Damien George ea81bcf1c0 stm32/mboot: Leave bootloader from thread mode, not from IRQ.
Leaving the bootloader from an IRQ (eg USB or I2C IRQ) will not work if
MBOOT_LEAVE_BOOTLOADER_VIA_RESET is disabled, ie if mboot jumps directly to
the application.  This is because the CPU will still be in IRQ state when
the application starts and IRQs of lower priority will be blocked.

Fix this by setting a flag when the bootloader should finish, and exit the
bootloader always from the main (top level) thread.

This also improves the USB behaviour of mboot: it no longer abruptly
disconnects when the manifest command is sent.

Signed-off-by: Damien George <damien@micropython.org>
2021-05-21 00:46:01 +10:00

1666 lines
52 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017-2019 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/mphal.h"
#include "extmod/crypto-algorithms/sha256.c"
#include "boardctrl.h"
#include "usbd_core.h"
#include "storage.h"
#include "flash.h"
#include "i2cslave.h"
#include "irq.h"
#include "mboot.h"
#include "powerctrl.h"
#include "dfu.h"
#include "pack.h"
// Whether the bootloader will leave via reset, or direct jump to the application.
#ifndef MBOOT_LEAVE_BOOTLOADER_VIA_RESET
#define MBOOT_LEAVE_BOOTLOADER_VIA_RESET (1)
#endif
// This option selects whether to use explicit polling or IRQs for USB events.
// In some test cases polling mode can run slightly faster, but it uses more power.
// Polling mode will also cause failures with the mass-erase command because USB
// events will not be serviced for the duration of the mass erase.
// With STM32WB MCUs only non-polling/IRQ mode is supported.
#define USE_USB_POLLING (0)
// Using cache probably won't make it faster because we run at a low frequency, and best
// to keep the MCU config as minimal as possible.
#define USE_CACHE (0)
// IRQ priorities (encoded values suitable for NVIC_SetPriority)
// Most values are defined in irq.h.
#define IRQ_PRI_I2C (NVIC_EncodePriority(NVIC_PRIORITYGROUP_4, 1, 0))
// Configure PLL to give the desired CPU freq
#undef MICROPY_HW_FLASH_LATENCY
#if defined(STM32F4) || defined(STM32F7)
#if MBOOT_ENABLE_PACKING
// With encryption/signing/compression, a faster CPU makes processing much faster.
#define CORE_PLL_FREQ (96000000)
#define MICROPY_HW_FLASH_LATENCY FLASH_LATENCY_3
#else
#define CORE_PLL_FREQ (48000000)
#define MICROPY_HW_FLASH_LATENCY FLASH_LATENCY_1
#endif
#elif defined(STM32H7)
#define CORE_PLL_FREQ (96000000)
#define MICROPY_HW_FLASH_LATENCY FLASH_LATENCY_2
#endif
#undef MICROPY_HW_CLK_PLLM
#undef MICROPY_HW_CLK_PLLN
#undef MICROPY_HW_CLK_PLLP
#undef MICROPY_HW_CLK_PLLQ
#undef MICROPY_HW_CLK_PLLR
#define MICROPY_HW_CLK_PLLM (HSE_VALUE / 1000000)
#define MICROPY_HW_CLK_PLLN (192)
#define MICROPY_HW_CLK_PLLP (MICROPY_HW_CLK_PLLN / (CORE_PLL_FREQ / 1000000))
#define MICROPY_HW_CLK_PLLQ (4)
#define MICROPY_HW_CLK_PLLR (2)
// Work out which USB device to use for the USB DFU interface
#if !defined(MICROPY_HW_USB_MAIN_DEV)
#if MICROPY_HW_USB_FS
#define MICROPY_HW_USB_MAIN_DEV (USB_PHY_FS_ID)
#elif MICROPY_HW_USB_HS
#define MICROPY_HW_USB_MAIN_DEV (USB_PHY_HS_ID)
#else
#error Unable to determine proper MICROPY_HW_USB_MAIN_DEV to use
#endif
#endif
// These bits are used to detect valid application firmware at APPLICATION_ADDR
#define APP_VALIDITY_BITS (0x00000003)
// For 1ms system ticker.
static volatile uint32_t systick_ms;
// Global dfu state
dfu_context_t dfu_context SECTION_NOZERO_BSS;
uint32_t get_le32(const uint8_t *b) {
return b[0] | b[1] << 8 | b[2] << 16 | b[3] << 24;
}
mp_uint_t mp_hal_ticks_ms(void) {
return systick_ms;
}
void mp_hal_delay_us(mp_uint_t usec) {
// use a busy loop for the delay
// sys freq is always a multiple of 2MHz, so division here won't lose precision
#if defined(CORE_PLL_FREQ)
const uint32_t ucount = CORE_PLL_FREQ / 2000000 * usec / 2;
#else
const uint32_t ucount = SystemCoreClock / 2000000 * usec / 2;
#endif
for (uint32_t count = 0; ++count <= ucount;) {
__NOP();
}
}
void mp_hal_delay_ms(mp_uint_t ms) {
if (__get_PRIMASK() == 0) {
// IRQs enabled, use systick
if (ms != 0 && ms != (mp_uint_t)-1) {
++ms; // account for the fact that systick_ms may roll over immediately
}
uint32_t start = systick_ms;
while (systick_ms - start < ms) {
__WFI();
}
} else {
// IRQs disabled, so need to use a busy loop for the delay.
