
|
|
EMIT_ARG(jump, label);
|
|
}
|
|
return;
|
|
} else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
|
|
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test) {
|
|
if (jump_if == false) {
|
|
and_or_logic1:;
|
|
uint label2 = comp_next_label(comp);
|
|
for (int i = 0; i < n - 1; i++) {
|
|
c_if_cond(comp, pns->nodes[i], !jump_if, label2);
|
|
}
|
|
c_if_cond(comp, pns->nodes[n - 1], jump_if, label);
|
|
EMIT_ARG(label_assign, label2);
|
|
} else {
|
|
and_or_logic2:
|
|
for (int i = 0; i < n; i++) {
|
|
c_if_cond(comp, pns->nodes[i], jump_if, label);
|
|
}
|
|
}
|
|
return;
|
|
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_and_test) {
|
|
if (jump_if == false) {
|
|
goto and_or_logic2;
|
|
} else {
|
|
goto and_or_logic1;
|
|
}
|
|
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_not_test_2) {
|
|
c_if_cond(comp, pns->nodes[0], !jump_if, label);
|
|
return;
|
|
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_atom_paren) {
|
|
// cond is something in parenthesis
|
|
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
|
|
// empty tuple, acts as false for the condition
|
|
if (jump_if == false) {
|
|
EMIT_ARG(jump, label);
|
|
}
|
|
} else {
|
|
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
|
|
// non-empty tuple, acts as true for the condition
|
|
if (jump_if == true) {
|
|
EMIT_ARG(jump, label);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// nothing special, fall back to default compiling for node and jump
|
|
compile_node(comp, pn);
|
|
EMIT_ARG(pop_jump_if, jump_if, label);
|
|
}
|
|
|
|
typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t;
|
|
STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t kind);
|
|
|
|
STATIC void c_assign_atom_expr(compiler_t *comp, mp_parse_node_struct_t *pns, assign_kind_t assign_kind) {
|
|
if (assign_kind != ASSIGN_AUG_STORE) {
|
|
compile_node(comp, pns->nodes[0]);
|
|
}
|
|
|
|
if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
|
|
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pns->nodes[1];
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) {
|
|
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
|
|
if (assign_kind != ASSIGN_AUG_STORE) {
|
|
for (int i = 0; i < n - 1; i++) {
|
|
compile_node(comp, pns1->nodes[i]);
|
|
}
|
|
}
|
|
assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1]));
|
|
pns1 = (mp_parse_node_struct_t *)pns1->nodes[n - 1];
|
|
}
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) {
|
|
if (assign_kind == ASSIGN_AUG_STORE) {
|
|
EMIT(rot_three);
|
|
EMIT_ARG(subscr, MP_EMIT_SUBSCR_STORE);
|
|
} else {
|
|
compile_node(comp, pns1->nodes[0]);
|
|
if (assign_kind == ASSIGN_AUG_LOAD) {
|
|
EMIT(dup_top_two);
|
|
EMIT_ARG(subscr, MP_EMIT_SUBSCR_LOAD);
|
|
} else {
|
|
EMIT_ARG(subscr, MP_EMIT_SUBSCR_STORE);
|
|
}
|
|
}
|
|
return;
|
|
} else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) {
|
|
assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
|
|
if (assign_kind == ASSIGN_AUG_LOAD) {
|
|
EMIT(dup_top);
|
|
EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]), MP_EMIT_ATTR_LOAD);
|
|
} else {
|
|
if (assign_kind == ASSIGN_AUG_STORE) {
|
|
EMIT(rot_two);
|
|
}
|
|
EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]), MP_EMIT_ATTR_STORE);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("can't assign to expression"));
|
|
}
|
|
|
|
STATIC void c_assign_tuple(compiler_t *comp, uint num_tail, mp_parse_node_t *nodes_tail) {
|
|
// look for star expression
|
|
uint have_star_index = -1;
|
|
for (uint i = 0; i < num_tail; i++) {
|
|
if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes_tail[i], PN_star_expr)) {
|
|
if (have_star_index == (uint)-1) {
|
|
EMIT_ARG(unpack_ex, i, num_tail - i - 1);
|
|
have_star_index = i;
|
|
} else {
|
|
compile_syntax_error(comp, nodes_tail[i], MP_ERROR_TEXT("multiple *x in assignment"));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
if (have_star_index == (uint)-1) {
|
|
EMIT_ARG(unpack_sequence, num_tail);
|
|
}
|
|
for (uint i = 0; i < num_tail; i++) {
|
|
if (i == have_star_index) {
|
|
c_assign(comp, ((mp_parse_node_struct_t *)nodes_tail[i])->nodes[0], ASSIGN_STORE);
|
|
} else {
|
|
c_assign(comp, nodes_tail[i], ASSIGN_STORE);
|
|
}
|
|
}
|
|
}
|
|
|
|
// assigns top of stack to pn
|
|
STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t assign_kind) {
|
|
assert(!MP_PARSE_NODE_IS_NULL(pn));
|
|
if (MP_PARSE_NODE_IS_LEAF(pn)) {
|
|
if (MP_PARSE_NODE_IS_ID(pn)) {
|
|
qstr arg = MP_PARSE_NODE_LEAF_ARG(pn);
|
|
switch (assign_kind) {
|
|
case ASSIGN_STORE:
|
|
case ASSIGN_AUG_STORE:
|
|
compile_store_id(comp, arg);
|
|
break;
|
|
case ASSIGN_AUG_LOAD:
|
|
default:
|
|
compile_load_id(comp, arg);
|
|
break;
|
|
}
|
|
} else {
|
|
goto cannot_assign;
|
|
}
|
|
} else {
|
|
// pn must be a struct
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
|
|
switch (MP_PARSE_NODE_STRUCT_KIND(pns)) {
|
|
case PN_atom_expr_normal:
|
|
// lhs is an index or attribute
|
|
c_assign_atom_expr(comp, pns, assign_kind);
|
|
break;
|
|
|
|
case PN_testlist_star_expr:
|
|
case PN_exprlist:
|
|
// lhs is a tuple
|
|
if (assign_kind != ASSIGN_STORE) {
|
|
goto cannot_assign;
|
|
}
|
|
c_assign_tuple(comp, MP_PARSE_NODE_STRUCT_NUM_NODES(pns), pns->nodes);
|
|
break;
|
|
|
|
case PN_atom_paren:
|
|
// lhs is something in parenthesis
|
|
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
|
|
// empty tuple
|
|
goto cannot_assign;
|
|
} else {
|
|
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
|
|
if (assign_kind != ASSIGN_STORE) {
|
|
goto cannot_assign;
|
|
}
|
|
pns = (mp_parse_node_struct_t *)pns->nodes[0];
|
|
goto testlist_comp;
|
|
}
|
|
break;
|
|
|
|
case PN_atom_bracket:
|
|
// lhs is something in brackets
|
|
if (assign_kind != ASSIGN_STORE) {
|
|
goto cannot_assign;
|
|
}
|
|
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
|
|
// empty list, assignment allowed
|
|
c_assign_tuple(comp, 0, NULL);
|
|
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
|
|
pns = (mp_parse_node_struct_t *)pns->nodes[0];
|
|
goto testlist_comp;
|
|
} else {
|
|
// brackets around 1 item
|
|
c_assign_tuple(comp, 1, pns->nodes);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
goto cannot_assign;
|
|
}
|
|
return;
|
|
|
|
testlist_comp:
|
|
// lhs is a sequence
|
|
if (MP_PARSE_NODE_TESTLIST_COMP_HAS_COMP_FOR(pns)) {
|
|
goto cannot_assign;
|
|
}
|
|
c_assign_tuple(comp, MP_PARSE_NODE_STRUCT_NUM_NODES(pns), pns->nodes);
|
|
return;
|
|
}
|
|
return;
|
|
|
|
cannot_assign:
|
|
compile_syntax_error(comp, pn, MP_ERROR_TEXT("can't assign to expression"));
|
|
}
|
|
|
|
// stuff for lambda and comprehensions and generators:
|
|
// if n_pos_defaults > 0 then there is a tuple on the stack with the positional defaults
|
|
// if n_kw_defaults > 0 then there is a dictionary on the stack with the keyword defaults
|
|
// if both exist, the tuple is above the dictionary (ie the first pop gets the tuple)
|
|
STATIC void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_pos_defaults, int n_kw_defaults) {
|
|
assert(n_pos_defaults >= 0);
|
|
assert(n_kw_defaults >= 0);
|
|
|
|
// set flags
|
|
if (n_kw_defaults > 0) {
|
|
this_scope->scope_flags |= MP_SCOPE_FLAG_DEFKWARGS;
|
|
}
|
|
this_scope->num_def_pos_args = n_pos_defaults;
|
|
|
|
#if MICROPY_EMIT_NATIVE
|
|
// When creating a function/closure it will take a reference to the current globals
|
|
comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_REFGLOBALS | MP_SCOPE_FLAG_HASCONSTS;
|
|
#endif
|
|
|
|
// make closed over variables, if any
|
|
// ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython)
|
|
int nfree = 0;
|
|
if (comp->scope_cur->kind != SCOPE_MODULE) {
|
|
for (int i = 0; i < comp->scope_cur->id_info_len; i++) {
|
|
id_info_t *id = &comp->scope_cur->id_info[i];
|
|
if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
|
|
for (int j = 0; j < this_scope->id_info_len; j++) {
|
|
id_info_t *id2 = &this_scope->id_info[j];
|
|
if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
|
|
// in MicroPython we load closures using LOAD_FAST
|
|
EMIT_LOAD_FAST(id->qst, id->local_num);
|
|
nfree += 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// make the function/closure
|
|
if (nfree == 0) {
|
|
EMIT_ARG(make_function, this_scope, n_pos_defaults, n_kw_defaults);
|
|
} else {
|
|
EMIT_ARG(make_closure, this_scope, nfree, n_pos_defaults, n_kw_defaults);
|
|
}
|
|
}
|
|
|
|
STATIC void compile_funcdef_lambdef_param(compiler_t *comp, mp_parse_node_t pn) {
|
|
// For efficiency of the code below we extract the parse-node kind here
|
|
int pn_kind;
|
|
if (MP_PARSE_NODE_IS_ID(pn)) {
|
|
pn_kind = -1;
|
|
} else {
|
|
assert(MP_PARSE_NODE_IS_STRUCT(pn));
|
|
pn_kind = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn);
|
|
}
|
|
|
|
if (pn_kind == PN_typedargslist_star || pn_kind == PN_varargslist_star) {
|
|
comp->have_star = true;
|
|
/* don't need to distinguish bare from named star
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
|
|
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
|
|
// bare star
|
|
} else {
|
|
// named star
|
|
}
|
|
*/
|
|
|
|
} else if (pn_kind == PN_typedargslist_dbl_star || pn_kind == PN_varargslist_dbl_star) {
|
|
// named double star
|
|
// TODO do we need to do anything with this?
|
|
|
|
} else {
|
|
mp_parse_node_t pn_id;
|
|
mp_parse_node_t pn_equal;
|
|
if (pn_kind == -1) {
|
|
// this parameter is just an id
|
|
|
|
pn_id = pn;
|
|
pn_equal = MP_PARSE_NODE_NULL;
|
|
|
|
} else if (pn_kind == PN_typedargslist_name) {
|
|
// this parameter has a colon and/or equal specifier
|
|
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
|
|
pn_id = pns->nodes[0];
|
|
// pn_colon = pns->nodes[1]; // unused
|
|
pn_equal = pns->nodes[2];
|
|
|
|
} else {
|
|
assert(pn_kind == PN_varargslist_name); // should be
|
|
// this parameter has an equal specifier
|
|
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
|
|
pn_id = pns->nodes[0];
|
|
pn_equal = pns->nodes[1];
|
|
}
|
|
|
|
if (MP_PARSE_NODE_IS_NULL(pn_equal)) {
|
|
// this parameter does not have a default value
|
|
|
|
// check for non-default parameters given after default parameters (allowed by parser, but not syntactically valid)
|
|
if (!comp->have_star && comp->num_default_params != 0) {
|
|
compile_syntax_error(comp, pn, MP_ERROR_TEXT("non-default argument follows default argument"));
|
|
return;
|
|
}
|
|
|
|
} else {
|
|
// this parameter has a default value
|
|
// in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why
|
|
|
|
if (comp->have_star) {
|
|
comp->num_dict_params += 1;
|
|
// in MicroPython we put the default dict parameters into a dictionary using the bytecode
|
|
if (comp->num_dict_params == 1) {
|
|
// in MicroPython we put the default positional parameters into a tuple using the bytecode
|
|
// we need to do this here before we start building the map for the default keywords
|
|
if (comp->num_default_params > 0) {
|
|
EMIT_ARG(build, comp->num_default_params, MP_EMIT_BUILD_TUPLE);
|
|
} else {
|
|
EMIT(load_null); // sentinel indicating empty default positional args
|
|
}
|
|
// first default dict param, so make the map
|
|
EMIT_ARG(build, 0, MP_EMIT_BUILD_MAP);
|
|
}
|
|
|
|
// compile value then key, then store it to the dict
|
|
compile_node(comp, pn_equal);
|
|
EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pn_id));
|
|
EMIT(store_map);
|
|
} else {
|
|
comp->num_default_params += 1;
|
|
compile_node(comp, pn_equal);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC void compile_funcdef_lambdef(compiler_t *comp, scope_t *scope, mp_parse_node_t pn_params, pn_kind_t pn_list_kind) {
|
|
// When we call compile_funcdef_lambdef_param below it can compile an arbitrary
|
|
// expression for default arguments, which may contain a lambda. The lambda will
|
|
// call here in a nested way, so we must save and restore the relevant state.
|
|
bool orig_have_star = comp->have_star;
|
|
uint16_t orig_num_dict_params = comp->num_dict_params;
|
|
uint16_t orig_num_default_params = comp->num_default_params;
|
|
|
|
// compile default parameters
|
|
comp->have_star = false;
|
|
comp->num_dict_params = 0;
|
|
comp->num_default_params = 0;
|
|
apply_to_single_or_list(comp, pn_params, pn_list_kind, compile_funcdef_lambdef_param);
|
|
|
|
if (comp->compile_error != MP_OBJ_NULL) {
|
|
return;
|
|
}
|
|
|
|
// in MicroPython we put the default positional parameters into a tuple using the bytecode
|
|
// the default keywords args may have already made the tuple; if not, do it now
|
|
if (comp->num_default_params > 0 && comp->num_dict_params == 0) {
|
|
EMIT_ARG(build, comp->num_default_params, MP_EMIT_BUILD_TUPLE);
|
|
EMIT(load_null); // sentinel indicating empty default keyword args
|
|
}
|
|
|
|
// make the function
|
|
close_over_variables_etc(comp, scope, comp->num_default_params, comp->num_dict_params);
|
|
|
|
// restore state
|
|
comp->have_star = orig_have_star;
|
|
comp->num_dict_params = orig_num_dict_params;
|
|
comp->num_default_params = orig_num_default_params;
|
|
}
|
|
|
|
// leaves function object on stack
|
|
// returns function name
|
|
STATIC qstr compile_funcdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) {
|
|
if (comp->pass == MP_PASS_SCOPE) {
|
|
// create a new scope for this function
|
|
scope_t *s = scope_new_and_link(comp, SCOPE_FUNCTION, (mp_parse_node_t)pns, emit_options);
|
|
// store the function scope so the compiling function can use it at each pass
|
|
pns->nodes[4] = (mp_parse_node_t)s;
|
|
}
|
|
|
|
// get the scope for this function
|
|
scope_t *fscope = (scope_t *)pns->nodes[4];
|
|
|
|
// compile the function definition
|
|
compile_funcdef_lambdef(comp, fscope, pns->nodes[1], PN_typedargslist);
|
|
|
|
// return its name (the 'f' in "def f(...):")
|
|
return fscope->simple_name;
|
|
}
|
|
|
|
// leaves class object on stack
|
|
// returns class name
|
|
STATIC qstr compile_classdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) {
|
|
if (comp->pass == MP_PASS_SCOPE) {
|
|
// create a new scope for this class
|
|
scope_t *s = scope_new_and_link(comp, SCOPE_CLASS, (mp_parse_node_t)pns, emit_options);
|
|
// store the class scope so the compiling function can use it at each pass
|
|
pns->nodes[3] = (mp_parse_node_t)s;
|
|
}
|
|
|
|
EMIT(load_build_class);
|
|
|
|
// scope for this class
|
|
scope_t *cscope = (scope_t *)pns->nodes[3];
|
|
|
|
// compile the class
|
|
close_over_variables_etc(comp, cscope, 0, 0);
|
|
|
|
// get its name
|
|
EMIT_ARG(load_const_str, cscope->simple_name);
|
|
|
|
// nodes[1] has parent classes, if any
|
|
// empty parenthesis (eg class C():) gets here as an empty PN_classdef_2 and needs special handling
|
|
mp_parse_node_t parents = pns->nodes[1];
|
|
if (MP_PARSE_NODE_IS_STRUCT_KIND(parents, PN_classdef_2)) {
|
|
parents = MP_PARSE_NODE_NULL;
|
|
}
|
|
compile_trailer_paren_helper(comp, parents, false, 2);
|
|
|
|
// return its name (the 'C' in class C(...):")
|
|
return cscope->simple_name;
|
|
}
|
|
|
|
// returns true if it was a built-in decorator (even if the built-in had an error)
|
|
STATIC bool compile_built_in_decorator(compiler_t *comp, size_t name_len, mp_parse_node_t *name_nodes, uint *emit_options) {
|
|
if (MP_PARSE_NODE_LEAF_ARG(name_nodes[0]) != MP_QSTR_micropython) {
|
|
return false;
|
|
}
|
|
|
|
if (name_len != 2) {
|
|
compile_syntax_error(comp, name_nodes[0], MP_ERROR_TEXT("invalid micropython decorator"));
|
|
return true;
|
|
}
|
|
|
|
qstr attr = MP_PARSE_NODE_LEAF_ARG(name_nodes[1]);
|
|
if (attr == MP_QSTR_bytecode) {
|
|
*emit_options = MP_EMIT_OPT_BYTECODE;
|
|
#if MICROPY_EMIT_NATIVE
|
|
} else if (attr == MP_QSTR_native) {
|
|
*emit_options = MP_EMIT_OPT_NATIVE_PYTHON;
|
|
} else if (attr == MP_QSTR_viper) {
|
|
*emit_options = MP_EMIT_OPT_VIPER;
|
|
#endif
|
|
#if MICROPY_EMIT_INLINE_ASM
|
|
#if MICROPY_DYNAMIC_COMPILER
|
|
} else if (attr == MP_QSTR_asm_thumb) {
|
|
*emit_options = MP_EMIT_OPT_ASM;
|
|
} else if (attr == MP_QSTR_asm_xtensa) {
|
|
*emit_options = MP_EMIT_OPT_ASM;
|
|
#else
|
|
} else if (attr == ASM_DECORATOR_QSTR) {
|
|
*emit_options = MP_EMIT_OPT_ASM;
|
|
#endif
|
|
#endif
|
|
} else {
|
|
compile_syntax_error(comp, name_nodes[1], MP_ERROR_TEXT("invalid micropython decorator"));
|
|
}
|
|
|
|
#if MICROPY_EMIT_NATIVE && MICROPY_DYNAMIC_COMPILER
|
|
if (*emit_options == MP_EMIT_OPT_NATIVE_PYTHON || *emit_options == MP_EMIT_OPT_VIPER) {
|
|
if (emit_native_table[mp_dynamic_compiler.native_arch] == NULL) {
|
|
compile_syntax_error(comp, name_nodes[1], MP_ERROR_TEXT("invalid arch"));
|
|
}
|
|
} else if (*emit_options == MP_EMIT_OPT_ASM) {
|
|
if (emit_asm_table[mp_dynamic_compiler.native_arch] == NULL) {
|
|
compile_syntax_error(comp, name_nodes[1], MP_ERROR_TEXT("invalid arch"));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
STATIC void compile_decorated(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
// get the list of decorators
|
|
mp_parse_node_t *nodes;
|
|
size_t n = mp_parse_node_extract_list(&pns->nodes[0], PN_decorators, &nodes);
|
|
|
|
// inherit emit options for this function/class definition
|
|
uint emit_options = comp->scope_cur->emit_options;
|
|
|
|
// compile each decorator
|
|
size_t num_built_in_decorators = 0;
|
|
for (size_t i = 0; i < n; i++) {
|
|
assert(MP_PARSE_NODE_IS_STRUCT_KIND(nodes[i], PN_decorator)); // should be
|
|
mp_parse_node_struct_t *pns_decorator = (mp_parse_node_struct_t *)nodes[i];
|
|
|
|
// nodes[0] contains the decorator function, which is a dotted name
|
|
mp_parse_node_t *name_nodes;
|
|
size_t name_len = mp_parse_node_extract_list(&pns_decorator->nodes[0], PN_dotted_name, &name_nodes);
|
|
|
|
// check for built-in decorators
|
|
if (compile_built_in_decorator(comp, name_len, name_nodes, &emit_options)) {
|
|
// this was a built-in
|
|
num_built_in_decorators += 1;
|
|
|
|
} else {
|
|
// not a built-in, compile normally
|
|
|
|
// compile the decorator function
|
|
compile_node(comp, name_nodes[0]);
|
|
for (size_t j = 1; j < name_len; j++) {
|
|
assert(MP_PARSE_NODE_IS_ID(name_nodes[j])); // should be
|
|
EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(name_nodes[j]), MP_EMIT_ATTR_LOAD);
|
|
}
|
|
|
|
// nodes[1] contains arguments to the decorator function, if any
|
|
if (!MP_PARSE_NODE_IS_NULL(pns_decorator->nodes[1])) {
|
|
// call the decorator function with the arguments in nodes[1]
|
|
compile_node(comp, pns_decorator->nodes[1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// compile the body (funcdef, async funcdef or classdef) and get its name
|
|
mp_parse_node_struct_t *pns_body = (mp_parse_node_struct_t *)pns->nodes[1];
|
|
qstr body_name = 0;
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_funcdef) {
|
|
body_name = compile_funcdef_helper(comp, pns_body, emit_options);
|
|
#if MICROPY_PY_ASYNC_AWAIT
|
|
} else if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_async_funcdef) {
|
|
assert(MP_PARSE_NODE_IS_STRUCT(pns_body->nodes[0]));
|
|
mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t *)pns_body->nodes[0];
|
|
body_name = compile_funcdef_helper(comp, pns0, emit_options);
|
|
scope_t *fscope = (scope_t *)pns0->nodes[4];
|
|
fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;
|
|
#endif
|
|
} else {
|
|
assert(MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_classdef); // should be
|
|
body_name = compile_classdef_helper(comp, pns_body, emit_options);
|
|
}
|
|
|
|
// call each decorator
|
|
for (size_t i = 0; i < n - num_built_in_decorators; i++) {
|
|
EMIT_ARG(call_function, 1, 0, 0);
|
|
}
|
|
|
|
// store func/class object into name
|
|
compile_store_id(comp, body_name);
|
|
}
|
|
|
|
STATIC void compile_funcdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
qstr fname = compile_funcdef_helper(comp, pns, comp->scope_cur->emit_options);
|
|
// store function object into function name
|
|
compile_store_id(comp, fname);
|
|
}
|
|
|
|
STATIC void c_del_stmt(compiler_t *comp, mp_parse_node_t pn) {
|
|
if (MP_PARSE_NODE_IS_ID(pn)) {
|
|
compile_delete_id(comp, MP_PARSE_NODE_LEAF_ARG(pn));
|
|
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_expr_normal)) {
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
|
|
|
|
compile_node(comp, pns->nodes[0]); // base of the atom_expr_normal node
|
|
|
|
if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
|
|
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pns->nodes[1];
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) {
|
|
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
|
|
for (int i = 0; i < n - 1; i++) {
|
|
compile_node(comp, pns1->nodes[i]);
|
|
}
|
|
assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1]));
|
|
pns1 = (mp_parse_node_struct_t *)pns1->nodes[n - 1];
|
|
}
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) {
|
|
compile_node(comp, pns1->nodes[0]);
|
|
EMIT_ARG(subscr, MP_EMIT_SUBSCR_DELETE);
|
|
} else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) {
|
|
assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
|
|
EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]), MP_EMIT_ATTR_DELETE);
|
|
} else {
|
|
goto cannot_delete;
|
|
}
|
|
} else {
|
|
goto cannot_delete;
|
|
}
|
|
|
|
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_paren)) {
|
|
pn = ((mp_parse_node_struct_t *)pn)->nodes[0];
|
|
if (MP_PARSE_NODE_IS_NULL(pn)) {
|
|
goto cannot_delete;
|
|
} else {
|
|
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_testlist_comp));
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
|
|
if (MP_PARSE_NODE_TESTLIST_COMP_HAS_COMP_FOR(pns)) {
|
|
goto cannot_delete;
|
|
}
|
|
for (size_t i = 0; i < MP_PARSE_NODE_STRUCT_NUM_NODES(pns); ++i) {
|
|
c_del_stmt(comp, pns->nodes[i]);
|
|
}
|
|
}
|
|
} else {
|
|
// some arbitrary statement that we can't delete (eg del 1)
|
|
goto cannot_delete;
|
|
}
|
|
|
|
return;
|
|
|
|
cannot_delete:
|
|
compile_syntax_error(comp, (mp_parse_node_t)pn, MP_ERROR_TEXT("can't delete expression"));
|
|
}
|
|
|
|
STATIC void compile_del_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
apply_to_single_or_list(comp, pns->nodes[0], PN_exprlist, c_del_stmt);
|
|
}
|
|
|
|
STATIC void compile_break_cont_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
uint16_t label;
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_break_stmt) {
|
|
label = comp->break_label;
|
|
} else {
|
|
label = comp->continue_label;
|
|
}
|
|
if (label == INVALID_LABEL) {
|
|
compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("'break'/'continue' outside loop"));
|
|
}
|
|
assert(comp->cur_except_level >= comp->break_continue_except_level);
|
|
EMIT_ARG(unwind_jump, label, comp->cur_except_level - comp->break_continue_except_level);
|
|
}
|
|
|
|
STATIC void compile_return_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
#if MICROPY_CPYTHON_COMPAT
|
|
if (comp->scope_cur->kind != SCOPE_FUNCTION) {
|
|
compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("'return' outside function"));
|
|
return;
|
|
}
|
|
#endif
|
|
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
|
|
// no argument to 'return', so return None
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
|
|
} else if (MICROPY_COMP_RETURN_IF_EXPR
|
|
&& MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_test_if_expr)) {
|
|
// special case when returning an if-expression; to match CPython optimisation
|
|
mp_parse_node_struct_t *pns_test_if_expr = (mp_parse_node_struct_t *)pns->nodes[0];
|
|
mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t *)pns_test_if_expr->nodes[1];
|
|
|
|
uint l_fail = comp_next_label(comp);
|
|
c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
|
|
compile_node(comp, pns_test_if_expr->nodes[0]); // success value
|
|
EMIT(return_value);
|
|
EMIT_ARG(label_assign, l_fail);
|
|
compile_node(comp, pns_test_if_else->nodes[1]); // failure value
|
|
} else {
|
|
compile_node(comp, pns->nodes[0]);
|
|
}
|
|
EMIT(return_value);
|
|
}
|
|
|
|
STATIC void compile_yield_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
compile_node(comp, pns->nodes[0]);
|
|
EMIT(pop_top);
|
|
}
|
|
|
|
STATIC void compile_raise_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
|
|
// raise
|
|
EMIT_ARG(raise_varargs, 0);
|
|
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_raise_stmt_arg)) {
|
|
// raise x from y
|
|
pns = (mp_parse_node_struct_t *)pns->nodes[0];
|
|
compile_node(comp, pns->nodes[0]);
|
|
compile_node(comp, pns->nodes[1]);
|
|
EMIT_ARG(raise_varargs, 2);
|
|
} else {
|
|
// raise x
|
|
compile_node(comp, pns->nodes[0]);
|
|
EMIT_ARG(raise_varargs, 1);
|
|
}
|
|
}
|
|
|
|
// q_base holds the base of the name
|
|
// eg a -> q_base=a
|
|
// a.b.c -> q_base=a
|
|
STATIC void do_import_name(compiler_t *comp, mp_parse_node_t pn, qstr *q_base) {
|
|
bool is_as = false;
|
|
if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_as_name)) {
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
|
|
// a name of the form x as y; unwrap it
|
|
*q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]);
|
|
pn = pns->nodes[0];
|
|
is_as = true;
|
|
}
|
|
if (MP_PARSE_NODE_IS_NULL(pn)) {
|
|
// empty name (eg, from . import x)
|
|
*q_base = MP_QSTR_;
|
|
EMIT_ARG(import, MP_QSTR_, MP_EMIT_IMPORT_NAME); // import the empty string
|
|
} else if (MP_PARSE_NODE_IS_ID(pn)) {
|
|
// just a simple name
|
|
qstr q_full = MP_PARSE_NODE_LEAF_ARG(pn);
|
|
if (!is_as) {
|
|
*q_base = q_full;
|
|
}
|
|
EMIT_ARG(import, q_full, MP_EMIT_IMPORT_NAME);
|
|
} else {
|
|
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_name)); // should be
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
|
|
{
|
|
// a name of the form a.b.c
|
|
if (!is_as) {
|
|
*q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
|
|
}
|
|
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
|
|
int len = n - 1;
|
|
for (int i = 0; i < n; i++) {
|
|
len += qstr_len(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]));
|
|
}
|
|
char *q_ptr = mp_local_alloc(len);
|
|
char *str_dest = q_ptr;
|
|
for (int i = 0; i < n; i++) {
|
|
if (i > 0) {
|
|
*str_dest++ = '.';
|
|
}
|
|
size_t str_src_len;
|
|
const byte *str_src = qstr_data(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), &str_src_len);
|
|
memcpy(str_dest, str_src, str_src_len);
|
|
str_dest += str_src_len;
|
|
}
|
|
qstr q_full = qstr_from_strn(q_ptr, len);
|
|
mp_local_free(q_ptr);
|
|
EMIT_ARG(import, q_full, MP_EMIT_IMPORT_NAME);
|
|
if (is_as) {
|
|
for (int i = 1; i < n; i++) {
|
|
EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), MP_EMIT_ATTR_LOAD);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC void compile_dotted_as_name(compiler_t *comp, mp_parse_node_t pn) {
|
|
EMIT_ARG(load_const_small_int, 0); // level 0 import
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // not importing from anything
|
|
qstr q_base;
|
|
do_import_name(comp, pn, &q_base);
|
|
compile_store_id(comp, q_base);
|
|
}
|
|
|
|
STATIC void compile_import_name(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
apply_to_single_or_list(comp, pns->nodes[0], PN_dotted_as_names, compile_dotted_as_name);
|
|
}
|
|
|
|
STATIC void compile_import_from(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
mp_parse_node_t pn_import_source = pns->nodes[0];
|
|
|
|
// extract the preceding .'s (if any) for a relative import, to compute the import level
|
|
uint import_level = 0;
|
|
do {
|
|
mp_parse_node_t pn_rel;
|
|
if (MP_PARSE_NODE_IS_TOKEN(pn_import_source) || MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_one_or_more_period_or_ellipsis)) {
|
|
// This covers relative imports with dots only like "from .. import"
|
|
pn_rel = pn_import_source;
|
|
pn_import_source = MP_PARSE_NODE_NULL;
|
|
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_import_from_2b)) {
|
|
// This covers relative imports starting with dot(s) like "from .foo import"
|
|
mp_parse_node_struct_t *pns_2b = (mp_parse_node_struct_t *)pn_import_source;
|
|
pn_rel = pns_2b->nodes[0];
|
|
pn_import_source = pns_2b->nodes[1];
|
|
assert(!MP_PARSE_NODE_IS_NULL(pn_import_source)); // should not be
|
|
} else {
|
|
// Not a relative import
|
|
break;
|
|
}
|
|
|
|
// get the list of . and/or ...'s
|
|
mp_parse_node_t *nodes;
|
|
size_t n = mp_parse_node_extract_list(&pn_rel, PN_one_or_more_period_or_ellipsis, &nodes);
|
|
|
|
// count the total number of .'s
|
|
for (size_t i = 0; i < n; i++) {
|
|
if (MP_PARSE_NODE_IS_TOKEN_KIND(nodes[i], MP_TOKEN_DEL_PERIOD)) {
|
|
import_level++;
|
|
} else {
|
|
// should be an MP_TOKEN_ELLIPSIS
|
|
import_level += 3;
|
|
}
|
|
}
|
|
} while (0);
|
|
|
|
if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_STAR)) {
|
|
#if MICROPY_CPYTHON_COMPAT
|
|
if (comp->scope_cur->kind != SCOPE_MODULE) {
|
|
compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("import * not at module level"));