// To prevent possible overflow of the counter we use a double loop.
const uint32_t count_1ms = 16000000 / 8000;
for (uint32_t i = 0; i < ms; i++) {
for (volatile uint32_t count = 0; ++count <= count_1ms;) {
}
}
}
}
// Needed by parts of the HAL
uint32_t HAL_GetTick(void) {
return systick_ms;
}
// Needed by parts of the HAL
void HAL_Delay(uint32_t ms) {
mp_hal_delay_ms(ms);
}
NORETURN static void __fatal_error(const char *msg) {
NVIC_SystemReset();
for (;;) {
}
}
/******************************************************************************/
// CLOCK
void systick_init(void) {
// Configure SysTick as 1ms ticker
SysTick_Config(SystemCoreClock / 1000);
NVIC_SetPriority(SysTick_IRQn, IRQ_PRI_SYSTICK);
}
#if defined(STM32F4) || defined(STM32F7)
void SystemClock_Config(void) {
// This function assumes that HSI is used as the system clock (see RCC->CFGR, SWS bits)
// Enable Power Control clock
__HAL_RCC_PWR_CLK_ENABLE();
// Reduce power consumption
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
// Turn HSE on
__HAL_RCC_HSE_CONFIG(RCC_HSE_ON);
while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) {
}
// Disable PLL
__HAL_RCC_PLL_DISABLE();
while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) {
}
// Configure PLL factors and source
RCC->PLLCFGR =
1 << RCC_PLLCFGR_PLLSRC_Pos // HSE selected as PLL source
| MICROPY_HW_CLK_PLLM << RCC_PLLCFGR_PLLM_Pos
| MICROPY_HW_CLK_PLLN << RCC_PLLCFGR_PLLN_Pos
| ((MICROPY_HW_CLK_PLLP >> 1) - 1) << RCC_PLLCFGR_PLLP_Pos
| MICROPY_HW_CLK_PLLQ << RCC_PLLCFGR_PLLQ_Pos
#ifdef RCC_PLLCFGR_PLLR
| 2 << RCC_PLLCFGR_PLLR_Pos // default PLLR value of 2
#endif
;
// Enable PLL
__HAL_RCC_PLL_ENABLE();
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) {
}
// Increase latency before changing clock
if (MICROPY_HW_FLASH_LATENCY > (FLASH->ACR & FLASH_ACR_LATENCY)) {
__HAL_FLASH_SET_LATENCY(MICROPY_HW_FLASH_LATENCY);
}
// Configure AHB divider
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_SYSCLK_DIV1);
// Configure SYSCLK source from PLL
__HAL_RCC_SYSCLK_CONFIG(RCC_SYSCLKSOURCE_PLLCLK);
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) {
}
// Decrease latency after changing clock
if (MICROPY_HW_FLASH_LATENCY < (FLASH->ACR & FLASH_ACR_LATENCY)) {
__HAL_FLASH_SET_LATENCY(MICROPY_HW_FLASH_LATENCY);
}
// Set APB clock dividers
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_HCLK_DIV4);
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, RCC_HCLK_DIV2 << 3);
// Update clock value and reconfigure systick now that the frequency changed
SystemCoreClock = CORE_PLL_FREQ;
systick_init();
#if defined(STM32F7)
// The DFU bootloader changes the clocksource register from its default power
// on reset value, so we set it back here, so the clocksources are the same
// whether we were started from DFU or from a power on reset.
RCC->DCKCFGR2 = 0;
#endif
}
#elif defined(STM32H7)
void SystemClock_Config(void) {
// This function assumes that HSI is used as the system clock (see RCC->CFGR, SWS bits)
// Select VOS level as high voltage to give reliable operation
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
while (__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY) == RESET) {
}
// Turn HSE on
__HAL_RCC_HSE_CONFIG(RCC_HSE_ON);
while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) {
}
// Disable PLL1
__HAL_RCC_PLL_DISABLE();
while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) {
}
// Configure PLL1 factors and source
RCC->PLLCKSELR =
MICROPY_HW_CLK_PLLM << RCC_PLLCKSELR_DIVM1_Pos
| 2 << RCC_PLLCKSELR_PLLSRC_Pos; // HSE selected as PLL source
RCC->PLL1DIVR =
(MICROPY_HW_CLK_PLLN - 1) << RCC_PLL1DIVR_N1_Pos
| (MICROPY_HW_CLK_PLLP - 1) << RCC_PLL1DIVR_P1_Pos // only even P allowed
| (MICROPY_HW_CLK_PLLQ - 1) << RCC_PLL1DIVR_Q1_Pos
| (MICROPY_HW_CLK_PLLR - 1) << RCC_PLL1DIVR_R1_Pos;
// Enable PLL1 outputs for SYSCLK and USB
RCC->PLLCFGR = RCC_PLLCFGR_DIVP1EN | RCC_PLLCFGR_DIVQ1EN;
// Select PLL1-Q for USB clock source
RCC->D2CCIP2R |= 1 << RCC_D2CCIP2R_USBSEL_Pos;
// Enable PLL1
__HAL_RCC_PLL_ENABLE();
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) {
}
// Increase latency before changing SYSCLK
if (MICROPY_HW_FLASH_LATENCY > (FLASH->ACR & FLASH_ACR_LATENCY)) {
__HAL_FLASH_SET_LATENCY(MICROPY_HW_FLASH_LATENCY);
}
// Configure AHB divider
RCC->D1CFGR =
0 << RCC_D1CFGR_D1CPRE_Pos // SYSCLK prescaler of 1
| 8 << RCC_D1CFGR_HPRE_Pos // AHB prescaler of 2
;
// Configure SYSCLK source from PLL
__HAL_RCC_SYSCLK_CONFIG(RCC_SYSCLKSOURCE_PLLCLK);
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL1) {
}
// Decrease latency after changing clock
if (MICROPY_HW_FLASH_LATENCY < (FLASH->ACR & FLASH_ACR_LATENCY)) {
__HAL_FLASH_SET_LATENCY(MICROPY_HW_FLASH_LATENCY);
}
// Set APB clock dividers
RCC->D1CFGR |=
4 << RCC_D1CFGR_D1PPRE_Pos // APB3 prescaler of 2
;
RCC->D2CFGR =
4 << RCC_D2CFGR_D2PPRE2_Pos // APB2 prescaler of 2
| 4 << RCC_D2CFGR_D2PPRE1_Pos // APB1 prescaler of 2
;
RCC->D3CFGR =
4 << RCC_D3CFGR_D3PPRE_Pos // APB4 prescaler of 2
;
// Update clock value and reconfigure systick now that the frequency changed
SystemCoreClock = CORE_PLL_FREQ;