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
EMIT_ARG(load_const_small_int, import_level);
|
|
|
|
// build the "fromlist" tuple
|
|
EMIT_ARG(load_const_str, MP_QSTR__star_);
|
|
EMIT_ARG(build, 1, MP_EMIT_BUILD_TUPLE);
|
|
|
|
// do the import
|
|
qstr dummy_q;
|
|
do_import_name(comp, pn_import_source, &dummy_q);
|
|
EMIT_ARG(import, MP_QSTRnull, MP_EMIT_IMPORT_STAR);
|
|
|
|
} else {
|
|
EMIT_ARG(load_const_small_int, import_level);
|
|
|
|
// build the "fromlist" tuple
|
|
mp_parse_node_t *pn_nodes;
|
|
size_t n = mp_parse_node_extract_list(&pns->nodes[1], PN_import_as_names, &pn_nodes);
|
|
for (size_t i = 0; i < n; i++) {
|
|
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name));
|
|
mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t *)pn_nodes[i];
|
|
qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id
|
|
EMIT_ARG(load_const_str, id2);
|
|
}
|
|
EMIT_ARG(build, n, MP_EMIT_BUILD_TUPLE);
|
|
|
|
// do the import
|
|
qstr dummy_q;
|
|
do_import_name(comp, pn_import_source, &dummy_q);
|
|
for (size_t i = 0; i < n; i++) {
|
|
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name));
|
|
mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t *)pn_nodes[i];
|
|
qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id
|
|
EMIT_ARG(import, id2, MP_EMIT_IMPORT_FROM);
|
|
if (MP_PARSE_NODE_IS_NULL(pns3->nodes[1])) {
|
|
compile_store_id(comp, id2);
|
|
} else {
|
|
compile_store_id(comp, MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]));
|
|
}
|
|
}
|
|
EMIT(pop_top);
|
|
}
|
|
}
|
|
|
|
STATIC void compile_declare_global(compiler_t *comp, mp_parse_node_t pn, id_info_t *id_info) {
|
|
if (id_info->kind != ID_INFO_KIND_UNDECIDED && id_info->kind != ID_INFO_KIND_GLOBAL_EXPLICIT) {
|
|
compile_syntax_error(comp, pn, MP_ERROR_TEXT("identifier redefined as global"));
|
|
return;
|
|
}
|
|
id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
|
|
|
|
// if the id exists in the global scope, set its kind to EXPLICIT_GLOBAL
|
|
id_info = scope_find_global(comp->scope_cur, id_info->qst);
|
|
if (id_info != NULL) {
|
|
id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
|
|
}
|
|
}
|
|
|
|
STATIC void compile_declare_nonlocal(compiler_t *comp, mp_parse_node_t pn, id_info_t *id_info) {
|
|
if (id_info->kind == ID_INFO_KIND_UNDECIDED) {
|
|
id_info->kind = ID_INFO_KIND_GLOBAL_IMPLICIT;
|
|
scope_check_to_close_over(comp->scope_cur, id_info);
|
|
if (id_info->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
|
|
compile_syntax_error(comp, pn, MP_ERROR_TEXT("no binding for nonlocal found"));
|
|
}
|
|
} else if (id_info->kind != ID_INFO_KIND_FREE) {
|
|
compile_syntax_error(comp, pn, MP_ERROR_TEXT("identifier redefined as nonlocal"));
|
|
}
|
|
}
|
|
|
|
STATIC void compile_global_nonlocal_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
if (comp->pass == MP_PASS_SCOPE) {
|
|
bool is_global = MP_PARSE_NODE_STRUCT_KIND(pns) == PN_global_stmt;
|
|
|
|
if (!is_global && comp->scope_cur->kind == SCOPE_MODULE) {
|
|
compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("can't declare nonlocal in outer code"));
|
|
return;
|
|
}
|
|
|
|
mp_parse_node_t *nodes;
|
|
size_t n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes);
|
|
for (size_t i = 0; i < n; i++) {
|
|
qstr qst = MP_PARSE_NODE_LEAF_ARG(nodes[i]);
|
|
id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, ID_INFO_KIND_UNDECIDED);
|
|
if (is_global) {
|
|
compile_declare_global(comp, (mp_parse_node_t)pns, id_info);
|
|
} else {
|
|
compile_declare_nonlocal(comp, (mp_parse_node_t)pns, id_info);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC void compile_assert_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
// with optimisations enabled we don't compile assertions
|
|
if (MP_STATE_VM(mp_optimise_value) != 0) {
|
|
return;
|
|
}
|
|
|
|
uint l_end = comp_next_label(comp);
|
|
c_if_cond(comp, pns->nodes[0], true, l_end);
|
|
EMIT_LOAD_GLOBAL(MP_QSTR_AssertionError); // we load_global instead of load_id, to be consistent with CPython
|
|
if (!MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
|
|
// assertion message
|
|
compile_node(comp, pns->nodes[1]);
|
|
EMIT_ARG(call_function, 1, 0, 0);
|
|
}
|
|
EMIT_ARG(raise_varargs, 1);
|
|
EMIT_ARG(label_assign, l_end);
|
|
}
|
|
|
|
STATIC void compile_if_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
uint l_end = comp_next_label(comp);
|
|
|
|
// optimisation: don't emit anything when "if False"
|
|
if (!mp_parse_node_is_const_false(pns->nodes[0])) {
|
|
uint l_fail = comp_next_label(comp);
|
|
c_if_cond(comp, pns->nodes[0], false, l_fail); // if condition
|
|
|
|
compile_node(comp, pns->nodes[1]); // if block
|
|
|
|
// optimisation: skip everything else when "if True"
|
|
if (mp_parse_node_is_const_true(pns->nodes[0])) {
|
|
goto done;
|
|
}
|
|
|
|
if (
|
|
// optimisation: don't jump over non-existent elif/else blocks
|
|
!(MP_PARSE_NODE_IS_NULL(pns->nodes[2]) && MP_PARSE_NODE_IS_NULL(pns->nodes[3]))
|
|
// optimisation: don't jump if last instruction was return
|
|
&& !EMIT(last_emit_was_return_value)
|
|
) {
|
|
// jump over elif/else blocks
|
|
EMIT_ARG(jump, l_end);
|
|
}
|
|
|
|
EMIT_ARG(label_assign, l_fail);
|
|
}
|
|
|
|
// compile elif blocks (if any)
|
|
mp_parse_node_t *pn_elif;
|
|
size_t n_elif = mp_parse_node_extract_list(&pns->nodes[2], PN_if_stmt_elif_list, &pn_elif);
|
|
for (size_t i = 0; i < n_elif; i++) {
|
|
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_elif[i], PN_if_stmt_elif)); // should be
|
|
mp_parse_node_struct_t *pns_elif = (mp_parse_node_struct_t *)pn_elif[i];
|
|
|
|
// optimisation: don't emit anything when "if False"
|
|
if (!mp_parse_node_is_const_false(pns_elif->nodes[0])) {
|
|
uint l_fail = comp_next_label(comp);
|
|
c_if_cond(comp, pns_elif->nodes[0], false, l_fail); // elif condition
|
|
|
|
compile_node(comp, pns_elif->nodes[1]); // elif block
|
|
|
|
// optimisation: skip everything else when "elif True"
|
|
if (mp_parse_node_is_const_true(pns_elif->nodes[0])) {
|
|
goto done;
|
|
}
|
|
|
|
// optimisation: don't jump if last instruction was return
|
|
if (!EMIT(last_emit_was_return_value)) {
|
|
EMIT_ARG(jump, l_end);
|
|
}
|
|
EMIT_ARG(label_assign, l_fail);
|
|
}
|
|
}
|
|
|
|
// compile else block
|
|
compile_node(comp, pns->nodes[3]); // can be null
|
|
|
|
done:
|
|
EMIT_ARG(label_assign, l_end);
|
|
}
|
|
|
|
#define START_BREAK_CONTINUE_BLOCK \
|
|
uint16_t old_break_label = comp->break_label; \
|
|
uint16_t old_continue_label = comp->continue_label; \
|
|
uint16_t old_break_continue_except_level = comp->break_continue_except_level; \
|
|
uint break_label = comp_next_label(comp); \
|
|
uint continue_label = comp_next_label(comp); \
|
|
comp->break_label = break_label; \
|
|
comp->continue_label = continue_label; \
|
|
comp->break_continue_except_level = comp->cur_except_level;
|
|
|
|
#define END_BREAK_CONTINUE_BLOCK \
|
|
comp->break_label = old_break_label; \
|
|
comp->continue_label = old_continue_label; \
|
|
comp->break_continue_except_level = old_break_continue_except_level;
|
|
|
|
STATIC void compile_while_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
START_BREAK_CONTINUE_BLOCK
|
|
|
|
if (!mp_parse_node_is_const_false(pns->nodes[0])) { // optimisation: don't emit anything for "while False"
|
|
uint top_label = comp_next_label(comp);
|
|
if (!mp_parse_node_is_const_true(pns->nodes[0])) { // optimisation: don't jump to cond for "while True"
|
|
EMIT_ARG(jump, continue_label);
|
|
}
|
|
EMIT_ARG(label_assign, top_label);
|
|
compile_node(comp, pns->nodes[1]); // body
|
|
EMIT_ARG(label_assign, continue_label);
|
|
c_if_cond(comp, pns->nodes[0], true, top_label); // condition
|
|
}
|
|
|
|
// break/continue apply to outer loop (if any) in the else block
|
|
END_BREAK_CONTINUE_BLOCK
|
|
|
|
compile_node(comp, pns->nodes[2]); // else
|
|
|
|
EMIT_ARG(label_assign, break_label);
|
|
}
|
|
|
|
// This function compiles an optimised for-loop of the form:
|
|
// for <var> in range(<start>, <end>, <step>):
|
|
// <body>
|
|
// else:
|
|
// <else>
|
|
// <var> must be an identifier and <step> must be a small-int.
|
|
//
|
|
// Semantics of for-loop require:
|
|
// - final failing value should not be stored in the loop variable
|
|
// - if the loop never runs, the loop variable should never be assigned
|
|
// - assignments to <var>, <end> or <step> in the body do not alter the loop
|
|
// (<step> is a constant for us, so no need to worry about it changing)
|
|
//
|
|
// If <end> is a small-int, then the stack during the for-loop contains just
|
|
// the current value of <var>. Otherwise, the stack contains <end> then the
|
|
// current value of <var>.
|
|
STATIC void compile_for_stmt_optimised_range(compiler_t *comp, mp_parse_node_t pn_var, mp_parse_node_t pn_start, mp_parse_node_t pn_end, mp_parse_node_t pn_step, mp_parse_node_t pn_body, mp_parse_node_t pn_else) {
|
|
START_BREAK_CONTINUE_BLOCK
|
|
|
|
uint top_label = comp_next_label(comp);
|
|
uint entry_label = comp_next_label(comp);
|
|
|
|
// put the end value on the stack if it's not a small-int constant
|
|
bool end_on_stack = !MP_PARSE_NODE_IS_SMALL_INT(pn_end);
|
|
if (end_on_stack) {
|
|
compile_node(comp, pn_end);
|
|
}
|
|
|
|
// compile: start
|
|
compile_node(comp, pn_start);
|
|
|
|
EMIT_ARG(jump, entry_label);
|
|
EMIT_ARG(label_assign, top_label);
|
|
|
|
// duplicate next value and store it to var
|
|
EMIT(dup_top);
|
|
c_assign(comp, pn_var, ASSIGN_STORE);
|
|
|
|
// compile body
|
|
compile_node(comp, pn_body);
|
|
|
|
EMIT_ARG(label_assign, continue_label);
|
|
|
|
// compile: var + step
|
|
compile_node(comp, pn_step);
|
|
EMIT_ARG(binary_op, MP_BINARY_OP_INPLACE_ADD);
|
|
|
|
EMIT_ARG(label_assign, entry_label);
|
|
|
|
// compile: if var <cond> end: goto top
|
|
if (end_on_stack) {
|
|
EMIT(dup_top_two);
|
|
EMIT(rot_two);
|
|
} else {
|
|
EMIT(dup_top);
|
|
compile_node(comp, pn_end);
|
|
}
|
|
assert(MP_PARSE_NODE_IS_SMALL_INT(pn_step));
|
|
if (MP_PARSE_NODE_LEAF_SMALL_INT(pn_step) >= 0) {
|
|
EMIT_ARG(binary_op, MP_BINARY_OP_LESS);
|
|
} else {
|
|
EMIT_ARG(binary_op, MP_BINARY_OP_MORE);
|
|
}
|
|
EMIT_ARG(pop_jump_if, true, top_label);
|
|
|
|
// break/continue apply to outer loop (if any) in the else block
|
|
END_BREAK_CONTINUE_BLOCK
|
|
|
|
// Compile the else block. We must pop the iterator variables before
|
|
// executing the else code because it may contain break/continue statements.
|
|
uint end_label = 0;
|
|
if (!MP_PARSE_NODE_IS_NULL(pn_else)) {
|
|
// discard final value of "var", and possible "end" value
|
|
EMIT(pop_top);
|
|
if (end_on_stack) {
|
|
EMIT(pop_top);
|
|
}
|
|
compile_node(comp, pn_else);
|
|
end_label = comp_next_label(comp);
|
|
EMIT_ARG(jump, end_label);
|
|
EMIT_ARG(adjust_stack_size, 1 + end_on_stack);
|
|
}
|
|
|
|
EMIT_ARG(label_assign, break_label);
|
|
|
|
// discard final value of var that failed the loop condition
|
|
EMIT(pop_top);
|
|
|
|
// discard <end> value if it's on the stack
|
|
if (end_on_stack) {
|
|
EMIT(pop_top);
|
|
}
|
|
|
|
if (!MP_PARSE_NODE_IS_NULL(pn_else)) {
|
|
EMIT_ARG(label_assign, end_label);
|
|
}
|
|
}
|
|
|
|
STATIC void compile_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
// this bit optimises: for <x> in range(...), turning it into an explicitly incremented variable
|
|
// this is actually slower, but uses no heap memory
|
|
// for viper it will be much, much faster
|
|
if (/*comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER &&*/ MP_PARSE_NODE_IS_ID(pns->nodes[0]) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_atom_expr_normal)) {
|
|
mp_parse_node_struct_t *pns_it = (mp_parse_node_struct_t *)pns->nodes[1];
|
|
if (MP_PARSE_NODE_IS_ID(pns_it->nodes[0])
|
|
&& MP_PARSE_NODE_LEAF_ARG(pns_it->nodes[0]) == MP_QSTR_range
|
|
&& MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pns_it->nodes[1]) == PN_trailer_paren) {
|
|
mp_parse_node_t pn_range_args = ((mp_parse_node_struct_t *)pns_it->nodes[1])->nodes[0];
|
|
mp_parse_node_t *args;
|
|
size_t n_args = mp_parse_node_extract_list(&pn_range_args, PN_arglist, &args);
|
|
mp_parse_node_t pn_range_start;
|
|
mp_parse_node_t pn_range_end;
|
|
mp_parse_node_t pn_range_step;
|
|
bool optimize = false;
|
|
if (1 <= n_args && n_args <= 3) {
|
|
optimize = true;
|
|
if (n_args == 1) {
|
|
pn_range_start = mp_parse_node_new_small_int(0);
|
|
pn_range_end = args[0];
|
|
pn_range_step = mp_parse_node_new_small_int(1);
|
|
} else if (n_args == 2) {
|
|
pn_range_start = args[0];
|
|
pn_range_end = args[1];
|
|
pn_range_step = mp_parse_node_new_small_int(1);
|
|
} else {
|
|
pn_range_start = args[0];
|
|
pn_range_end = args[1];
|
|
pn_range_step = args[2];
|
|
// the step must be a non-zero constant integer to do the optimisation
|
|
if (!MP_PARSE_NODE_IS_SMALL_INT(pn_range_step)
|
|
|| MP_PARSE_NODE_LEAF_SMALL_INT(pn_range_step) == 0) {
|
|
optimize = false;
|
|
}
|
|
}
|
|
// arguments must be able to be compiled as standard expressions
|
|
if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_start)) {
|
|
int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn_range_start);
|
|
if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) {
|
|
optimize = false;
|
|
}
|
|
}
|
|
if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_end)) {
|
|
int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn_range_end);
|
|
if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) {
|
|
optimize = false;
|
|
}
|
|
}
|
|
}
|
|
if (optimize) {
|
|
compile_for_stmt_optimised_range(comp, pns->nodes[0], pn_range_start, pn_range_end, pn_range_step, pns->nodes[2], pns->nodes[3]);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
START_BREAK_CONTINUE_BLOCK
|
|
comp->break_label |= MP_EMIT_BREAK_FROM_FOR;
|
|
|
|
uint pop_label = comp_next_label(comp);
|
|
|
|
compile_node(comp, pns->nodes[1]); // iterator
|
|
EMIT_ARG(get_iter, true);
|
|
EMIT_ARG(label_assign, continue_label);
|
|
EMIT_ARG(for_iter, pop_label);
|
|
c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable
|
|
compile_node(comp, pns->nodes[2]); // body
|
|
if (!EMIT(last_emit_was_return_value)) {
|
|
EMIT_ARG(jump, continue_label);
|
|
}
|
|
EMIT_ARG(label_assign, pop_label);
|
|
EMIT(for_iter_end);
|
|
|
|
// break/continue apply to outer loop (if any) in the else block
|
|
END_BREAK_CONTINUE_BLOCK
|
|
|
|
compile_node(comp, pns->nodes[3]); // else (may be empty)
|
|
|
|
EMIT_ARG(label_assign, break_label);
|
|
}
|
|
|
|
STATIC void compile_try_except(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_excepts, mp_parse_node_t pn_else) {
|
|
// setup code
|
|
uint l1 = comp_next_label(comp);
|
|
uint success_label = comp_next_label(comp);
|
|
|
|
compile_increase_except_level(comp, l1, MP_EMIT_SETUP_BLOCK_EXCEPT);
|
|
|
|
compile_node(comp, pn_body); // body
|
|
EMIT_ARG(pop_except_jump, success_label, false); // jump over exception handler
|
|
|
|
EMIT_ARG(label_assign, l1); // start of exception handler
|
|
EMIT(start_except_handler);
|
|
|
|
// at this point the top of the stack contains the exception instance that was raised
|
|
|
|
uint l2 = comp_next_label(comp);
|
|
|
|
for (int i = 0; i < n_except; i++) {
|
|
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_excepts[i], PN_try_stmt_except)); // should be
|
|
mp_parse_node_struct_t *pns_except = (mp_parse_node_struct_t *)pn_excepts[i];
|
|
|
|
qstr qstr_exception_local = 0;
|
|
uint end_finally_label = comp_next_label(comp);
|
|
#if MICROPY_PY_SYS_SETTRACE
|
|
EMIT_ARG(set_source_line, pns_except->source_line);
|
|
#endif
|
|
|
|
if (MP_PARSE_NODE_IS_NULL(pns_except->nodes[0])) {
|
|
// this is a catch all exception handler
|
|
if (i + 1 != n_except) {
|
|
compile_syntax_error(comp, pn_excepts[i], MP_ERROR_TEXT("default 'except' must be last"));
|
|
compile_decrease_except_level(comp);
|
|
return;
|
|
}
|
|
} else {
|
|
// this exception handler requires a match to a certain type of exception
|
|
mp_parse_node_t pns_exception_expr = pns_except->nodes[0];
|
|
if (MP_PARSE_NODE_IS_STRUCT(pns_exception_expr)) {
|
|
mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t *)pns_exception_expr;
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_try_stmt_as_name) {
|
|
// handler binds the exception to a local
|
|
pns_exception_expr = pns3->nodes[0];
|
|
qstr_exception_local = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]);
|
|
}
|
|
}
|
|
EMIT(dup_top);
|
|
compile_node(comp, pns_exception_expr);
|
|
EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
|
|
EMIT_ARG(pop_jump_if, false, end_finally_label);
|
|
}
|
|
|
|
// either discard or store the exception instance
|
|
if (qstr_exception_local == 0) {
|
|
EMIT(pop_top);
|
|
} else {
|
|
compile_store_id(comp, qstr_exception_local);
|
|
}
|
|
|
|
// If the exception is bound to a variable <e> then the <body> of the
|
|
// exception handler is wrapped in a try-finally so that the name <e> can
|
|
// be deleted (per Python semantics) even if the <body> has an exception.
|
|
// In such a case the generated code for the exception handler is:
|
|
// try:
|
|
// <body>
|
|
// finally:
|
|
// <e> = None
|
|
// del <e>
|
|
uint l3 = 0;
|
|
if (qstr_exception_local != 0) {
|
|
l3 = comp_next_label(comp);
|
|
compile_increase_except_level(comp, l3, MP_EMIT_SETUP_BLOCK_FINALLY);
|
|
}
|
|
compile_node(comp, pns_except->nodes[1]); // the <body>
|
|
if (qstr_exception_local != 0) {
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
|
|
EMIT_ARG(label_assign, l3);
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
|
|
compile_store_id(comp, qstr_exception_local);
|
|
compile_delete_id(comp, qstr_exception_local);
|
|
compile_decrease_except_level(comp);
|
|
}
|
|
|
|
EMIT_ARG(pop_except_jump, l2, true);
|
|
EMIT_ARG(label_assign, end_finally_label);
|
|
EMIT_ARG(adjust_stack_size, 1); // stack adjust for the exception instance
|
|
}
|
|
|
|
compile_decrease_except_level(comp);
|
|
EMIT(end_except_handler);
|
|
|
|
EMIT_ARG(label_assign, success_label);
|
|
compile_node(comp, pn_else); // else block, can be null
|
|
EMIT_ARG(label_assign, l2);
|
|
}
|
|
|
|
STATIC void compile_try_finally(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_except, mp_parse_node_t pn_else, mp_parse_node_t pn_finally) {
|
|
uint l_finally_block = comp_next_label(comp);
|
|
|
|
compile_increase_except_level(comp, l_finally_block, MP_EMIT_SETUP_BLOCK_FINALLY);
|
|
|
|
if (n_except == 0) {
|
|
assert(MP_PARSE_NODE_IS_NULL(pn_else));
|
|
EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state
|
|
compile_node(comp, pn_body);
|
|
EMIT_ARG(adjust_stack_size, -3);
|
|
} else {
|
|
compile_try_except(comp, pn_body, n_except, pn_except, pn_else);
|
|
}
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
|
|
EMIT_ARG(label_assign, l_finally_block);
|
|
compile_node(comp, pn_finally);
|
|
|
|
compile_decrease_except_level(comp);
|
|
}
|
|
|
|
STATIC void compile_try_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should be
|
|
{
|
|
mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t *)pns->nodes[1];
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_finally) {
|
|
// just try-finally
|
|
compile_try_finally(comp, pns->nodes[0], 0, NULL, MP_PARSE_NODE_NULL, pns2->nodes[0]);
|
|
} else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_except_and_more) {
|
|
// try-except and possibly else and/or finally
|
|
mp_parse_node_t *pn_excepts;
|
|
size_t n_except = mp_parse_node_extract_list(&pns2->nodes[0], PN_try_stmt_except_list, &pn_excepts);
|
|
if (MP_PARSE_NODE_IS_NULL(pns2->nodes[2])) {
|
|
// no finally
|
|
compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1]);
|
|
} else {
|
|
// have finally
|
|
compile_try_finally(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1], ((mp_parse_node_struct_t *)pns2->nodes[2])->nodes[0]);
|
|
}
|
|
} else {
|
|
// just try-except
|
|
mp_parse_node_t *pn_excepts;
|
|
size_t n_except = mp_parse_node_extract_list(&pns->nodes[1], PN_try_stmt_except_list, &pn_excepts);
|
|
compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, MP_PARSE_NODE_NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC void compile_with_stmt_helper(compiler_t *comp, size_t n, mp_parse_node_t *nodes, mp_parse_node_t body) {
|
|
if (n == 0) {
|
|
// no more pre-bits, compile the body of the with
|
|
compile_node(comp, body);
|
|
} else {
|
|
uint l_end = comp_next_label(comp);
|
|
if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) {
|
|
// this pre-bit is of the form "a as b"
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)nodes[0];
|
|
compile_node(comp, pns->nodes[0]);
|
|
compile_increase_except_level(comp, l_end, MP_EMIT_SETUP_BLOCK_WITH);
|
|
c_assign(comp, pns->nodes[1], ASSIGN_STORE);
|
|
} else {
|
|
// this pre-bit is just an expression
|
|
compile_node(comp, nodes[0]);
|
|
compile_increase_except_level(comp, l_end, MP_EMIT_SETUP_BLOCK_WITH);
|
|
EMIT(pop_top);
|
|
}
|
|
// compile additional pre-bits and the body
|
|
compile_with_stmt_helper(comp, n - 1, nodes + 1, body);
|
|
// finish this with block
|
|
EMIT_ARG(with_cleanup, l_end);
|
|
reserve_labels_for_native(comp, 3); // used by native's with_cleanup
|
|
compile_decrease_except_level(comp);
|
|
}
|
|
}
|
|
|
|
STATIC void compile_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
// get the nodes for the pre-bit of the with (the a as b, c as d, ... bit)
|
|
mp_parse_node_t *nodes;
|
|
size_t n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes);
|
|
assert(n > 0);
|
|
|
|
// compile in a nested fashion
|
|
compile_with_stmt_helper(comp, n, nodes, pns->nodes[1]);
|
|
}
|
|
|
|
STATIC void compile_yield_from(compiler_t *comp) {
|
|
EMIT_ARG(get_iter, false);
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
|
|
EMIT_ARG(yield, MP_EMIT_YIELD_FROM);
|
|
reserve_labels_for_native(comp, 3);
|
|
}
|
|
|
|
#if MICROPY_PY_ASYNC_AWAIT
|
|
STATIC void compile_await_object_method(compiler_t *comp, qstr method) {
|
|
EMIT_ARG(load_method, method, false);
|
|
EMIT_ARG(call_method, 0, 0, 0);
|
|
compile_yield_from(comp);
|
|
}
|
|
|
|
STATIC void compile_async_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
// comp->break_label |= MP_EMIT_BREAK_FROM_FOR;
|
|
|
|
qstr context = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]);
|
|
uint while_else_label = comp_next_label(comp);
|
|
uint try_exception_label = comp_next_label(comp);
|
|
uint try_else_label = comp_next_label(comp);
|
|
uint try_finally_label = comp_next_label(comp);
|
|
|
|
compile_node(comp, pns->nodes[1]); // iterator
|
|
EMIT_ARG(load_method, MP_QSTR___aiter__, false);
|
|
EMIT_ARG(call_method, 0, 0, 0);
|
|
compile_store_id(comp, context);
|
|
|
|
START_BREAK_CONTINUE_BLOCK
|
|
|
|
EMIT_ARG(label_assign, continue_label);
|
|
|
|
compile_increase_except_level(comp, try_exception_label, MP_EMIT_SETUP_BLOCK_EXCEPT);
|
|
|
|
compile_load_id(comp, context);
|
|
compile_await_object_method(comp, MP_QSTR___anext__);
|
|
c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable
|
|
EMIT_ARG(pop_except_jump, try_else_label, false);
|
|
|
|
EMIT_ARG(label_assign, try_exception_label);
|
|
EMIT(start_except_handler);
|
|
EMIT(dup_top);
|
|
EMIT_LOAD_GLOBAL(MP_QSTR_StopAsyncIteration);
|
|
EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
|
|
EMIT_ARG(pop_jump_if, false, try_finally_label);
|
|
EMIT(pop_top); // pop exception instance
|
|
EMIT_ARG(pop_except_jump, while_else_label, true);
|
|
|
|
EMIT_ARG(label_assign, try_finally_label);
|
|
EMIT_ARG(adjust_stack_size, 1); // if we jump here, the exc is on the stack
|
|
compile_decrease_except_level(comp);
|
|
EMIT(end_except_handler);
|
|
|
|
EMIT_ARG(label_assign, try_else_label);
|
|
compile_node(comp, pns->nodes[2]); // body
|
|
|
|
EMIT_ARG(jump, continue_label);
|
|
// break/continue apply to outer loop (if any) in the else block
|
|
END_BREAK_CONTINUE_BLOCK
|
|
|
|
EMIT_ARG(label_assign, while_else_label);
|
|
compile_node(comp, pns->nodes[3]); // else
|
|
|
|
EMIT_ARG(label_assign, break_label);
|
|
}
|
|
|
|
STATIC void compile_async_with_stmt_helper(compiler_t *comp, size_t n, mp_parse_node_t *nodes, mp_parse_node_t body) {
|
|
if (n == 0) {
|
|
// no more pre-bits, compile the body of the with
|
|
compile_node(comp, body);
|
|
} else {
|
|
uint l_finally_block = comp_next_label(comp);
|
|
uint l_aexit_no_exc = comp_next_label(comp);
|
|
uint l_ret_unwind_jump = comp_next_label(comp);
|
|
uint l_end = comp_next_label(comp);
|
|
|
|
if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) {
|
|
// this pre-bit is of the form "a as b"
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)nodes[0];
|
|
compile_node(comp, pns->nodes[0]);
|
|
EMIT(dup_top);
|
|
compile_await_object_method(comp, MP_QSTR___aenter__);
|
|
c_assign(comp, pns->nodes[1], ASSIGN_STORE);
|
|
} else {
|
|
// this pre-bit is just an expression
|
|
compile_node(comp, nodes[0]);
|
|
EMIT(dup_top);
|
|
compile_await_object_method(comp, MP_QSTR___aenter__);
|
|
EMIT(pop_top);
|
|
}
|
|
|
|
// To keep the Python stack size down, and because we can't access values on
|
|
// this stack further down than 3 elements (via rot_three), we don't preload
|
|
// __aexit__ (as per normal with) but rather wait until we need it below.
|
|
|
|
// Start the try-finally statement
|
|
compile_increase_except_level(comp, l_finally_block, MP_EMIT_SETUP_BLOCK_FINALLY);
|
|
|
|
// Compile any additional pre-bits of the "async with", and also the body
|
|
EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state
|
|
compile_async_with_stmt_helper(comp, n - 1, nodes + 1, body);
|
|
EMIT_ARG(adjust_stack_size, -3);
|
|
|
|
// We have now finished the "try" block and fall through to the "finally"
|
|
|
|
// At this point, after the with body has executed, we have 3 cases:
|
|
// 1. no exception, we just fall through to this point; stack: (..., ctx_mgr)
|
|
// 2. exception propagating out, we get to the finally block; stack: (..., ctx_mgr, exc)
|
|
// 3. return or unwind jump, we get to the finally block; stack: (..., ctx_mgr, X, INT)
|
|
|
|
// Handle case 1: call __aexit__
|
|
// Stack: (..., ctx_mgr)
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // to tell end_finally there's no exception
|
|
EMIT(rot_two);
|
|
EMIT_ARG(jump, l_aexit_no_exc); // jump to code below to call __aexit__
|
|
|
|
// Start of "finally" block
|
|
// At this point we have case 2 or 3, we detect which one by the TOS being an exception or not
|
|
EMIT_ARG(label_assign, l_finally_block);
|
|
|
|
// Detect if TOS an exception or not
|
|
EMIT(dup_top);
|
|
EMIT_LOAD_GLOBAL(MP_QSTR_BaseException);
|
|
EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
|
|
EMIT_ARG(pop_jump_if, false, l_ret_unwind_jump); // if not an exception then we have case 3
|
|
|
|
// Handle case 2: call __aexit__ and either swallow or re-raise the exception
|
|
// Stack: (..., ctx_mgr, exc)
|
|
EMIT(dup_top);
|
|
EMIT(rot_three);
|
|
EMIT(rot_two);
|
|
EMIT_ARG(load_method, MP_QSTR___aexit__, false);
|
|
EMIT(rot_three);
|
|
EMIT(rot_three);
|
|
EMIT(dup_top);
|
|
#if MICROPY_CPYTHON_COMPAT
|
|
EMIT_ARG(attr, MP_QSTR___class__, MP_EMIT_ATTR_LOAD); // get type(exc)
|
|
#else
|
|
compile_load_id(comp, MP_QSTR_type);
|
|
EMIT(rot_two);
|
|
EMIT_ARG(call_function, 1, 0, 0); // get type(exc)
|
|
#endif
|
|
EMIT(rot_two);
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // dummy traceback value
|
|
// Stack: (..., exc, __aexit__, ctx_mgr, type(exc), exc, None)
|
|
EMIT_ARG(call_method, 3, 0, 0);
|
|
compile_yield_from(comp);
|
|
EMIT_ARG(pop_jump_if, false, l_end);
|
|
EMIT(pop_top); // pop exception
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // replace with None to swallow exception
|
|
EMIT_ARG(jump, l_end);
|
|
EMIT_ARG(adjust_stack_size, 2);
|
|
|
|
// Handle case 3: call __aexit__
|
|
// Stack: (..., ctx_mgr, X, INT)
|
|
EMIT_ARG(label_assign, l_ret_unwind_jump);
|
|
EMIT(rot_three);
|
|
EMIT(rot_three);
|
|
EMIT_ARG(label_assign, l_aexit_no_exc);
|
|
EMIT_ARG(load_method, MP_QSTR___aexit__, false);
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
|
|
EMIT(dup_top);
|
|
EMIT(dup_top);
|
|
EMIT_ARG(call_method, 3, 0, 0);
|
|
compile_yield_from(comp);
|
|
EMIT(pop_top);
|
|
EMIT_ARG(adjust_stack_size, -1);
|
|
|
|
// End of "finally" block
|
|
// Stack can have one of three configurations:
|
|
// a. (..., None) - from either case 1, or case 2 with swallowed exception
|
|
// b. (..., exc) - from case 2 with re-raised exception
|
|
// c. (..., X, INT) - from case 3
|
|
EMIT_ARG(label_assign, l_end);
|
|
compile_decrease_except_level(comp);
|
|
}
|
|
}
|
|
|
|
STATIC void compile_async_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
// get the nodes for the pre-bit of the with (the a as b, c as d, ... bit)
|
|
mp_parse_node_t *nodes;
|
|
size_t n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes);
|
|
assert(n > 0);
|
|
|
|
// compile in a nested fashion
|
|
compile_async_with_stmt_helper(comp, n, nodes, pns->nodes[1]);
|
|
}
|
|
|
|
STATIC void compile_async_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[0]));
|
|
mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t *)pns->nodes[0];
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_funcdef) {
|
|
// async def
|
|
compile_funcdef(comp, pns0);
|
|
scope_t *fscope = (scope_t *)pns0->nodes[4];
|
|
fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;
|
|
} else {
|
|
// async for/with; first verify the scope is a generator
|
|
int scope_flags = comp->scope_cur->scope_flags;
|
|
if (!(scope_flags & MP_SCOPE_FLAG_GENERATOR)) {
|
|
compile_syntax_error(comp, (mp_parse_node_t)pns0,
|
|
MP_ERROR_TEXT("async for/with outside async function"));
|
|
return;
|
|
}
|
|
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_for_stmt) {
|
|
// async for
|
|
compile_async_for_stmt(comp, pns0);
|
|
} else {
|
|
// async with
|
|
assert(MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_with_stmt);
|
|
compile_async_with_stmt(comp, pns0);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
STATIC void compile_expr_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
mp_parse_node_t pn_rhs = pns->nodes[1];
|
|
if (MP_PARSE_NODE_IS_NULL(pn_rhs)) {
|
|
if (comp->is_repl && comp->scope_cur->kind == SCOPE_MODULE) {
|
|
// for REPL, evaluate then print the expression
|
|
compile_load_id(comp, MP_QSTR___repl_print__);
|
|
compile_node(comp, pns->nodes[0]);
|
|
EMIT_ARG(call_function, 1, 0, 0);
|
|
EMIT(pop_top);
|
|
|
|
} else {
|
|
// for non-REPL, evaluate then discard the expression
|
|
if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && !MP_PARSE_NODE_IS_ID(pns->nodes[0]))
|
|
|| MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)) {
|
|
// do nothing with a lonely constant
|
|
} else {
|
|
compile_node(comp, pns->nodes[0]); // just an expression
|
|
EMIT(pop_top); // discard last result since this is a statement and leaves nothing on the stack
|
|
}
|
|
}
|
|
} else if (MP_PARSE_NODE_IS_STRUCT(pn_rhs)) {
|
|
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pn_rhs;
|
|
int kind = MP_PARSE_NODE_STRUCT_KIND(pns1);
|
|
if (kind == PN_annassign) {
|
|
// the annotation is in pns1->nodes[0] and is ignored
|
|
if (MP_PARSE_NODE_IS_NULL(pns1->nodes[1])) {
|
|
// an annotation of the form "x: y"
|
|
// inside a function this declares "x" as a local
|
|
if (comp->scope_cur->kind == SCOPE_FUNCTION) {
|
|
if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) {
|
|
qstr lhs = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