systick_init();
}
#endif
// Needed by HAL_PCD_IRQHandler
uint32_t HAL_RCC_GetHCLKFreq(void) {
return SystemCoreClock;
}
/******************************************************************************/
// GPIO
#if defined(STM32F4) || defined(STM32F7)
#define AHBxENR AHB1ENR
#define AHBxENR_GPIOAEN_Pos RCC_AHB1ENR_GPIOAEN_Pos
#elif defined(STM32H7)
#define AHBxENR AHB4ENR
#define AHBxENR_GPIOAEN_Pos RCC_AHB4ENR_GPIOAEN_Pos
#elif defined(STM32WB)
#define AHBxENR AHB2ENR
#define AHBxENR_GPIOAEN_Pos RCC_AHB2ENR_GPIOAEN_Pos
#endif
void mp_hal_pin_config(mp_hal_pin_obj_t port_pin, uint32_t mode, uint32_t pull, uint32_t alt) {
GPIO_TypeDef *gpio = (GPIO_TypeDef*)(port_pin & ~0xf);
// Enable the GPIO peripheral clock
uint32_t gpio_idx = ((uintptr_t)gpio - GPIOA_BASE) / (GPIOB_BASE - GPIOA_BASE);
RCC->AHBxENR |= 1 << (AHBxENR_GPIOAEN_Pos + gpio_idx);
volatile uint32_t tmp = RCC->AHBxENR; // Delay after enabling clock
(void)tmp;
// Configure the pin
uint32_t pin = port_pin & 0xf;
gpio->MODER = (gpio->MODER & ~(3 << (2 * pin))) | ((mode & 3) << (2 * pin));
gpio->OTYPER = (gpio->OTYPER & ~(1 << pin)) | ((mode >> 2) << pin);
gpio->OSPEEDR = (gpio->OSPEEDR & ~(3 << (2 * pin))) | (2 << (2 * pin)); // full speed
gpio->PUPDR = (gpio->PUPDR & ~(3 << (2 * pin))) | (pull << (2 * pin));
gpio->AFR[pin >> 3] = (gpio->AFR[pin >> 3] & ~(15 << (4 * (pin & 7)))) | (alt << (4 * (pin & 7)));
}
void mp_hal_pin_config_speed(uint32_t port_pin, uint32_t speed) {
GPIO_TypeDef *gpio = (GPIO_TypeDef*)(port_pin & ~0xf);
uint32_t pin = port_pin & 0xf;
gpio->OSPEEDR = (gpio->OSPEEDR & ~(3 << (2 * pin))) | (speed << (2 * pin));
}
/******************************************************************************/
// LED
#if defined(MBOOT_LED1)
#define LED0 MBOOT_LED1
#elif defined(MICROPY_HW_LED1)
#define LED0 MICROPY_HW_LED1
#endif
#if defined(MBOOT_LED2)
#define LED1 MBOOT_LED2
#elif defined(MICROPY_HW_LED2)
#define LED1 MICROPY_HW_LED2
#endif
#if defined(MBOOT_LED3)
#define LED2 MBOOT_LED3
#elif defined(MICROPY_HW_LED3)
#define LED2 MICROPY_HW_LED3
#endif
#if defined(MBOOT_LED4)
#define LED3 MBOOT_LED4
#elif defined(MICROPY_HW_LED4)
#define LED3 MICROPY_HW_LED4
#endif
// For flashing states: bit 0 is "active", bit 1 is "inactive", bits 2-6 are flash rate.
typedef enum {
LED0_STATE_OFF = 0,
LED0_STATE_ON = 1,
LED0_STATE_SLOW_FLASH = (20 << 2) | 1,
LED0_STATE_FAST_FLASH = (2 << 2) | 1,
LED0_STATE_SLOW_INVERTED_FLASH = (20 << 2) | 2,
} led0_state_t;
static led0_state_t led0_cur_state = LED0_STATE_OFF;
static uint32_t led0_ms_interval = 0;
static int led0_toggle_count = 0;
MP_WEAK void led_init(void) {
#if defined(MBOOT_BOARD_LED_INIT)
// Custom LED init function provided by the board.
MBOOT_BOARD_LED_INIT();
#else
// Init LEDs using GPIO calls.
mp_hal_pin_output(LED0);
#ifdef LED1
mp_hal_pin_output(LED1);
#endif
#ifdef LED2
mp_hal_pin_output(LED2);
#endif
#ifdef LED3
mp_hal_pin_output(LED3);
#endif
#endif
led0_cur_state = LED0_STATE_OFF;
}
MP_WEAK void led_state(uint32_t led, int val) {
#if defined(MBOOT_BOARD_LED_STATE)
// Custom LED state function provided by the board.
return MBOOT_BOARD_LED_STATE(led, val);
#else
// Set LEDs using GPIO calls.
if (val) {
MICROPY_HW_LED_ON(led);
} else {
MICROPY_HW_LED_OFF(led);
}
#endif
}
void led_state_all(unsigned int mask) {
led_state(LED0, mask & 1);
#ifdef LED1
led_state(LED1, mask & 2);
#endif
#ifdef LED2
led_state(LED2, mask & 4);
#endif
#ifdef LED3
led_state(LED3, mask & 8);
#endif
}
void led0_state(led0_state_t state) {
led0_cur_state = state;
if (state == LED0_STATE_OFF || state == LED0_STATE_ON) {
led_state(LED0, state);
}
}
void led0_update() {
if (led0_cur_state != LED0_STATE_OFF && systick_ms - led0_ms_interval > 50) {
uint8_t rate = (led0_cur_state >> 2) & 0x1f;
led0_ms_interval += 50;
if (++led0_toggle_count >= rate) {
led0_toggle_count = 0;
}
led_state(LED0, (led0_cur_state & (led0_toggle_count == 0 ? 1 : 2)));
}
}
/******************************************************************************/
// FLASH
#if defined(STM32WB)
#define FLASH_END FLASH_END_ADDR
#endif
#define APPLICATION_FLASH_LENGTH (FLASH_END + 1 - APPLICATION_ADDR)
#ifndef MBOOT_SPIFLASH_LAYOUT
#define MBOOT_SPIFLASH_LAYOUT ""
#endif
#ifndef MBOOT_SPIFLASH2_LAYOUT
#define MBOOT_SPIFLASH2_LAYOUT ""
#endif
#if defined(STM32F4) \
|| defined(STM32F722xx) \
|| defined(STM32F723xx) \
|| defined(STM32F732xx) \
|| defined(STM32F733xx)
#define FLASH_LAYOUT_STR "@Internal Flash /0x08000000/04*016Kg,01*064Kg,07*128Kg" MBOOT_SPIFLASH_LAYOUT MBOOT_SPIFLASH2_LAYOUT
#elif defined(STM32F765xx) || defined(STM32F767xx) || defined(STM32F769xx)
#define FLASH_LAYOUT_STR "@Internal Flash /0x08000000/04*032Kg,01*128Kg,07*256Kg" MBOOT_SPIFLASH_LAYOUT MBOOT_SPIFLASH2_LAYOUT
#elif defined(STM32H743xx)
#define FLASH_LAYOUT_STR "@Internal Flash /0x08000000/16*128Kg" MBOOT_SPIFLASH_LAYOUT MBOOT_SPIFLASH2_LAYOUT
#elif defined(STM32WB)
#define FLASH_LAYOUT_STR "@Internal Flash /0x08000000/256*04Kg" MBOOT_SPIFLASH_LAYOUT MBOOT_SPIFLASH2_LAYOUT
#endif
static int mboot_flash_mass_erase(void) {
// Erase all flash pages after mboot.