|
|
scope_find_or_add_id(comp->scope_cur, lhs, ID_INFO_KIND_LOCAL);
|
|
}
|
|
}
|
|
} else {
|
|
// an assigned annotation of the form "x: y = z"
|
|
pn_rhs = pns1->nodes[1];
|
|
goto plain_assign;
|
|
}
|
|
} else if (kind == PN_expr_stmt_augassign) {
|
|
c_assign(comp, pns->nodes[0], ASSIGN_AUG_LOAD); // lhs load for aug assign
|
|
compile_node(comp, pns1->nodes[1]); // rhs
|
|
assert(MP_PARSE_NODE_IS_TOKEN(pns1->nodes[0]));
|
|
mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]);
|
|
mp_binary_op_t op = MP_BINARY_OP_INPLACE_OR + (tok - MP_TOKEN_DEL_PIPE_EQUAL);
|
|
EMIT_ARG(binary_op, op);
|
|
c_assign(comp, pns->nodes[0], ASSIGN_AUG_STORE); // lhs store for aug assign
|
|
} else if (kind == PN_expr_stmt_assign_list) {
|
|
int rhs = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1) - 1;
|
|
compile_node(comp, pns1->nodes[rhs]); // rhs
|
|
// following CPython, we store left-most first
|
|
if (rhs > 0) {
|
|
EMIT(dup_top);
|
|
}
|
|
c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store
|
|
for (int i = 0; i < rhs; i++) {
|
|
if (i + 1 < rhs) {
|
|
EMIT(dup_top);
|
|
}
|
|
c_assign(comp, pns1->nodes[i], ASSIGN_STORE); // middle store
|
|
}
|
|
} else {
|
|
plain_assign:
|
|
#if MICROPY_COMP_DOUBLE_TUPLE_ASSIGN
|
|
if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_rhs, PN_testlist_star_expr)
|
|
&& MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)) {
|
|
mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t *)pns->nodes[0];
|
|
pns1 = (mp_parse_node_struct_t *)pn_rhs;
|
|
uint32_t n_pns0 = MP_PARSE_NODE_STRUCT_NUM_NODES(pns0);
|
|
// Can only optimise a tuple-to-tuple assignment when all of the following hold:
|
|
// - equal number of items in LHS and RHS tuples
|
|
// - 2 or 3 items in the tuples
|
|
// - there are no star expressions in the LHS tuple
|
|
if (n_pns0 == MP_PARSE_NODE_STRUCT_NUM_NODES(pns1)
|
|
&& (n_pns0 == 2
|
|
#if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
|
|
|| n_pns0 == 3
|
|
#endif
|
|
)
|
|
&& !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr)
|
|
&& !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)
|
|
#if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
|
|
&& (n_pns0 == 2 || !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[2], PN_star_expr))
|
|
#endif
|
|
) {
|
|
// Optimisation for a, b = c, d or a, b, c = d, e, f
|
|
compile_node(comp, pns1->nodes[0]); // rhs
|
|
compile_node(comp, pns1->nodes[1]); // rhs
|
|
#if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
|
|
if (n_pns0 == 3) {
|
|
compile_node(comp, pns1->nodes[2]); // rhs
|
|
EMIT(rot_three);
|
|
}
|
|
#endif
|
|
EMIT(rot_two);
|
|
c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store
|
|
c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store
|
|
#if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
|
|
if (n_pns0 == 3) {
|
|
c_assign(comp, pns0->nodes[2], ASSIGN_STORE); // lhs store
|
|
}
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
compile_node(comp, pn_rhs); // rhs
|
|
c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store
|
|
}
|
|
} else {
|
|
goto plain_assign;
|
|
}
|
|
}
|
|
|
|
STATIC void compile_test_if_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_test_if_else));
|
|
mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t *)pns->nodes[1];
|
|
|
|
uint l_fail = comp_next_label(comp);
|
|
uint l_end = comp_next_label(comp);
|
|
c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
|
|
compile_node(comp, pns->nodes[0]); // success value
|
|
EMIT_ARG(jump, l_end);
|
|
EMIT_ARG(label_assign, l_fail);
|
|
EMIT_ARG(adjust_stack_size, -1); // adjust stack size
|
|
compile_node(comp, pns_test_if_else->nodes[1]); // failure value
|
|
EMIT_ARG(label_assign, l_end);
|
|
}
|
|
|
|
STATIC void compile_lambdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
if (comp->pass == MP_PASS_SCOPE) {
|
|
// create a new scope for this lambda
|
|
scope_t *s = scope_new_and_link(comp, SCOPE_LAMBDA, (mp_parse_node_t)pns, comp->scope_cur->emit_options);
|
|
// store the lambda scope so the compiling function (this one) can use it at each pass
|
|
pns->nodes[2] = (mp_parse_node_t)s;
|
|
}
|
|
|
|
// get the scope for this lambda
|
|
scope_t *this_scope = (scope_t *)pns->nodes[2];
|
|
|
|
// compile the lambda definition
|
|
compile_funcdef_lambdef(comp, this_scope, pns->nodes[0], PN_varargslist);
|
|
}
|
|
|
|
#if MICROPY_PY_ASSIGN_EXPR
|
|
STATIC void compile_namedexpr_helper(compiler_t *comp, mp_parse_node_t pn_name, mp_parse_node_t pn_expr) {
|
|
if (!MP_PARSE_NODE_IS_ID(pn_name)) {
|
|
compile_syntax_error(comp, (mp_parse_node_t)pn_name, MP_ERROR_TEXT("can't assign to expression"));
|
|
return; // because pn_name is not a valid qstr (in compile_store_id below)
|
|
}
|
|
compile_node(comp, pn_expr);
|
|
EMIT(dup_top);
|
|
scope_t *old_scope = comp->scope_cur;
|
|
if (SCOPE_IS_COMP_LIKE(comp->scope_cur->kind)) {
|
|
// Use parent's scope for assigned value so it can "escape"
|
|
comp->scope_cur = comp->scope_cur->parent;
|
|
}
|
|
compile_store_id(comp, MP_PARSE_NODE_LEAF_ARG(pn_name));
|
|
comp->scope_cur = old_scope;
|
|
}
|
|
|
|
STATIC void compile_namedexpr(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
compile_namedexpr_helper(comp, pns->nodes[0], pns->nodes[1]);
|
|
}
|
|
#endif
|
|
|
|
STATIC void compile_or_and_test(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
bool cond = MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test;
|
|
uint l_end = comp_next_label(comp);
|
|
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
|
|
for (int i = 0; i < n; i += 1) {
|
|
compile_node(comp, pns->nodes[i]);
|
|
if (i + 1 < n) {
|
|
EMIT_ARG(jump_if_or_pop, cond, l_end);
|
|
}
|
|
}
|
|
EMIT_ARG(label_assign, l_end);
|
|
}
|
|
|
|
STATIC void compile_not_test_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
compile_node(comp, pns->nodes[0]);
|
|
EMIT_ARG(unary_op, MP_UNARY_OP_NOT);
|
|
}
|
|
|
|
STATIC void compile_comparison(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
|
|
compile_node(comp, pns->nodes[0]);
|
|
bool multi = (num_nodes > 3);
|
|
uint l_fail = 0;
|
|
if (multi) {
|
|
l_fail = comp_next_label(comp);
|
|
}
|
|
for (int i = 1; i + 1 < num_nodes; i += 2) {
|
|
compile_node(comp, pns->nodes[i + 1]);
|
|
if (i + 2 < num_nodes) {
|
|
EMIT(dup_top);
|
|
EMIT(rot_three);
|
|
}
|
|
if (MP_PARSE_NODE_IS_TOKEN(pns->nodes[i])) {
|
|
mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]);
|
|
mp_binary_op_t op;
|
|
if (tok == MP_TOKEN_KW_IN) {
|
|
op = MP_BINARY_OP_IN;
|
|
} else {
|
|
op = MP_BINARY_OP_LESS + (tok - MP_TOKEN_OP_LESS);
|
|
}
|
|
EMIT_ARG(binary_op, op);
|
|
} else {
|
|
assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[i])); // should be
|
|
mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t *)pns->nodes[i];
|
|
int kind = MP_PARSE_NODE_STRUCT_KIND(pns2);
|
|
if (kind == PN_comp_op_not_in) {
|
|
EMIT_ARG(binary_op, MP_BINARY_OP_NOT_IN);
|
|
} else {
|
|
assert(kind == PN_comp_op_is); // should be
|
|
if (MP_PARSE_NODE_IS_NULL(pns2->nodes[0])) {
|
|
EMIT_ARG(binary_op, MP_BINARY_OP_IS);
|
|
} else {
|
|
EMIT_ARG(binary_op, MP_BINARY_OP_IS_NOT);
|
|
}
|
|
}
|
|
}
|
|
if (i + 2 < num_nodes) {
|
|
EMIT_ARG(jump_if_or_pop, false, l_fail);
|
|
}
|
|
}
|
|
if (multi) {
|
|
uint l_end = comp_next_label(comp);
|
|
EMIT_ARG(jump, l_end);
|
|
EMIT_ARG(label_assign, l_fail);
|
|
EMIT_ARG(adjust_stack_size, 1);
|
|
EMIT(rot_two);
|
|
EMIT(pop_top);
|
|
EMIT_ARG(label_assign, l_end);
|
|
}
|
|
}
|
|
|
|
STATIC void compile_star_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("*x must be assignment target"));
|
|
}
|
|
|
|
STATIC void compile_binary_op(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
MP_STATIC_ASSERT(MP_BINARY_OP_OR + PN_xor_expr - PN_expr == MP_BINARY_OP_XOR);
|
|
MP_STATIC_ASSERT(MP_BINARY_OP_OR + PN_and_expr - PN_expr == MP_BINARY_OP_AND);
|
|
mp_binary_op_t binary_op = MP_BINARY_OP_OR + MP_PARSE_NODE_STRUCT_KIND(pns) - PN_expr;
|
|
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
|
|
compile_node(comp, pns->nodes[0]);
|
|
for (int i = 1; i < num_nodes; ++i) {
|
|
compile_node(comp, pns->nodes[i]);
|
|
EMIT_ARG(binary_op, binary_op);
|
|
}
|
|
}
|
|
|
|
STATIC void compile_term(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
|
|
compile_node(comp, pns->nodes[0]);
|
|
for (int i = 1; i + 1 < num_nodes; i += 2) {
|
|
compile_node(comp, pns->nodes[i + 1]);
|
|
mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]);
|
|
mp_binary_op_t op = MP_BINARY_OP_LSHIFT + (tok - MP_TOKEN_OP_DBL_LESS);
|
|
EMIT_ARG(binary_op, op);
|
|
}
|
|
}
|
|
|
|
STATIC void compile_factor_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
compile_node(comp, pns->nodes[1]);
|
|
mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
|
|
mp_unary_op_t op;
|
|
if (tok == MP_TOKEN_OP_TILDE) {
|
|
op = MP_UNARY_OP_INVERT;
|
|
} else {
|
|
assert(tok == MP_TOKEN_OP_PLUS || tok == MP_TOKEN_OP_MINUS);
|
|
op = MP_UNARY_OP_POSITIVE + (tok - MP_TOKEN_OP_PLUS);
|
|
}
|
|
EMIT_ARG(unary_op, op);
|
|
}
|
|
|
|
STATIC void compile_atom_expr_normal(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
// compile the subject of the expression
|
|
compile_node(comp, pns->nodes[0]);
|
|
|
|
// compile_atom_expr_await may call us with a NULL node
|
|
if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
|
|
return;
|
|
}
|
|
|
|
// get the array of trailers (known to be an array of PARSE_NODE_STRUCT)
|
|
size_t num_trail = 1;
|
|
mp_parse_node_struct_t **pns_trail = (mp_parse_node_struct_t **)&pns->nodes[1];
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_atom_expr_trailers) {
|
|
num_trail = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_trail[0]);
|
|
pns_trail = (mp_parse_node_struct_t **)&pns_trail[0]->nodes[0];
|
|
}
|
|
|
|
// the current index into the array of trailers
|
|
size_t i = 0;
|
|
|
|
// handle special super() call
|
|
if (comp->scope_cur->kind == SCOPE_FUNCTION
|
|
&& MP_PARSE_NODE_IS_ID(pns->nodes[0])
|
|
&& MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]) == MP_QSTR_super
|
|
&& MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_trailer_paren
|
|
&& MP_PARSE_NODE_IS_NULL(pns_trail[0]->nodes[0])) {
|
|
// at this point we have matched "super()" within a function
|
|
|
|
// load the class for super to search for a parent
|
|
compile_load_id(comp, MP_QSTR___class__);
|
|
|
|
// look for first argument to function (assumes it's "self")
|
|
bool found = false;
|
|
id_info_t *id = &comp->scope_cur->id_info[0];
|
|
for (size_t n = comp->scope_cur->id_info_len; n > 0; --n, ++id) {
|
|
if (id->flags & ID_FLAG_IS_PARAM) {
|
|
// first argument found; load it
|
|
compile_load_id(comp, id->qst);
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
compile_syntax_error(comp, (mp_parse_node_t)pns_trail[0],
|
|
MP_ERROR_TEXT("super() can't find self")); // really a TypeError
|
|
return;
|
|
}
|
|
|
|
if (num_trail >= 3
|
|
&& MP_PARSE_NODE_STRUCT_KIND(pns_trail[1]) == PN_trailer_period
|
|
&& MP_PARSE_NODE_STRUCT_KIND(pns_trail[2]) == PN_trailer_paren) {
|
|
// optimisation for method calls super().f(...), to eliminate heap allocation
|
|
mp_parse_node_struct_t *pns_period = pns_trail[1];
|
|
mp_parse_node_struct_t *pns_paren = pns_trail[2];
|
|
EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0]), true);
|
|
compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0);
|
|
i = 3;
|
|
} else {
|
|
// a super() call
|
|
EMIT_ARG(call_function, 2, 0, 0);
|
|
i = 1;
|
|
}
|
|
|
|
#if MICROPY_COMP_CONST_LITERAL && MICROPY_PY_COLLECTIONS_ORDEREDDICT
|
|
// handle special OrderedDict constructor
|
|
} else if (MP_PARSE_NODE_IS_ID(pns->nodes[0])
|
|
&& MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]) == MP_QSTR_OrderedDict
|
|
&& MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_trailer_paren
|
|
&& MP_PARSE_NODE_IS_STRUCT_KIND(pns_trail[0]->nodes[0], PN_atom_brace)) {
|
|
// at this point we have matched "OrderedDict({...})"
|
|
|
|
EMIT_ARG(call_function, 0, 0, 0);
|
|
mp_parse_node_struct_t *pns_dict = (mp_parse_node_struct_t *)pns_trail[0]->nodes[0];
|
|
compile_atom_brace_helper(comp, pns_dict, false);
|
|
i = 1;
|
|
#endif
|
|
}
|
|
|
|
// compile the remaining trailers
|
|
for (; i < num_trail; i++) {
|
|
if (i + 1 < num_trail
|
|
&& MP_PARSE_NODE_STRUCT_KIND(pns_trail[i]) == PN_trailer_period
|
|
&& MP_PARSE_NODE_STRUCT_KIND(pns_trail[i + 1]) == PN_trailer_paren) {
|
|
// optimisation for method calls a.f(...), following PyPy
|
|
mp_parse_node_struct_t *pns_period = pns_trail[i];
|
|
mp_parse_node_struct_t *pns_paren = pns_trail[i + 1];
|
|
EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0]), false);
|
|
compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0);
|
|
i += 1;
|
|
} else {
|
|
// node is one of: trailer_paren, trailer_bracket, trailer_period
|
|
compile_node(comp, (mp_parse_node_t)pns_trail[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC void compile_power(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
compile_generic_all_nodes(comp, pns); // 2 nodes, arguments of power
|
|
EMIT_ARG(binary_op, MP_BINARY_OP_POWER);
|
|
}
|
|
|
|
STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra) {
|
|
// function to call is on top of stack
|
|
|
|
// get the list of arguments
|
|
mp_parse_node_t *args;
|
|
size_t n_args = mp_parse_node_extract_list(&pn_arglist, PN_arglist, &args);
|
|
|
|
// compile the arguments
|
|
// Rather than calling compile_node on the list, we go through the list of args
|
|
// explicitly here so that we can count the number of arguments and give sensible
|
|
// error messages.
|
|
int n_positional = n_positional_extra;
|
|
uint n_keyword = 0;
|
|
uint star_flags = 0;
|
|
mp_uint_t star_args = 0;
|
|
for (size_t i = 0; i < n_args; i++) {
|
|
if (MP_PARSE_NODE_IS_STRUCT(args[i])) {
|
|
mp_parse_node_struct_t *pns_arg = (mp_parse_node_struct_t *)args[i];
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_star) {
|
|
if (star_flags & MP_EMIT_STAR_FLAG_DOUBLE) {
|
|
compile_syntax_error(comp, (mp_parse_node_t)pns_arg, MP_ERROR_TEXT("* arg after **"));
|
|
return;
|
|
}
|
|
#if MICROPY_DYNAMIC_COMPILER
|
|
if (i >= (size_t)mp_dynamic_compiler.small_int_bits - 1)
|
|
#else
|
|
if (i >= MP_SMALL_INT_BITS - 1)
|
|
#endif
|
|
{
|
|
// If there are not enough bits in a small int to fit the flag, then we consider
|
|
// it a syntax error. It should be unlikely to have this many args in practice.