int ret = flash_erase(APPLICATION_ADDR, APPLICATION_FLASH_LENGTH / sizeof(uint32_t));
return ret;
}
static int mboot_flash_page_erase(uint32_t addr, uint32_t *next_addr) {
uint32_t sector_size = 0;
uint32_t sector_start = 0;
int32_t sector = flash_get_sector_info(addr, &sector_start, &sector_size);
if (sector <= 0) {
// Don't allow to erase the sector with this bootloader in it, or invalid sectors
dfu_context.status = DFU_STATUS_ERROR_ADDRESS;
dfu_context.error = (sector == 0) ? MBOOT_ERROR_STR_OVERWRITE_BOOTLOADER_IDX
: MBOOT_ERROR_STR_INVALID_ADDRESS_IDX;
return -MBOOT_ERRNO_FLASH_ERASE_DISALLOWED;
}
*next_addr = sector_start + sector_size;
// Erase the flash page.
int ret = flash_erase(sector_start, sector_size / sizeof(uint32_t));
if (ret != 0) {
return ret;
}
// Check the erase set bits to 1, at least for the first 256 bytes
for (int i = 0; i < 64; ++i) {
if (((volatile uint32_t*)sector_start)[i] != 0xffffffff) {
return -MBOOT_ERRNO_FLASH_ERASE_FAILED;
}
}
return 0;
}
static int mboot_flash_write(uint32_t addr, const uint8_t *src8, size_t len) {
int32_t sector = flash_get_sector_info(addr, NULL, NULL);
if (sector <= 0) {
// Don't allow to write the sector with this bootloader in it
dfu_context.status = DFU_STATUS_ERROR_ADDRESS;
dfu_context.error = (sector == 0) ? MBOOT_ERROR_STR_OVERWRITE_BOOTLOADER_IDX
: MBOOT_ERROR_STR_INVALID_ADDRESS_IDX;
return -MBOOT_ERRNO_FLASH_WRITE_DISALLOWED;
}
const uint32_t *src = (const uint32_t*)src8;
size_t num_word32 = (len + 3) / 4;
// Write the data to flash.
int ret = flash_write(addr, src, num_word32);
if (ret != 0) {
return ret;
}
// TODO verify data
return 0;
}
/******************************************************************************/
// Writable address space interface
static int do_mass_erase(void) {
// TODO spiflash erase ?
return mboot_flash_mass_erase();
}
#if defined(MBOOT_SPIFLASH_ADDR) || defined(MBOOT_SPIFLASH2_ADDR)
static int spiflash_page_erase(mp_spiflash_t *spif, uint32_t addr, uint32_t n_blocks) {
for (int i = 0; i < n_blocks; ++i) {
int ret = mp_spiflash_erase_block(spif, addr);
if (ret != 0) {
return ret;
}
addr += MP_SPIFLASH_ERASE_BLOCK_SIZE;
}
return 0;
}
#endif
int hw_page_erase(uint32_t addr, uint32_t *next_addr) {
int ret = -1;
led0_state(LED0_STATE_ON);
#if defined(MBOOT_SPIFLASH_ADDR)
if (MBOOT_SPIFLASH_ADDR <= addr && addr < MBOOT_SPIFLASH_ADDR + MBOOT_SPIFLASH_BYTE_SIZE) {
*next_addr = addr + MBOOT_SPIFLASH_ERASE_BLOCKS_PER_PAGE * MP_SPIFLASH_ERASE_BLOCK_SIZE;
ret = spiflash_page_erase(MBOOT_SPIFLASH_SPIFLASH,
addr - MBOOT_SPIFLASH_ADDR, MBOOT_SPIFLASH_ERASE_BLOCKS_PER_PAGE);
} else
#endif
#if defined(MBOOT_SPIFLASH2_ADDR)
if (MBOOT_SPIFLASH2_ADDR <= addr && addr < MBOOT_SPIFLASH2_ADDR + MBOOT_SPIFLASH2_BYTE_SIZE) {
*next_addr = addr + MBOOT_SPIFLASH2_ERASE_BLOCKS_PER_PAGE * MP_SPIFLASH_ERASE_BLOCK_SIZE;
ret = spiflash_page_erase(MBOOT_SPIFLASH2_SPIFLASH,
addr - MBOOT_SPIFLASH2_ADDR, MBOOT_SPIFLASH2_ERASE_BLOCKS_PER_PAGE);
} else
#endif
{
ret = mboot_flash_page_erase(addr, next_addr);
}
led0_state((ret == 0) ? LED0_STATE_SLOW_FLASH : LED0_STATE_SLOW_INVERTED_FLASH);
return ret;
}
void hw_read(uint32_t addr, int len, uint8_t *buf) {
led0_state(LED0_STATE_FAST_FLASH);
#if defined(MBOOT_SPIFLASH_ADDR)
if (MBOOT_SPIFLASH_ADDR <= addr && addr < MBOOT_SPIFLASH_ADDR + MBOOT_SPIFLASH_BYTE_SIZE) {
mp_spiflash_read(MBOOT_SPIFLASH_SPIFLASH, addr - MBOOT_SPIFLASH_ADDR, len, buf);
} else
#endif
#if defined(MBOOT_SPIFLASH2_ADDR)
if (MBOOT_SPIFLASH2_ADDR <= addr && addr < MBOOT_SPIFLASH2_ADDR + MBOOT_SPIFLASH2_BYTE_SIZE) {
mp_spiflash_read(MBOOT_SPIFLASH2_SPIFLASH, addr - MBOOT_SPIFLASH2_ADDR, len, buf);
} else
#endif
{
// Other addresses, just read directly from memory
memcpy(buf, (void*)addr, len);
}
led0_state(LED0_STATE_SLOW_FLASH);
}
int hw_write(uint32_t addr, const uint8_t *src8, size_t len) {
int ret = -1;
led0_state(LED0_STATE_FAST_FLASH);
#if defined(MBOOT_SPIFLASH_ADDR)
if (MBOOT_SPIFLASH_ADDR <= addr && addr < MBOOT_SPIFLASH_ADDR + MBOOT_SPIFLASH_BYTE_SIZE) {
ret = mp_spiflash_write(MBOOT_SPIFLASH_SPIFLASH, addr - MBOOT_SPIFLASH_ADDR, len, src8);
} else
#endif
#if defined(MBOOT_SPIFLASH2_ADDR)
if (MBOOT_SPIFLASH2_ADDR <= addr && addr < MBOOT_SPIFLASH2_ADDR + MBOOT_SPIFLASH2_BYTE_SIZE) {
ret = mp_spiflash_write(MBOOT_SPIFLASH2_SPIFLASH, addr - MBOOT_SPIFLASH2_ADDR, len, src8);
} else
#endif
if (flash_is_valid_addr(addr)) {
ret = mboot_flash_write(addr, src8, len);
} else {
dfu_context.status = DFU_STATUS_ERROR_ADDRESS;
dfu_context.error = MBOOT_ERROR_STR_INVALID_ADDRESS_IDX;
}
led0_state((ret == 0) ? LED0_STATE_SLOW_FLASH : LED0_STATE_SLOW_INVERTED_FLASH);
return ret;
}
int do_page_erase(uint32_t addr, uint32_t *next_addr) {
#if MBOOT_ENABLE_PACKING
// Erase handled automatically for packed mode.