|
|
compile_syntax_error(comp, (mp_parse_node_t)pns_arg, MP_ERROR_TEXT("too many args"));
|
|
return;
|
|
}
|
|
star_flags |= MP_EMIT_STAR_FLAG_SINGLE;
|
|
star_args |= (mp_uint_t)1 << i;
|
|
compile_node(comp, pns_arg->nodes[0]);
|
|
n_positional++;
|
|
} else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_dbl_star) {
|
|
star_flags |= MP_EMIT_STAR_FLAG_DOUBLE;
|
|
// double-star args are stored as kw arg with key of None
|
|
EMIT(load_null);
|
|
compile_node(comp, pns_arg->nodes[0]);
|
|
n_keyword++;
|
|
} else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_argument) {
|
|
#if MICROPY_PY_ASSIGN_EXPR
|
|
if (MP_PARSE_NODE_IS_STRUCT_KIND(pns_arg->nodes[1], PN_argument_3)) {
|
|
compile_namedexpr_helper(comp, pns_arg->nodes[0], ((mp_parse_node_struct_t *)pns_arg->nodes[1])->nodes[0]);
|
|
n_positional++;
|
|
} else
|
|
#endif
|
|
if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns_arg->nodes[1], PN_comp_for)) {
|
|
if (!MP_PARSE_NODE_IS_ID(pns_arg->nodes[0])) {
|
|
compile_syntax_error(comp, (mp_parse_node_t)pns_arg, MP_ERROR_TEXT("LHS of keyword arg must be an id"));
|
|
return;
|
|
}
|
|
EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns_arg->nodes[0]));
|
|
compile_node(comp, pns_arg->nodes[1]);
|
|
n_keyword++;
|
|
} else {
|
|
compile_comprehension(comp, pns_arg, SCOPE_GEN_EXPR);
|
|
n_positional++;
|
|
}
|
|
} else {
|
|
goto normal_argument;
|
|
}
|
|
} else {
|
|
normal_argument:
|
|
if (star_flags & MP_EMIT_STAR_FLAG_DOUBLE) {
|
|
compile_syntax_error(comp, args[i], MP_ERROR_TEXT("positional arg after **"));
|
|
return;
|
|
}
|
|
if (n_keyword > 0) {
|
|
compile_syntax_error(comp, args[i], MP_ERROR_TEXT("positional arg after keyword arg"));
|
|
return;
|
|
}
|
|
compile_node(comp, args[i]);
|
|
n_positional++;
|
|
}
|
|
}
|
|
|
|
if (star_flags != 0) {
|
|
// one extra object that contains the star_args map
|
|
EMIT_ARG(load_const_small_int, star_args);
|
|
}
|
|
|
|
// emit the function/method call
|
|
if (is_method_call) {
|
|
EMIT_ARG(call_method, n_positional, n_keyword, star_flags);
|
|
} else {
|
|
EMIT_ARG(call_function, n_positional, n_keyword, star_flags);
|
|
}
|
|
}
|
|
|
|
// pns needs to have 2 nodes, first is lhs of comprehension, second is PN_comp_for node
|
|
STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind) {
|
|
assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2);
|
|
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for));
|
|
mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t *)pns->nodes[1];
|
|
|
|
if (comp->pass == MP_PASS_SCOPE) {
|
|
// create a new scope for this comprehension
|
|
scope_t *s = scope_new_and_link(comp, kind, (mp_parse_node_t)pns, comp->scope_cur->emit_options);
|
|
// store the comprehension scope so the compiling function (this one) can use it at each pass
|
|
pns_comp_for->nodes[3] = (mp_parse_node_t)s;
|
|
}
|
|
|
|
// get the scope for this comprehension
|
|
scope_t *this_scope = (scope_t *)pns_comp_for->nodes[3];
|
|
|
|
// compile the comprehension
|
|
close_over_variables_etc(comp, this_scope, 0, 0);
|
|
|
|
compile_node(comp, pns_comp_for->nodes[1]); // source of the iterator
|
|
if (kind == SCOPE_GEN_EXPR) {
|
|
EMIT_ARG(get_iter, false);
|
|
}
|
|
EMIT_ARG(call_function, 1, 0, 0);
|
|
}
|
|
|
|
STATIC void compile_atom_paren(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
|
|
// an empty tuple
|
|
EMIT_ARG(build, 0, MP_EMIT_BUILD_TUPLE);
|
|
} else {
|
|
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
|
|
pns = (mp_parse_node_struct_t *)pns->nodes[0];
|
|
if (MP_PARSE_NODE_TESTLIST_COMP_HAS_COMP_FOR(pns)) {
|
|
// generator expression
|
|
compile_comprehension(comp, pns, SCOPE_GEN_EXPR);
|
|
} else {
|
|
// tuple with N items
|
|
compile_generic_tuple(comp, pns);
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC void compile_atom_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
|
|
// empty list
|
|
EMIT_ARG(build, 0, MP_EMIT_BUILD_LIST);
|
|
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
|
|
mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t *)pns->nodes[0];
|
|
if (MP_PARSE_NODE_TESTLIST_COMP_HAS_COMP_FOR(pns2)) {
|
|
// list comprehension
|
|
compile_comprehension(comp, pns2, SCOPE_LIST_COMP);
|
|
} else {
|
|
// list with N items
|
|
compile_generic_all_nodes(comp, pns2);
|
|
EMIT_ARG(build, MP_PARSE_NODE_STRUCT_NUM_NODES(pns2), MP_EMIT_BUILD_LIST);
|
|
}
|
|
} else {
|
|
// list with 1 item
|
|
compile_node(comp, pns->nodes[0]);
|
|
EMIT_ARG(build, 1, MP_EMIT_BUILD_LIST);
|
|
}
|
|
}
|
|
|
|
STATIC void compile_atom_brace_helper(compiler_t *comp, mp_parse_node_struct_t *pns, bool create_map) {
|
|
mp_parse_node_t pn = pns->nodes[0];
|
|
if (MP_PARSE_NODE_IS_NULL(pn)) {
|
|
// empty dict
|
|
if (create_map) {
|
|
EMIT_ARG(build, 0, MP_EMIT_BUILD_MAP);
|
|
}
|
|
} else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
|
|
pns = (mp_parse_node_struct_t *)pn;
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker_item) {
|
|
// dict with one element
|
|
if (create_map) {
|
|
EMIT_ARG(build, 1, MP_EMIT_BUILD_MAP);
|
|
}
|
|
compile_node(comp, pn);
|
|
EMIT(store_map);
|
|
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker) {
|
|
assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should succeed
|
|
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pns->nodes[1];
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_dictorsetmaker_list) {
|
|
// dict/set with multiple elements
|
|
|
|
// get tail elements (2nd, 3rd, ...)
|
|
mp_parse_node_t *nodes;
|
|
size_t n = mp_parse_node_extract_list(&pns1->nodes[0], PN_dictorsetmaker_list2, &nodes);
|
|
|
|
// first element sets whether it's a dict or set
|
|
bool is_dict;
|
|
if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) {
|
|
// a dictionary
|
|
if (create_map) {
|
|
EMIT_ARG(build, 1 + n, MP_EMIT_BUILD_MAP);
|
|
}
|
|
compile_node(comp, pns->nodes[0]);
|
|
EMIT(store_map);
|
|
is_dict = true;
|
|
} else {
|
|
// a set
|
|
compile_node(comp, pns->nodes[0]); // 1st value of set
|
|
is_dict = false;
|
|
}
|
|
|
|
// process rest of elements
|
|
for (size_t i = 0; i < n; i++) {
|
|
mp_parse_node_t pn_i = nodes[i];
|
|
bool is_key_value = MP_PARSE_NODE_IS_STRUCT_KIND(pn_i, PN_dictorsetmaker_item);
|
|
compile_node(comp, pn_i);
|
|
if (is_dict) {
|
|
if (!is_key_value) {
|
|
#if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
|
|
compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("invalid syntax"));
|
|
#else
|
|
compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("expecting key:value for dict"));
|
|
#endif
|
|
return;
|
|
}
|
|
EMIT(store_map);
|
|
} else {
|
|
if (is_key_value) {
|
|
#if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
|
|
compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("invalid syntax"));
|
|
#else
|
|
compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("expecting just a value for set"));
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if MICROPY_PY_BUILTINS_SET
|
|
// if it's a set, build it
|
|
if (!is_dict) {
|
|
EMIT_ARG(build, 1 + n, MP_EMIT_BUILD_SET);
|
|
}
|
|
#endif
|
|
} else {
|
|
assert(MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for); // should be
|
|
// dict/set comprehension
|
|
if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) {
|
|
// a dictionary comprehension
|
|
compile_comprehension(comp, pns, SCOPE_DICT_COMP);
|
|
} else {
|
|
// a set comprehension
|
|
compile_comprehension(comp, pns, SCOPE_SET_COMP);
|
|
}
|
|
}
|
|
} else {
|
|
// set with one element
|
|
goto set_with_one_element;
|
|
}
|
|
} else {
|
|
// set with one element
|
|
set_with_one_element:
|
|
#if MICROPY_PY_BUILTINS_SET
|
|
compile_node(comp, pn);
|
|
EMIT_ARG(build, 1, MP_EMIT_BUILD_SET);
|
|
#else
|
|
assert(0);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
STATIC void compile_atom_brace(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
compile_atom_brace_helper(comp, pns, true);
|
|
}
|
|
|
|
STATIC void compile_trailer_paren(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
compile_trailer_paren_helper(comp, pns->nodes[0], false, 0);
|
|
}
|
|
|
|
STATIC void compile_trailer_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
// object who's index we want is on top of stack
|
|
compile_node(comp, pns->nodes[0]); // the index
|
|
EMIT_ARG(subscr, MP_EMIT_SUBSCR_LOAD);
|
|
}
|
|
|
|
STATIC void compile_trailer_period(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
// object who's attribute we want is on top of stack
|
|
EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]), MP_EMIT_ATTR_LOAD); // attribute to get
|
|
}
|
|
|
|
#if MICROPY_PY_BUILTINS_SLICE
|
|
STATIC void compile_subscript(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_2) {
|
|
compile_node(comp, pns->nodes[0]); // start of slice
|
|
assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be
|
|
pns = (mp_parse_node_struct_t *)pns->nodes[1];
|
|
} else {
|
|
// pns is a PN_subscript_3, load None for start of slice
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
|
|
}
|
|
|
|
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3); // should always be
|
|
mp_parse_node_t pn = pns->nodes[0];
|
|
if (MP_PARSE_NODE_IS_NULL(pn)) {
|
|
// [?:]
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
|
|
EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE);
|
|
} else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
|
|
pns = (mp_parse_node_struct_t *)pn;
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3c) {
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
|
|
pn = pns->nodes[0];
|
|
if (MP_PARSE_NODE_IS_NULL(pn)) {
|
|
// [?::]
|
|
EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE);
|
|
} else {
|
|
// [?::x]
|
|
compile_node(comp, pn);
|
|
EMIT_ARG(build, 3, MP_EMIT_BUILD_SLICE);
|
|
}
|
|
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3d) {
|
|
compile_node(comp, pns->nodes[0]);
|
|
assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be
|
|
pns = (mp_parse_node_struct_t *)pns->nodes[1];
|
|
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_sliceop); // should always be
|
|
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
|
|
// [?:x:]
|
|
EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE);
|
|
} else {
|
|
// [?:x:x]
|
|
compile_node(comp, pns->nodes[0]);
|
|
EMIT_ARG(build, 3, MP_EMIT_BUILD_SLICE);
|
|
}
|
|
} else {
|
|
// [?:x]
|
|
compile_node(comp, pn);
|
|
EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE);
|
|
}
|
|
} else {
|
|
// [?:x]
|
|
compile_node(comp, pn);
|
|
EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE);
|
|
}
|
|
}
|
|
#endif // MICROPY_PY_BUILTINS_SLICE
|
|
|
|
STATIC void compile_dictorsetmaker_item(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
// if this is called then we are compiling a dict key:value pair
|
|
compile_node(comp, pns->nodes[1]); // value
|
|
compile_node(comp, pns->nodes[0]); // key
|
|
}
|
|
|
|
STATIC void compile_classdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
qstr cname = compile_classdef_helper(comp, pns, comp->scope_cur->emit_options);
|
|
// store class object into class name
|
|
compile_store_id(comp, cname);
|
|
}
|
|
|
|
STATIC void compile_yield_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) {
|
|
compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("'yield' outside function"));
|
|
return;
|
|
}
|
|
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
|
|
EMIT_ARG(yield, MP_EMIT_YIELD_VALUE);
|
|
reserve_labels_for_native(comp, 1);
|
|
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_yield_arg_from)) {
|
|
pns = (mp_parse_node_struct_t *)pns->nodes[0];
|
|
compile_node(comp, pns->nodes[0]);
|
|
compile_yield_from(comp);
|
|
} else {
|
|
compile_node(comp, pns->nodes[0]);
|
|
EMIT_ARG(yield, MP_EMIT_YIELD_VALUE);
|
|
reserve_labels_for_native(comp, 1);
|
|
}
|
|
}
|
|
|
|
#if MICROPY_PY_ASYNC_AWAIT
|
|
STATIC void compile_atom_expr_await(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) {
|
|
compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("'await' outside function"));
|
|
return;
|
|
}
|
|
compile_atom_expr_normal(comp, pns);
|
|
compile_yield_from(comp);
|
|
}
|
|
#endif
|
|
|
|
STATIC mp_obj_t get_const_object(mp_parse_node_struct_t *pns) {
|
|
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
|
|
// nodes are 32-bit pointers, but need to extract 64-bit object
|
|
return (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32);
|
|
#else
|
|
return (mp_obj_t)pns->nodes[0];
|
|
#endif
|
|
}
|
|
|
|
STATIC void compile_const_object(compiler_t *comp, mp_parse_node_struct_t *pns) {
|
|
EMIT_ARG(load_const_obj, get_const_object(pns));
|
|
}
|
|
|
|
typedef void (*compile_function_t)(compiler_t *, mp_parse_node_struct_t *);
|
|
STATIC const compile_function_t compile_function[] = {
|
|
// only define rules with a compile function
|
|
#define c(f) compile_##f
|
|
#define DEF_RULE(rule, comp, kind, ...) comp,
|
|
#define DEF_RULE_NC(rule, kind, ...)