return 0;
#else
return hw_page_erase(addr, next_addr);
#endif
}
void do_read(uint32_t addr, int len, uint8_t *buf) {
#if MBOOT_ENABLE_PACKING
// Read disabled on packed (encrypted) mode.
dfu_context.status = DFU_STATUS_ERROR_FILE;
dfu_context.error = MBOOT_ERROR_STR_INVALID_READ_IDX;
led0_state(LED0_STATE_SLOW_INVERTED_FLASH);
#else
hw_read(addr, len, buf);
#endif
}
int do_write(uint32_t addr, const uint8_t *src8, size_t len) {
#if MBOOT_ENABLE_PACKING
return mboot_pack_write(addr, src8, len);
#else
return hw_write(addr, src8, len);
#endif
}
/******************************************************************************/
// I2C slave interface
#if defined(MBOOT_I2C_SCL)
#define PASTE2(a, b) a ## b
#define PASTE3(a, b, c) a ## b ## c
#define EVAL_PASTE2(a, b) PASTE2(a, b)
#define EVAL_PASTE3(a, b, c) PASTE3(a, b, c)
#define MBOOT_I2Cx EVAL_PASTE2(I2C, MBOOT_I2C_PERIPH_ID)
#define I2Cx_EV_IRQn EVAL_PASTE3(I2C, MBOOT_I2C_PERIPH_ID, _EV_IRQn)
#define I2Cx_EV_IRQHandler EVAL_PASTE3(I2C, MBOOT_I2C_PERIPH_ID, _EV_IRQHandler)
#define I2C_CMD_BUF_LEN (129)
enum {
I2C_CMD_ECHO = 1,
I2C_CMD_GETID, // () -> u8*12 unique id, ASCIIZ mcu name, ASCIIZ board name
I2C_CMD_GETCAPS, // not implemented
I2C_CMD_RESET, // () -> ()
I2C_CMD_CONFIG, // not implemented
I2C_CMD_GETLAYOUT, // () -> ASCII string
I2C_CMD_MASSERASE, // () -> ()
I2C_CMD_PAGEERASE, // le32 -> ()
I2C_CMD_SETRDADDR, // le32 -> ()
I2C_CMD_SETWRADDR, // le32 -> ()
I2C_CMD_READ, // u8 -> bytes
I2C_CMD_WRITE, // bytes -> ()
I2C_CMD_COPY, // not implemented
I2C_CMD_CALCHASH, // le32 -> u8*32
I2C_CMD_MARKVALID, // () -> ()
};
typedef struct _i2c_obj_t {
volatile bool cmd_send_arg;
volatile bool cmd_arg_sent;
volatile int cmd_arg;
volatile uint32_t cmd_rdaddr;
volatile uint32_t cmd_wraddr;
volatile uint16_t cmd_buf_pos;
uint8_t cmd_buf[I2C_CMD_BUF_LEN];
} i2c_obj_t;
static i2c_obj_t i2c_obj;
void i2c_init(int addr) {
i2c_obj.cmd_send_arg = false;
mp_hal_pin_config(MBOOT_I2C_SCL, MP_HAL_PIN_MODE_ALT_OPEN_DRAIN, MP_HAL_PIN_PULL_NONE, MBOOT_I2C_ALTFUNC);
mp_hal_pin_config(MBOOT_I2C_SDA, MP_HAL_PIN_MODE_ALT_OPEN_DRAIN, MP_HAL_PIN_PULL_NONE, MBOOT_I2C_ALTFUNC);
i2c_slave_init(MBOOT_I2Cx, I2Cx_EV_IRQn, IRQ_PRI_I2C, addr);
}
int i2c_slave_process_addr_match(i2c_slave_t *i2c, int rw) {
if (i2c_obj.cmd_arg_sent) {
i2c_obj.cmd_send_arg = false;
}
i2c_obj.cmd_buf_pos = 0;
return 0; // ACK
}
int i2c_slave_process_rx_byte(i2c_slave_t *i2c, uint8_t val) {
if (i2c_obj.cmd_buf_pos < sizeof(i2c_obj.cmd_buf)) {
i2c_obj.cmd_buf[i2c_obj.cmd_buf_pos++] = val;
}
return 0; // ACK
}
void i2c_slave_process_rx_end(i2c_slave_t *i2c) {
if (i2c_obj.cmd_buf_pos == 0) {
return;
}
int len = i2c_obj.cmd_buf_pos - 1;
uint8_t *buf = i2c_obj.cmd_buf;
if (buf[0] == I2C_CMD_ECHO) {
++len;
} else if (buf[0] == I2C_CMD_GETID && len == 0) {
memcpy(buf, (uint8_t*)MP_HAL_UNIQUE_ID_ADDRESS, 12);
memcpy(buf + 12, MICROPY_HW_MCU_NAME, sizeof(MICROPY_HW_MCU_NAME));
memcpy(buf + 12 + sizeof(MICROPY_HW_MCU_NAME), MICROPY_HW_BOARD_NAME, sizeof(MICROPY_HW_BOARD_NAME) - 1);
len = 12 + sizeof(MICROPY_HW_MCU_NAME) + sizeof(MICROPY_HW_BOARD_NAME) - 1;
} else if (buf[0] == I2C_CMD_RESET && len == 0) {
dfu_context.leave_dfu = true;
} else if (buf[0] == I2C_CMD_GETLAYOUT && len == 0) {
len = strlen(FLASH_LAYOUT_STR);
memcpy(buf, FLASH_LAYOUT_STR, len);
} else if (buf[0] == I2C_CMD_MASSERASE && len == 0) {
len = do_mass_erase();
} else if (buf[0] == I2C_CMD_PAGEERASE && len == 4) {
uint32_t next_addr;
len = do_page_erase(get_le32(buf + 1), &next_addr);
} else if (buf[0] == I2C_CMD_SETRDADDR && len == 4) {
i2c_obj.cmd_rdaddr = get_le32(buf + 1);
len = 0;
} else if (buf[0] == I2C_CMD_SETWRADDR && len == 4) {
i2c_obj.cmd_wraddr = get_le32(buf + 1);
len = 0;
} else if (buf[0] == I2C_CMD_READ && len == 1) {
len = buf[1];
if (len > I2C_CMD_BUF_LEN) {
len = I2C_CMD_BUF_LEN;
}
do_read(i2c_obj.cmd_rdaddr, len, buf);
i2c_obj.cmd_rdaddr += len;
} else if (buf[0] == I2C_CMD_WRITE) {
if (i2c_obj.cmd_wraddr == APPLICATION_ADDR) {
// Mark the 2 lower bits to indicate invalid app firmware
buf[1] |= APP_VALIDITY_BITS;
}
int ret = do_write(i2c_obj.cmd_wraddr, buf + 1, len);
if (ret < 0) {
len = ret;
} else {
i2c_obj.cmd_wraddr += len;
len = 0;
}
} else if (buf[0] == I2C_CMD_CALCHASH && len == 4) {
uint32_t hashlen = get_le32(buf + 1);
static CRYAL_SHA256_CTX ctx;
sha256_init(&ctx);
sha256_update(&ctx, (const void*)i2c_obj.cmd_rdaddr, hashlen);
i2c_obj.cmd_rdaddr += hashlen;
sha256_final(&ctx, buf);
len = 32;
} else if (buf[0] == I2C_CMD_MARKVALID && len == 0) {
uint32_t buf;
buf = *(volatile uint32_t*)APPLICATION_ADDR;
if ((buf & APP_VALIDITY_BITS) != APP_VALIDITY_BITS) {
len = -1;
} else {
buf &= ~APP_VALIDITY_BITS;
int ret = do_write(APPLICATION_ADDR, (void*)&buf, 4);
if (ret < 0) {
len = ret;
} else {
buf = *(volatile uint32_t*)APPLICATION_ADDR;
if ((buf & APP_VALIDITY_BITS) != 0) {
len = -2;
} else {
len = 0;
}
}
}
} else {
len = -127;
}
i2c_obj.cmd_arg = len;
i2c_obj.cmd_send_arg = true;
i2c_obj.cmd_arg_sent = false;
}
uint8_t i2c_slave_process_tx_byte(i2c_slave_t *i2c) {
if (i2c_obj.cmd_send_arg) {
i2c_obj.cmd_arg_sent = true;
return i2c_obj.cmd_arg;
} else if (i2c_obj.cmd_buf_pos < sizeof(i2c_obj.cmd_buf)) {
return i2c_obj.cmd_buf[i2c_obj.cmd_buf_pos++];
} else {
return 0;
}
}
void i2c_slave_process_tx_end(i2c_slave_t *i2c) {
}
#endif // defined(MBOOT_I2C_SCL)
/******************************************************************************/
// DFU
static void dfu_init(void) {
dfu_context.state = DFU_STATE_IDLE;
dfu_context.cmd = DFU_CMD_NONE;
dfu_context.status = DFU_STATUS_OK;
dfu_context.error = 0;
dfu_context.leave_dfu = false;
dfu_context.addr = 0x08000000;
}
static int dfu_process_dnload(void) {
int ret = -1;
if (dfu_context.wBlockNum == 0) {
// download control commands
if (dfu_context.wLength >= 1 && dfu_context.buf[0] == DFU_CMD_DNLOAD_ERASE) {
if (dfu_context.wLength == 1) {
// mass erase
ret = do_mass_erase();
if (ret != 0) {
dfu_context.cmd = DFU_CMD_NONE;
}
} else if (dfu_context.wLength == 5) {
// erase page
uint32_t next_addr;
ret = do_page_erase(get_le32(&dfu_context.buf[1]), &next_addr);
}
} else if (dfu_context.wLength >= 1 && dfu_context.buf[0] == DFU_CMD_DNLOAD_SET_ADDRESS) {
if (dfu_context.wLength == 5) {
// set address
dfu_context.addr = get_le32(&dfu_context.buf[1]);
ret = 0;
}
}
} else if (dfu_context.wBlockNum > 1) {
// write data to memory
uint32_t addr = (dfu_context.wBlockNum - 2) * DFU_XFER_SIZE + dfu_context.addr;
ret = do_write(addr, dfu_context.buf, dfu_context.wLength);
}
if (ret == 0) {
return DFU_STATE_DNLOAD_IDLE;
} else {
return DFU_STATE_ERROR;
}
}
static void dfu_handle_rx(int cmd, int arg, int len, const void *buf) {
if (cmd == DFU_CLRSTATUS) {
// clear status
dfu_context.state = DFU_STATE_IDLE;
dfu_context.cmd = DFU_CMD_NONE;
dfu_context.status = DFU_STATUS_OK;
dfu_context.error = 0;
} else if (cmd == DFU_ABORT) {
// clear status
dfu_context.state = DFU_STATE_IDLE;
dfu_context.cmd = DFU_CMD_NONE;
dfu_context.status = DFU_STATUS_OK;
dfu_context.error = 0;
} else if (cmd == DFU_DNLOAD) {
if (len == 0) {
// exit DFU
dfu_context.cmd = DFU_CMD_EXIT;
} else {
// download
dfu_context.cmd = DFU_CMD_DNLOAD;
dfu_context.wBlockNum = arg;
dfu_context.wLength = len;
memcpy(dfu_context.buf, buf, len);
}
}
}
static void dfu_process(void) {
if (dfu_context.state == DFU_STATE_MANIFEST) {
// Set a flag to leave DFU mode from the main thread (here we are in an IRQ handler).