|
|
#include "py/grammar.h"
|
|
#undef c
|
|
#undef DEF_RULE
|
|
#undef DEF_RULE_NC
|
|
compile_const_object,
|
|
};
|
|
|
|
STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn) {
|
|
if (MP_PARSE_NODE_IS_NULL(pn)) {
|
|
// pass
|
|
} else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
|
|
mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
|
|
EMIT_ARG(load_const_small_int, arg);
|
|
} else if (MP_PARSE_NODE_IS_LEAF(pn)) {
|
|
uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn);
|
|
switch (MP_PARSE_NODE_LEAF_KIND(pn)) {
|
|
case MP_PARSE_NODE_ID:
|
|
compile_load_id(comp, arg);
|
|
break;
|
|
case MP_PARSE_NODE_STRING:
|
|
EMIT_ARG(load_const_str, arg);
|
|
break;
|
|
case MP_PARSE_NODE_TOKEN:
|
|
default:
|
|
if (arg == MP_TOKEN_NEWLINE) {
|
|
// this can occur when file_input lets through a NEWLINE (eg if file starts with a newline)
|
|
// or when single_input lets through a NEWLINE (user enters a blank line)
|
|
// do nothing
|
|
} else {
|
|
EMIT_ARG(load_const_tok, arg);
|
|
}
|
|
break;
|
|
}
|
|
} else {
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
|
|
EMIT_ARG(set_source_line, pns->source_line);
|
|
assert(MP_PARSE_NODE_STRUCT_KIND(pns) <= PN_const_object);
|
|
compile_function_t f = compile_function[MP_PARSE_NODE_STRUCT_KIND(pns)];
|
|
f(comp, pns);
|
|
}
|
|
}
|
|
|
|
#if MICROPY_EMIT_NATIVE
|
|
STATIC int compile_viper_type_annotation(compiler_t *comp, mp_parse_node_t pn_annotation) {
|
|
int native_type = MP_NATIVE_TYPE_OBJ;
|
|
if (MP_PARSE_NODE_IS_NULL(pn_annotation)) {
|
|
// No annotation, type defaults to object
|
|
} else if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
|
|
qstr type_name = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
|
|
native_type = mp_native_type_from_qstr(type_name);
|
|
if (native_type < 0) {
|
|
comp->compile_error = mp_obj_new_exception_msg_varg(&mp_type_ViperTypeError, MP_ERROR_TEXT("unknown type '%q'"), type_name);
|
|
native_type = 0;
|
|
}
|
|
} else {
|
|
compile_syntax_error(comp, pn_annotation, MP_ERROR_TEXT("annotation must be an identifier"));
|
|
}
|
|
return native_type;
|
|
}
|
|
#endif
|
|
|
|
STATIC void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star) {
|
|
(void)pn_dbl_star;
|
|
|
|
// check that **kw is last
|
|
if ((comp->scope_cur->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) {
|
|
compile_syntax_error(comp, pn, MP_ERROR_TEXT("invalid syntax"));
|
|
return;
|
|
}
|
|
|
|
qstr param_name = MP_QSTRnull;
|
|
uint param_flag = ID_FLAG_IS_PARAM;
|
|
mp_parse_node_struct_t *pns = NULL;
|
|
if (MP_PARSE_NODE_IS_ID(pn)) {
|
|
param_name = MP_PARSE_NODE_LEAF_ARG(pn);
|
|
if (comp->have_star) {
|
|
// comes after a star, so counts as a keyword-only parameter
|
|
comp->scope_cur->num_kwonly_args += 1;
|
|
} else {
|
|
// comes before a star, so counts as a positional parameter
|
|
comp->scope_cur->num_pos_args += 1;
|
|
}
|
|
mp_emit_common_use_qstr(&comp->emit_common, param_name);
|
|
} else {
|
|
assert(MP_PARSE_NODE_IS_STRUCT(pn));
|
|
pns = (mp_parse_node_struct_t *)pn;
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_name) {
|
|
// named parameter with possible annotation
|
|
param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
|
|
if (comp->have_star) {
|
|
// comes after a star, so counts as a keyword-only parameter
|
|
comp->scope_cur->num_kwonly_args += 1;
|
|
} else {
|
|
// comes before a star, so counts as a positional parameter
|
|
comp->scope_cur->num_pos_args += 1;
|
|
}
|
|
mp_emit_common_use_qstr(&comp->emit_common, param_name);
|
|
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_star) {
|
|
if (comp->have_star) {
|
|
// more than one star
|
|
compile_syntax_error(comp, pn, MP_ERROR_TEXT("invalid syntax"));
|
|
return;
|
|
}
|
|
comp->have_star = true;
|
|
param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_STAR_PARAM;
|
|
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
|
|
// bare star
|
|
// TODO see http://www.python.org/dev/peps/pep-3102/
|
|
// assert(comp->scope_cur->num_dict_params == 0);
|
|
pns = NULL;
|
|
} else if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) {
|
|
// named star
|
|
comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
|
|
param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
|
|
pns = NULL;
|
|
} else {
|
|
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)); // should be
|
|
// named star with possible annotation
|
|
comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
|
|
pns = (mp_parse_node_struct_t *)pns->nodes[0];
|
|
param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
|
|
}
|
|
} else {
|
|
// double star with possible annotation
|
|
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == pn_dbl_star); // should be
|
|
param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
|
|
param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_DBL_STAR_PARAM;
|
|
comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARKEYWORDS;
|
|
}
|
|
}
|
|
|
|
if (param_name != MP_QSTRnull) {
|
|
id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, ID_INFO_KIND_UNDECIDED);
|
|
if (id_info->kind != ID_INFO_KIND_UNDECIDED) {
|
|
compile_syntax_error(comp, pn, MP_ERROR_TEXT("argument name reused"));
|
|
return;
|
|
}
|
|
id_info->kind = ID_INFO_KIND_LOCAL;
|
|
id_info->flags = param_flag;
|
|
|
|
#if MICROPY_EMIT_NATIVE
|
|
if (comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER && pn_name == PN_typedargslist_name && pns != NULL) {
|
|
id_info->flags |= compile_viper_type_annotation(comp, pns->nodes[1]) << ID_FLAG_VIPER_TYPE_POS;
|
|
}
|
|
#else
|
|
(void)pns;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
STATIC void compile_scope_func_param(compiler_t *comp, mp_parse_node_t pn) {
|
|
compile_scope_func_lambda_param(comp, pn, PN_typedargslist_name, PN_typedargslist_star, PN_typedargslist_dbl_star);
|
|
}
|
|
|
|
STATIC void compile_scope_lambda_param(compiler_t *comp, mp_parse_node_t pn) {
|
|
compile_scope_func_lambda_param(comp, pn, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star);
|
|
}
|
|
|
|
STATIC void compile_scope_comp_iter(compiler_t *comp, mp_parse_node_struct_t *pns_comp_for, mp_parse_node_t pn_inner_expr, int for_depth) {
|
|
uint l_top = comp_next_label(comp);
|
|
uint l_end = comp_next_label(comp);
|
|
EMIT_ARG(label_assign, l_top);
|
|
EMIT_ARG(for_iter, l_end);
|
|
c_assign(comp, pns_comp_for->nodes[0], ASSIGN_STORE);
|
|
mp_parse_node_t pn_iter = pns_comp_for->nodes[2];
|
|
|
|
tail_recursion:
|
|
if (MP_PARSE_NODE_IS_NULL(pn_iter)) {
|
|
// no more nested if/for; compile inner expression
|
|
compile_node(comp, pn_inner_expr);
|
|
if (comp->scope_cur->kind == SCOPE_GEN_EXPR) {
|
|
EMIT_ARG(yield, MP_EMIT_YIELD_VALUE);
|
|
reserve_labels_for_native(comp, 1);
|
|
EMIT(pop_top);
|
|
} else {
|
|
EMIT_ARG(store_comp, comp->scope_cur->kind, 4 * for_depth + 5);
|
|
}
|
|
} else if (MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn_iter) == PN_comp_if) {
|
|
// if condition
|
|
mp_parse_node_struct_t *pns_comp_if = (mp_parse_node_struct_t *)pn_iter;
|
|
c_if_cond(comp, pns_comp_if->nodes[0], false, l_top);
|
|
pn_iter = pns_comp_if->nodes[1];
|
|
goto tail_recursion;
|
|
} else {
|
|
assert(MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn_iter) == PN_comp_for); // should be
|
|
// for loop
|
|
mp_parse_node_struct_t *pns_comp_for2 = (mp_parse_node_struct_t *)pn_iter;
|
|
compile_node(comp, pns_comp_for2->nodes[1]);
|
|
EMIT_ARG(get_iter, true);
|
|
compile_scope_comp_iter(comp, pns_comp_for2, pn_inner_expr, for_depth + 1);
|
|
}
|
|
|
|
EMIT_ARG(jump, l_top);
|
|
EMIT_ARG(label_assign, l_end);
|
|
EMIT(for_iter_end);
|
|
}
|
|
|
|
STATIC void check_for_doc_string(compiler_t *comp, mp_parse_node_t pn) {
|
|
#if MICROPY_ENABLE_DOC_STRING
|
|
// see http://www.python.org/dev/peps/pep-0257/
|
|
|
|
// look for the first statement
|
|
if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
|
|
// a statement; fall through
|
|
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_file_input_2)) {
|
|
// file input; find the first non-newline node
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
|
|
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
|
|
for (int i = 0; i < num_nodes; i++) {
|
|
pn = pns->nodes[i];
|
|
if (!(MP_PARSE_NODE_IS_LEAF(pn) && MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN && MP_PARSE_NODE_LEAF_ARG(pn) == MP_TOKEN_NEWLINE)) {
|
|
// not a newline, so this is the first statement; finish search
|
|
break;
|
|
}
|
|
}
|
|
// if we didn't find a non-newline then it's okay to fall through; pn will be a newline and so doc-string test below will fail gracefully
|
|
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_suite_block_stmts)) {
|
|
// a list of statements; get the first one
|
|
pn = ((mp_parse_node_struct_t *)pn)->nodes[0];
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
// check the first statement for a doc string
|
|
if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
|
|
if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0])
|
|
&& MP_PARSE_NODE_LEAF_KIND(pns->nodes[0]) == MP_PARSE_NODE_STRING)
|
|
|| (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)
|
|
&& mp_obj_is_str(get_const_object((mp_parse_node_struct_t *)pns->nodes[0])))) {
|
|
// compile the doc string
|
|
compile_node(comp, pns->nodes[0]);
|
|
// store the doc string
|
|
compile_store_id(comp, MP_QSTR___doc__);
|
|
}
|
|
}
|
|
#else
|
|
(void)comp;
|
|
(void)pn;
|
|
#endif
|
|
}
|
|
|
|
STATIC bool compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
|
|
comp->pass = pass;
|
|
comp->scope_cur = scope;
|
|
comp->next_label = 0;
|
|
mp_emit_common_start_pass(&comp->emit_common, pass);
|
|
EMIT_ARG(start_pass, pass, scope);
|
|
reserve_labels_for_native(comp, 6); // used by native's start_pass
|
|
|
|
if (comp->pass == MP_PASS_SCOPE) {
|
|
// reset maximum stack sizes in scope
|
|
// they will be computed in this first pass
|
|
scope->stack_size = 0;
|
|
scope->exc_stack_size = 0;
|
|
|
|
#if MICROPY_EMIT_NATIVE
|
|
if (scope->emit_options == MP_EMIT_OPT_NATIVE_PYTHON || scope->emit_options == MP_EMIT_OPT_VIPER) {
|
|
// allow native code to perfom basic tasks during the pass scope
|
|
// note: the first argument passed here is mp_emit_common_t, not the native emitter context
|
|
NATIVE_EMITTER_TABLE->start_pass((void *)&comp->emit_common, comp->pass, scope);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// compile
|
|
if (MP_PARSE_NODE_IS_STRUCT_KIND(scope->pn, PN_eval_input)) {
|
|
assert(scope->kind == SCOPE_MODULE);
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn;
|
|
compile_node(comp, pns->nodes[0]); // compile the expression
|
|
EMIT(return_value);
|
|
} else if (scope->kind == SCOPE_MODULE) {
|
|
if (!comp->is_repl) {
|
|
check_for_doc_string(comp, scope->pn);
|
|
}
|
|
compile_node(comp, scope->pn);
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
|
|
EMIT(return_value);
|
|
} else if (scope->kind == SCOPE_FUNCTION) {
|
|
assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn;
|
|
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef);
|
|
|
|
// work out number of parameters, keywords and default parameters, and add them to the id_info array
|
|
// must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
|
|
if (comp->pass == MP_PASS_SCOPE) {
|
|
comp->have_star = false;
|
|
apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_param);
|
|
|
|
#if MICROPY_EMIT_NATIVE
|
|
if (scope->emit_options == MP_EMIT_OPT_VIPER) {
|
|
// Compile return type; pns->nodes[2] is return/whole function annotation
|
|
scope->scope_flags |= compile_viper_type_annotation(comp, pns->nodes[2]) << MP_SCOPE_FLAG_VIPERRET_POS;
|
|
}
|
|
#endif // MICROPY_EMIT_NATIVE
|
|
}
|
|
|
|
compile_node(comp, pns->nodes[3]); // 3 is function body
|
|
// emit return if it wasn't the last opcode
|
|
if (!EMIT(last_emit_was_return_value)) {
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
|
|
EMIT(return_value);
|
|
}
|
|
} else if (scope->kind == SCOPE_LAMBDA) {
|
|
assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn;
|
|
assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 3);
|
|
|
|
// Set the source line number for the start of the lambda
|
|
EMIT_ARG(set_source_line, pns->source_line);
|
|
|
|
// work out number of parameters, keywords and default parameters, and add them to the id_info array
|
|
// must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
|
|
if (comp->pass == MP_PASS_SCOPE) {
|
|
comp->have_star = false;
|
|
apply_to_single_or_list(comp, pns->nodes[0], PN_varargslist, compile_scope_lambda_param);
|
|
}
|
|
|
|
compile_node(comp, pns->nodes[1]); // 1 is lambda body
|
|
|
|
// if the lambda is a generator, then we return None, not the result of the expression of the lambda
|
|
if (scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
|
|
EMIT(pop_top);
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
|
|
}
|
|
EMIT(return_value);
|
|
} else if (SCOPE_IS_COMP_LIKE(scope->kind)) {
|
|
// a bit of a hack at the moment
|
|
|
|
assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn;
|
|
assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2);
|
|
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for));
|
|
mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t *)pns->nodes[1];
|
|
|
|
// We need a unique name for the comprehension argument (the iterator).
|
|
// CPython uses .0, but we should be able to use anything that won't
|
|
// clash with a user defined variable. Best to use an existing qstr,
|
|
// so we use the blank qstr.
|
|
qstr qstr_arg = MP_QSTR_;
|
|
if (comp->pass == MP_PASS_SCOPE) {
|
|
scope_find_or_add_id(comp->scope_cur, qstr_arg, ID_INFO_KIND_LOCAL);
|
|
scope->num_pos_args = 1;
|
|
mp_emit_common_use_qstr(&comp->emit_common, MP_QSTR__star_);
|
|
}
|
|
|
|
// Set the source line number for the start of the comprehension
|
|
EMIT_ARG(set_source_line, pns->source_line);
|
|
|
|
if (scope->kind == SCOPE_LIST_COMP) {
|
|
EMIT_ARG(build, 0, MP_EMIT_BUILD_LIST);
|
|
} else if (scope->kind == SCOPE_DICT_COMP) {
|
|
EMIT_ARG(build, 0, MP_EMIT_BUILD_MAP);
|
|
#if MICROPY_PY_BUILTINS_SET
|
|
} else if (scope->kind == SCOPE_SET_COMP) {
|
|
EMIT_ARG(build, 0, MP_EMIT_BUILD_SET);
|
|
#endif
|
|
}
|
|
|
|
// There are 4 slots on the stack for the iterator, and the first one is
|
|
// NULL to indicate that the second one points to the iterator object.
|
|
if (scope->kind == SCOPE_GEN_EXPR) {
|
|
MP_STATIC_ASSERT(MP_OBJ_ITER_BUF_NSLOTS == 4);
|
|
EMIT(load_null);
|
|
compile_load_id(comp, qstr_arg);
|
|
EMIT(load_null);
|
|
EMIT(load_null);
|
|
} else {
|
|
compile_load_id(comp, qstr_arg);
|
|
EMIT_ARG(get_iter, true);
|
|
}
|
|
|
|
compile_scope_comp_iter(comp, pns_comp_for, pns->nodes[0], 0);
|
|
|
|
if (scope->kind == SCOPE_GEN_EXPR) {
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
|
|
}
|
|
EMIT(return_value);
|
|
} else {
|
|
assert(scope->kind == SCOPE_CLASS);
|
|
assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn;
|
|
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_classdef);
|
|
|
|
if (comp->pass == MP_PASS_SCOPE) {
|
|
scope_find_or_add_id(scope, MP_QSTR___class__, ID_INFO_KIND_LOCAL);
|
|
}
|
|
|
|
#if MICROPY_PY_SYS_SETTRACE
|
|
EMIT_ARG(set_source_line, pns->source_line);
|
|
#endif
|
|
compile_load_id(comp, MP_QSTR___name__);
|
|
compile_store_id(comp, MP_QSTR___module__);
|
|
EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // 0 is class name
|
|
compile_store_id(comp, MP_QSTR___qualname__);
|
|
|
|
check_for_doc_string(comp, pns->nodes[2]);
|
|
compile_node(comp, pns->nodes[2]); // 2 is class body
|
|
|
|
id_info_t *id = scope_find(scope, MP_QSTR___class__);
|
|
assert(id != NULL);
|
|
if (id->kind == ID_INFO_KIND_LOCAL) {
|
|
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
|
|
} else {
|
|
EMIT_LOAD_FAST(MP_QSTR___class__, id->local_num);
|
|
}
|
|
EMIT(return_value);
|
|
}
|
|
|
|
bool pass_complete = EMIT(end_pass);
|
|
|
|
// make sure we match all the exception levels
|
|
assert(comp->cur_except_level == 0);
|
|
|
|
return pass_complete;
|
|
}
|
|
|
|
#if MICROPY_EMIT_INLINE_ASM
|
|
// requires 3 passes: SCOPE, CODE_SIZE, EMIT
|
|
STATIC void compile_scope_inline_asm(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
|
|
comp->pass = pass;
|
|
comp->scope_cur = scope;
|
|
comp->next_label = 0;
|
|
|
|
if (scope->kind != SCOPE_FUNCTION) {
|
|
compile_syntax_error(comp, MP_PARSE_NODE_NULL, MP_ERROR_TEXT("inline assembler must be a function"));
|
|
return;
|
|
}
|
|
|
|