dfu_context.leave_dfu = true;
}
if (dfu_context.state == DFU_STATE_BUSY) {
if (dfu_context.cmd == DFU_CMD_DNLOAD) {
dfu_context.cmd = DFU_CMD_NONE;
dfu_context.state = dfu_process_dnload();
}
}
}
static int dfu_handle_tx(int cmd, int arg, int len, uint8_t *buf, int max_len) {
if (cmd == DFU_UPLOAD) {
if (arg >= 2) {
dfu_context.cmd = DFU_CMD_UPLOAD;
uint32_t addr = (arg - 2) * max_len + dfu_context.addr;
do_read(addr, len, buf);
return len;
}
} else if (cmd == DFU_GETSTATUS && len == 6) {
// execute command and get status
switch (dfu_context.cmd) {
case DFU_CMD_NONE:
break;
case DFU_CMD_EXIT:
dfu_context.state = DFU_STATE_MANIFEST;
break;
case DFU_CMD_UPLOAD:
dfu_context.state = DFU_STATE_UPLOAD_IDLE;
break;
case DFU_CMD_DNLOAD:
dfu_context.state = DFU_STATE_BUSY;
break;
default:
dfu_context.state = DFU_STATE_BUSY;
}
buf[0] = dfu_context.status; // bStatus
buf[1] = 0; // bwPollTimeout_lsb (ms)
buf[2] = 0; // bwPollTimeout (ms)
buf[3] = 0; // bwPollTimeout_msb (ms)
buf[4] = dfu_context.state; // bState
buf[5] = dfu_context.error; // iString
// Clear errors now they've been sent
dfu_context.status = DFU_STATUS_OK;
dfu_context.error = 0;
return 6;
} else if (cmd == DFU_GETSTATE && len == 1) {
buf[0] = dfu_context.state; // bState
return 1;
}
return -1;
}
/******************************************************************************/
// USB
#define USB_XFER_SIZE (DFU_XFER_SIZE)
#define USB_PHY_FS_ID (0)
#define USB_PHY_HS_ID (1)
typedef struct _pyb_usbdd_obj_t {
bool started;
bool tx_pending;
USBD_HandleTypeDef hUSBDDevice;
uint8_t bRequest;
uint16_t wValue;
uint16_t wLength;
__ALIGN_BEGIN uint8_t rx_buf[USB_XFER_SIZE] __ALIGN_END;
__ALIGN_BEGIN uint8_t tx_buf[USB_XFER_SIZE] __ALIGN_END;
// RAM to hold the current descriptors, which we configure on the fly
__ALIGN_BEGIN uint8_t usbd_device_desc[USB_LEN_DEV_DESC] __ALIGN_END;
__ALIGN_BEGIN uint8_t usbd_str_desc[USBD_MAX_STR_DESC_SIZ] __ALIGN_END;
} pyb_usbdd_obj_t;
#ifndef MBOOT_USBD_LANGID_STRING
#define MBOOT_USBD_LANGID_STRING (0x409)
#endif
#ifndef MBOOT_USBD_MANUFACTURER_STRING
#define MBOOT_USBD_MANUFACTURER_STRING "MicroPython"
#endif
#ifndef MBOOT_USBD_PRODUCT_STRING
#define MBOOT_USBD_PRODUCT_STRING "Pyboard DFU"
#endif
#ifndef MBOOT_USB_VID
#define MBOOT_USB_VID BOOTLOADER_DFU_USB_VID
#endif
#ifndef MBOOT_USB_PID
#define MBOOT_USB_PID BOOTLOADER_DFU_USB_PID
#endif
#if !MICROPY_HW_USB_IS_MULTI_OTG
STATIC const uint8_t usbd_fifo_size[USBD_PMA_NUM_FIFO] = {
32, 32, // EP0(out), EP0(in)
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 14x unused
};
#else
static const uint8_t usbd_fifo_size[] = {
32, 8, 16, 8, 16, 0, 0, // FS: RX, EP0(in), 5x IN endpoints
#if MICROPY_HW_USB_HS
116, 8, 64, 4, 64, 0, 0, 0, 0, 0, // HS: RX, EP0(in), 8x IN endpoints
#endif
};
#endif
__ALIGN_BEGIN static const uint8_t USBD_LangIDDesc[USB_LEN_LANGID_STR_DESC] __ALIGN_END = {
USB_LEN_LANGID_STR_DESC,
USB_DESC_TYPE_STRING,
LOBYTE(MBOOT_USBD_LANGID_STRING),
HIBYTE(MBOOT_USBD_LANGID_STRING),
};
static const uint8_t dev_descr[0x12] = {
0x12, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x40,
LOBYTE(MBOOT_USB_VID), HIBYTE(MBOOT_USB_VID),
LOBYTE(MBOOT_USB_PID), HIBYTE(MBOOT_USB_PID),
0x00, 0x22, 0x01, 0x02, 0x03, 0x01
};
// This may be modified by USBD_GetDescriptor
static uint8_t cfg_descr[9 + 9 + 9] =
"\x09\x02\x1b\x00\x01\x01\x00\xc0\x32"
"\x09\x04\x00\x00\x00\xfe\x01\x02\x04"
"\x09\x21\x0b\xff\x00\x00\x08\x1a\x01" // \x00\x08 goes with USB_XFER_SIZE
;
static uint8_t *pyb_usbdd_DeviceDescriptor(USBD_HandleTypeDef *pdev, uint16_t *length) {
*length = USB_LEN_DEV_DESC;
return (uint8_t*)dev_descr;
}
static char get_hex_char(int val) {
val &= 0xf;
if (val <= 9) {
return '0' + val;
} else {
return 'A' + val - 10;
}
}
static void format_hex(char *buf, int val) {
buf[0] = get_hex_char(val >> 4);
buf[1] = get_hex_char(val);
}
static uint8_t *pyb_usbdd_StrDescriptor(USBD_HandleTypeDef *pdev, uint8_t idx, uint16_t *length) {
pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
uint8_t *str_desc = self->usbd_str_desc;
switch (idx) {
case USBD_IDX_LANGID_STR:
*length = sizeof(USBD_LangIDDesc);
return (uint8_t*)USBD_LangIDDesc; // the data should only be read from this buf
case USBD_IDX_MFC_STR:
USBD_GetString((uint8_t*)MBOOT_USBD_MANUFACTURER_STRING, str_desc, length);
return str_desc;
case USBD_IDX_PRODUCT_STR:
USBD_GetString((uint8_t*)MBOOT_USBD_PRODUCT_STRING, str_desc, length);
return str_desc;
case USBD_IDX_SERIAL_STR: {
// This document: http://www.usb.org/developers/docs/devclass_docs/usbmassbulk_10.pdf
// says that the serial number has to be at least 12 digits long and that
// the last 12 digits need to be unique. It also stipulates that the valid
// character set is that of upper-case hexadecimal digits.