if (comp->pass > MP_PASS_SCOPE) {
|
|
EMIT_INLINE_ASM_ARG(start_pass, comp->pass, &comp->compile_error);
|
|
}
|
|
|
|
// get the function definition parse node
|
|
assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)scope->pn;
|
|
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef);
|
|
|
|
// qstr f_id = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); // function name
|
|
|
|
// parameters are in pns->nodes[1]
|
|
if (comp->pass == MP_PASS_CODE_SIZE) {
|
|
mp_parse_node_t *pn_params;
|
|
size_t n_params = mp_parse_node_extract_list(&pns->nodes[1], PN_typedargslist, &pn_params);
|
|
scope->num_pos_args = EMIT_INLINE_ASM_ARG(count_params, n_params, pn_params);
|
|
if (comp->compile_error != MP_OBJ_NULL) {
|
|
goto inline_asm_error;
|
|
}
|
|
}
|
|
|
|
// pns->nodes[2] is function return annotation
|
|
mp_uint_t type_sig = MP_NATIVE_TYPE_INT;
|
|
mp_parse_node_t pn_annotation = pns->nodes[2];
|
|
if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) {
|
|
// nodes[2] can be null or a test-expr
|
|
if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
|
|
qstr ret_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
|
|
switch (ret_type) {
|
|
case MP_QSTR_object:
|
|
type_sig = MP_NATIVE_TYPE_OBJ;
|
|
break;
|
|
case MP_QSTR_bool:
|
|
type_sig = MP_NATIVE_TYPE_BOOL;
|
|
break;
|
|
case MP_QSTR_int:
|
|
type_sig = MP_NATIVE_TYPE_INT;
|
|
break;
|
|
case MP_QSTR_uint:
|
|
type_sig = MP_NATIVE_TYPE_UINT;
|
|
break;
|
|
default:
|
|
compile_syntax_error(comp, pn_annotation, MP_ERROR_TEXT("unknown type"));
|
|
return;
|
|
}
|
|
} else {
|
|
compile_syntax_error(comp, pn_annotation, MP_ERROR_TEXT("return annotation must be an identifier"));
|
|
}
|
|
}
|
|
|
|
mp_parse_node_t pn_body = pns->nodes[3]; // body
|
|
mp_parse_node_t *nodes;
|
|
size_t num = mp_parse_node_extract_list(&pn_body, PN_suite_block_stmts, &nodes);
|
|
|
|
for (size_t i = 0; i < num; i++) {
|
|
assert(MP_PARSE_NODE_IS_STRUCT(nodes[i]));
|
|
mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t *)nodes[i];
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_pass_stmt) {
|
|
// no instructions
|
|
continue;
|
|
} else if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_expr_stmt) {
|
|
// not an instruction; error
|
|
not_an_instruction:
|
|
compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("expecting an assembler instruction"));
|
|
return;
|
|
}
|
|
|
|
// check structure of parse node
|
|
assert(MP_PARSE_NODE_IS_STRUCT(pns2->nodes[0]));
|
|
if (!MP_PARSE_NODE_IS_NULL(pns2->nodes[1])) {
|
|
goto not_an_instruction;
|
|
}
|
|
pns2 = (mp_parse_node_struct_t *)pns2->nodes[0];
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_atom_expr_normal) {
|
|
goto not_an_instruction;
|
|
}
|
|
if (!MP_PARSE_NODE_IS_ID(pns2->nodes[0])) {
|
|
goto not_an_instruction;
|
|
}
|
|
if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns2->nodes[1], PN_trailer_paren)) {
|
|
goto not_an_instruction;
|
|
}
|
|
|
|
// parse node looks like an instruction
|
|
// get instruction name and args
|
|
qstr op = MP_PARSE_NODE_LEAF_ARG(pns2->nodes[0]);
|
|
pns2 = (mp_parse_node_struct_t *)pns2->nodes[1]; // PN_trailer_paren
|
|
mp_parse_node_t *pn_arg;
|
|
size_t n_args = mp_parse_node_extract_list(&pns2->nodes[0], PN_arglist, &pn_arg);
|
|
|
|
// emit instructions
|
|
if (op == MP_QSTR_label) {
|
|
if (!(n_args == 1 && MP_PARSE_NODE_IS_ID(pn_arg[0]))) {
|
|
compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("'label' requires 1 argument"));
|
|
return;
|
|
}
|
|
uint lab = comp_next_label(comp);
|
|
if (pass > MP_PASS_SCOPE) {
|
|
if (!EMIT_INLINE_ASM_ARG(label, lab, MP_PARSE_NODE_LEAF_ARG(pn_arg[0]))) {
|
|
compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("label redefined"));
|
|
return;
|
|
}
|
|
}
|
|
} else if (op == MP_QSTR_align) {
|
|
if (!(n_args == 1 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) {
|
|
compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("'align' requires 1 argument"));
|
|
return;
|
|
}
|
|
if (pass > MP_PASS_SCOPE) {
|
|
mp_asm_base_align((mp_asm_base_t *)comp->emit_inline_asm,
|
|
MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]));
|
|
}
|
|
} else if (op == MP_QSTR_data) {
|
|
if (!(n_args >= 2 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) {
|
|
compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("'data' requires at least 2 arguments"));
|
|
return;
|
|
}
|
|
if (pass > MP_PASS_SCOPE) {
|
|
mp_int_t bytesize = MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]);
|
|
for (uint j = 1; j < n_args; j++) {
|
|
if (!MP_PARSE_NODE_IS_SMALL_INT(pn_arg[j])) {
|
|
compile_syntax_error(comp, nodes[i], MP_ERROR_TEXT("'data' requires integer arguments"));
|
|
return;
|
|
}
|
|
mp_asm_base_data((mp_asm_base_t *)comp->emit_inline_asm,
|
|
bytesize, MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[j]));
|
|
}
|
|
}
|
|
} else {
|
|
if (pass > MP_PASS_SCOPE) {
|
|
EMIT_INLINE_ASM_ARG(op, op, n_args, pn_arg);
|
|
}
|
|
}
|
|
|
|
if (comp->compile_error != MP_OBJ_NULL) {
|
|
pns = pns2; // this is the parse node that had the error
|
|
goto inline_asm_error;
|
|
}
|
|
}
|
|
|
|
if (comp->pass > MP_PASS_SCOPE) {
|
|
EMIT_INLINE_ASM_ARG(end_pass, type_sig);
|
|
|
|
if (comp->pass == MP_PASS_EMIT) {
|
|
void *f = mp_asm_base_get_code((mp_asm_base_t *)comp->emit_inline_asm);
|
|
mp_emit_glue_assign_native(comp->scope_cur->raw_code, MP_CODE_NATIVE_ASM,
|
|
f, mp_asm_base_get_code_size((mp_asm_base_t *)comp->emit_inline_asm),
|
|
NULL,
|
|
#if MICROPY_PERSISTENT_CODE_SAVE
|
|
0,
|
|
0, 0, NULL,
|
|
#endif
|
|
0, comp->scope_cur->num_pos_args, type_sig);
|
|
}
|
|
}
|
|
|
|
if (comp->compile_error != MP_OBJ_NULL) {
|
|
// inline assembler had an error; set line for its exception
|
|
inline_asm_error:
|
|
comp->compile_error_line = pns->source_line;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
STATIC void scope_compute_things(scope_t *scope, mp_emit_common_t *emit_common) {
|
|
// in MicroPython we put the *x parameter after all other parameters (except **y)
|
|
if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) {
|
|
id_info_t *id_param = NULL;
|
|
for (int i = scope->id_info_len - 1; i >= 0; i--) {
|
|
id_info_t *id = &scope->id_info[i];
|
|
if (id->flags & ID_FLAG_IS_STAR_PARAM) {
|
|
if (id_param != NULL) {
|
|
// swap star param with last param
|
|
id_info_t temp = *id_param;
|
|
*id_param = *id;
|
|
*id = temp;
|
|
}
|
|
break;
|
|
} else if (id_param == NULL && id->flags == ID_FLAG_IS_PARAM) {
|
|
id_param = id;
|
|
}
|
|
}
|
|
}
|
|
|
|
// in functions, turn implicit globals into explicit globals
|
|
// compute the index of each local
|
|
scope->num_locals = 0;
|
|
for (int i = 0; i < scope->id_info_len; i++) {
|
|
id_info_t *id = &scope->id_info[i];
|
|
if (scope->kind == SCOPE_CLASS && id->qst == MP_QSTR___class__) {
|
|
// __class__ is not counted as a local; if it's used then it becomes a ID_INFO_KIND_CELL
|
|
continue;
|
|
}
|
|
if (SCOPE_IS_FUNC_LIKE(scope->kind) && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
|
|
id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
|
|
}
|
|
#if MICROPY_EMIT_NATIVE
|
|
if (id->kind == ID_INFO_KIND_GLOBAL_EXPLICIT) {
|
|
// This function makes a reference to a global variable
|
|
if (scope->emit_options == MP_EMIT_OPT_VIPER
|
|
&& mp_native_type_from_qstr(id->qst) >= MP_NATIVE_TYPE_INT) {
|
|
// A casting operator in viper mode, not a real global reference
|
|
} else {
|
|
scope->scope_flags |= MP_SCOPE_FLAG_REFGLOBALS;
|
|
}
|
|
}
|
|
#endif
|
|
// params always count for 1 local, even if they are a cell
|
|
if (id->kind == ID_INFO_KIND_LOCAL || (id->flags & ID_FLAG_IS_PARAM)) {
|
|
id->local_num = scope->num_locals++;
|
|
}
|
|
}
|
|
|
|
// compute the index of cell vars
|
|
for (int i = 0; i < scope->id_info_len; i++) {
|
|
id_info_t *id = &scope->id_info[i];
|
|
// in MicroPython the cells come right after the fast locals
|
|
// parameters are not counted here, since they remain at the start
|
|
// of the locals, even if they are cell vars
|
|
if (id->kind == ID_INFO_KIND_CELL && !(id->flags & ID_FLAG_IS_PARAM)) {
|
|
id->local_num = scope->num_locals;
|
|
scope->num_locals += 1;
|
|
}
|
|
}
|
|
|
|
// compute the index of free vars
|
|
// make sure they are in the order of the parent scope
|
|
if (scope->parent != NULL) {
|
|
int num_free = 0;
|
|
for (int i = 0; i < scope->parent->id_info_len; i++) {
|
|
id_info_t *id = &scope->parent->id_info[i];
|
|
if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
|
|
for (int j = 0; j < scope->id_info_len; j++) {
|
|
id_info_t *id2 = &scope->id_info[j];
|
|
if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
|
|
assert(!(id2->flags & ID_FLAG_IS_PARAM)); // free vars should not be params
|
|
// in MicroPython the frees come first, before the params
|
|
id2->local_num = num_free;
|
|
num_free += 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// in MicroPython shift all other locals after the free locals
|
|
if (num_free > 0) {
|
|
for (int i = 0; i < scope->id_info_len; i++) {
|
|
id_info_t *id = &scope->id_info[i];
|
|
if (id->kind != ID_INFO_KIND_FREE || (id->flags & ID_FLAG_IS_PARAM)) {
|
|
id->local_num += num_free;
|
|
}
|
|
}
|
|
scope->num_pos_args += num_free; // free vars are counted as params for passing them into the function
|
|
scope->num_locals += num_free;
|
|
mp_emit_common_use_qstr(emit_common, MP_QSTR__star_);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if !MICROPY_PERSISTENT_CODE_SAVE
|
|
STATIC
|
|
#endif
|
|
mp_compiled_module_t mp_compile_to_raw_code(mp_parse_tree_t *parse_tree, qstr source_file, bool is_repl, mp_module_context_t *context) {
|
|
// put compiler state on the stack, it's relatively small
|
|
compiler_t comp_state = {0};
|
|
compiler_t *comp = &comp_state;
|
|
|
|
comp->is_repl = is_repl;
|
|
comp->break_label = INVALID_LABEL;
|
|
comp->continue_label = INVALID_LABEL;
|
|
mp_emit_common_init(&comp->emit_common, source_file);
|
|
|
|
// create the module scope
|
|
#if MICROPY_EMIT_NATIVE
|
|
const uint emit_opt = MP_STATE_VM(default_emit_opt);
|
|
#else
|
|
const uint emit_opt = MP_EMIT_OPT_NONE;
|
|
#endif
|
|
scope_t *module_scope = scope_new_and_link(comp, SCOPE_MODULE, parse_tree->root, emit_opt);
|
|
|
|
// create standard emitter; it's used at least for MP_PASS_SCOPE
|
|
emit_t *emit_bc = emit_bc_new(&comp->emit_common);
|
|
|
|
// compile MP_PASS_SCOPE
|
|
comp->emit = emit_bc;
|
|
comp->emit_bc = emit_bc;
|
|
#if MICROPY_EMIT_NATIVE
|
|
comp->emit_method_table = &emit_bc_method_table;
|
|
#endif
|
|
uint max_num_labels = 0;
|
|
for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
|
|
#if MICROPY_EMIT_INLINE_ASM
|
|
if (s->emit_options == MP_EMIT_OPT_ASM) {
|
|
compile_scope_inline_asm(comp, s, MP_PASS_SCOPE);
|
|
} else
|
|
#endif
|
|
{
|
|
compile_scope(comp, s, MP_PASS_SCOPE);
|
|
|
|
// Check if any implicitly declared variables should be closed over
|
|
for (size_t i = 0; i < s->id_info_len; ++i) {
|
|
id_info_t *id = &s->id_info[i];
|
|
if (id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
|
|
scope_check_to_close_over(s, id);
|
|
}
|
|
}
|
|
}
|
|
|
|
// update maximim number of labels needed
|
|
if (comp->next_label > max_num_labels) {
|
|
max_num_labels = comp->next_label;
|
|
}
|
|
}
|
|
|
|
// compute some things related to scope and identifiers
|
|
bool has_native_code = false;
|
|
for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
|
|
#if MICROPY_EMIT_NATIVE
|
|
if (s->emit_options == MP_EMIT_OPT_NATIVE_PYTHON || s->emit_options == MP_EMIT_OPT_VIPER) {
|
|
has_native_code = true;
|
|
}
|
|
#endif
|
|
|
|
scope_compute_things(s, &comp->emit_common);
|
|
}
|
|
|
|
// set max number of labels now that it's calculated
|
|
emit_bc_set_max_num_labels(emit_bc, max_num_labels);
|
|
|
|
// finalise and allocate the constant table
|
|
mp_emit_common_finalise(&comp->emit_common, has_native_code);
|
|
|
|
// compile MP_PASS_STACK_SIZE, MP_PASS_CODE_SIZE, MP_PASS_EMIT
|
|
#if MICROPY_EMIT_NATIVE
|
|
emit_t *emit_native = NULL;
|
|
#endif
|
|
for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
|
|
#if MICROPY_EMIT_INLINE_ASM
|
|
if (s->emit_options == MP_EMIT_OPT_ASM) {
|
|
// inline assembly
|
|
if (comp->emit_inline_asm == NULL) {
|
|
comp->emit_inline_asm = ASM_EMITTER(new)(max_num_labels);
|
|
}
|
|
comp->emit = NULL;
|
|
comp->emit_inline_asm_method_table = ASM_EMITTER_TABLE;
|
|
compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE);
|
|
#if MICROPY_EMIT_INLINE_XTENSA
|
|
// Xtensa requires an extra pass to compute size of l32r const table
|
|
// TODO this can be improved by calculating it during SCOPE pass
|
|
// but that requires some other structural changes to the asm emitters
|
|
#if MICROPY_DYNAMIC_COMPILER
|
|
if (mp_dynamic_compiler.native_arch == MP_NATIVE_ARCH_XTENSA)
|
|
#endif
|
|
{
|
|
compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE);
|
|
}
|
|
#endif
|
|
if (comp->compile_error == MP_OBJ_NULL) {
|
|
compile_scope_inline_asm(comp, s, MP_PASS_EMIT);
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
|
|
// choose the emit type
|
|
|
|
switch (s->emit_options) {
|
|
|
|
#if MICROPY_EMIT_NATIVE
|
|
case MP_EMIT_OPT_NATIVE_PYTHON:
|
|
case MP_EMIT_OPT_VIPER:
|
|
if (emit_native == NULL) {
|
|
emit_native = NATIVE_EMITTER(new)(&comp->emit_common, &comp->compile_error, &comp->next_label, max_num_labels);
|
|
}
|
|
comp->emit_method_table = NATIVE_EMITTER_TABLE;
|
|
comp->emit = emit_native;
|
|
break;
|
|
#endif // MICROPY_EMIT_NATIVE
|
|
|
|
default:
|
|
comp->emit = emit_bc;
|
|
#if MICROPY_EMIT_NATIVE
|
|
comp->emit_method_table = &emit_bc_method_table;
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
// need a pass to compute stack size
|
|
compile_scope(comp, s, MP_PASS_STACK_SIZE);
|
|
|
|
// second last pass: compute code size
|
|
if (comp->compile_error == MP_OBJ_NULL) {
|
|
compile_scope(comp, s, MP_PASS_CODE_SIZE);
|
|
}
|
|
|
|
// final pass: emit code
|
|
// the emitter can request multiple of these passes
|
|
if (comp->compile_error == MP_OBJ_NULL) {
|
|
while (!compile_scope(comp, s, MP_PASS_EMIT)) {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (comp->compile_error != MP_OBJ_NULL) {
|
|
// if there is no line number for the error then use the line
|
|
// number for the start of this scope
|
|
compile_error_set_line(comp, comp->scope_cur->pn);
|
|
// add a traceback to the exception using relevant source info
|
|
mp_obj_exception_add_traceback(comp->compile_error, source_file,
|
|
comp->compile_error_line, comp->scope_cur->simple_name);
|
|
}
|
|
|
|
// construct the global qstr/const table for this module
|
|
mp_compiled_module_t cm;
|
|
cm.rc = module_scope->raw_code;
|
|
cm.context = context;
|
|
#if MICROPY_PERSISTENT_CODE_SAVE
|
|
cm.has_native = has_native_code;
|
|
cm.n_qstr = comp->emit_common.qstr_map.used;
|
|
cm.n_obj = comp->emit_common.ct_cur_obj;
|
|
#endif
|
|
if (comp->compile_error == MP_OBJ_NULL) {
|
|
mp_emit_common_populate_module_context(&comp->emit_common, source_file, context);
|
|
|
|
#if MICROPY_DEBUG_PRINTERS
|
|
// now that the module context is valid, the raw codes can be printed
|
|
if (mp_verbose_flag >= 2) {
|
|
for (scope_t *s = comp->scope_head; s != NULL; s = s->next) {
|
|
mp_raw_code_t *rc = s->raw_code;
|
|
if (rc->kind == MP_CODE_BYTECODE) {
|
|
mp_bytecode_print(&mp_plat_print, rc, &cm.context->constants);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// free the emitters
|
|
|
|
emit_bc_free(emit_bc);
|
|
#if MICROPY_EMIT_NATIVE
|
|
if (emit_native != NULL) {
|
|
NATIVE_EMITTER(free)(emit_native);
|
|
}
|
|
#endif
|
|
#if MICROPY_EMIT_INLINE_ASM
|
|
if (comp->emit_inline_asm != NULL) {
|
|
ASM_EMITTER(free)(comp->emit_inline_asm);
|
|
}
|
|
#endif
|
|
|
|
// free the parse tree
|
|
mp_parse_tree_clear(parse_tree);
|
|
|
|
// free the scopes
|
|
for (scope_t *s = module_scope; s;) {
|
|
scope_t *next = s->next;
|
|
scope_free(s);
|
|
s = next;
|
|
}
|
|
|
|
if (comp->compile_error != MP_OBJ_NULL) {
|
|
nlr_raise(comp->compile_error);
|
|
}
|
|
|
|
return cm;
|
|
}
|
|
|
|
mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, bool is_repl) {
|
|
mp_module_context_t *context = m_new_obj(mp_module_context_t);
|
|
context->module.globals = mp_globals_get();
|
|
mp_compiled_module_t cm = mp_compile_to_raw_code(parse_tree, source_file, is_repl, context);
|
|
// return function that executes the outer module
|
|
return mp_make_function_from_raw_code(cm.rc, cm.context, NULL);
|
|
}
|
|
|
|
#endif // MICROPY_ENABLE_COMPILER
|