//
// The onboard DFU bootloader produces a 12-digit serial number based on
// the 96-bit unique ID, so for consistency we go with this algorithm.
// You can see the serial number if you do:
//
// dfu-util -l
//
// See: https://my.st.com/52d187b7 for the algorithim used.
uint8_t *id = (uint8_t*)MP_HAL_UNIQUE_ID_ADDRESS;
char serial_buf[16];
format_hex(&serial_buf[0], id[11]);
format_hex(&serial_buf[2], id[10] + id[2]);
format_hex(&serial_buf[4], id[9]);
format_hex(&serial_buf[6], id[8] + id[0]);
format_hex(&serial_buf[8], id[7]);
format_hex(&serial_buf[10], id[6]);
serial_buf[12] = '\0';
USBD_GetString((uint8_t*)serial_buf, str_desc, length);
return str_desc;
}
case USBD_IDX_CONFIG_STR:
USBD_GetString((uint8_t*)FLASH_LAYOUT_STR, str_desc, length);
return str_desc;
case MBOOT_ERROR_STR_OVERWRITE_BOOTLOADER_IDX:
USBD_GetString((uint8_t*)MBOOT_ERROR_STR_OVERWRITE_BOOTLOADER, str_desc, length);
return str_desc;
case MBOOT_ERROR_STR_INVALID_ADDRESS_IDX:
USBD_GetString((uint8_t*)MBOOT_ERROR_STR_INVALID_ADDRESS, str_desc, length);
return str_desc;
#if MBOOT_ENABLE_PACKING
case MBOOT_ERROR_STR_INVALID_SIG_IDX:
USBD_GetString((uint8_t*)MBOOT_ERROR_STR_INVALID_SIG, str_desc, length);
return str_desc;
case MBOOT_ERROR_STR_INVALID_READ_IDX:
USBD_GetString((uint8_t*)MBOOT_ERROR_STR_INVALID_READ, str_desc, length);
return str_desc;
#endif
default:
return NULL;
}
}
static const USBD_DescriptorsTypeDef pyb_usbdd_descriptors = {
pyb_usbdd_DeviceDescriptor,
pyb_usbdd_StrDescriptor,
};
static uint8_t pyb_usbdd_Init(USBD_HandleTypeDef *pdev, uint8_t cfgidx) {
pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
(void)self;
return USBD_OK;
}
static uint8_t pyb_usbdd_DeInit(USBD_HandleTypeDef *pdev, uint8_t cfgidx) {
pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
(void)self;
return USBD_OK;
}
static uint8_t pyb_usbdd_Setup(USBD_HandleTypeDef *pdev, USBD_SetupReqTypedef *req) {
pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
(void)self;
self->bRequest = req->bRequest;
self->wValue = req->wValue;
self->wLength = req->wLength;
if (req->bmRequest == 0x21) {
// host-to-device request
if (req->wLength == 0) {
// no data, process command straightaway
dfu_handle_rx(self->bRequest, self->wValue, 0, NULL);
} else {
// have data, prepare to receive it
USBD_CtlPrepareRx(pdev, self->rx_buf, req->wLength);
}
} else if (req->bmRequest == 0xa1) {
// device-to-host request
int len = dfu_handle_tx(self->bRequest, self->wValue, self->wLength, self->tx_buf, USB_XFER_SIZE);
if (len >= 0) {
self->tx_pending = true;
USBD_CtlSendData(&self->hUSBDDevice, self->tx_buf, len);
}
}
return USBD_OK;
}
static uint8_t pyb_usbdd_EP0_TxSent(USBD_HandleTypeDef *pdev) {
pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
self->tx_pending = false;
#if !USE_USB_POLLING
// Process now that we have sent a response
dfu_process();
#endif
return USBD_OK;
}
static uint8_t pyb_usbdd_EP0_RxReady(USBD_HandleTypeDef *pdev) {
pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
dfu_handle_rx(self->bRequest, self->wValue, self->wLength, self->rx_buf);
return USBD_OK;
}
static uint8_t *pyb_usbdd_GetCfgDesc(USBD_HandleTypeDef *pdev, uint16_t *length) {
*length = sizeof(cfg_descr);
return (uint8_t*)cfg_descr;
}
// this is used only in high-speed mode, which we don't support
static uint8_t *pyb_usbdd_GetDeviceQualifierDescriptor(USBD_HandleTypeDef *pdev, uint16_t *length) {
pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
(void)self;
/*
*length = sizeof(USBD_CDC_MSC_HID_DeviceQualifierDesc);
return USBD_CDC_MSC_HID_DeviceQualifierDesc;
*/
*length = 0;
return NULL;
}
static const USBD_ClassTypeDef pyb_usbdd_class = {
pyb_usbdd_Init,
pyb_usbdd_DeInit,
pyb_usbdd_Setup,
pyb_usbdd_EP0_TxSent,
pyb_usbdd_EP0_RxReady,
NULL, // pyb_usbdd_DataIn,
NULL, // pyb_usbdd_DataOut,
NULL, // SOF
NULL, // IsoINIncomplete
NULL, // IsoOUTIncomplete
pyb_usbdd_GetCfgDesc,
pyb_usbdd_GetCfgDesc,
pyb_usbdd_GetCfgDesc,
pyb_usbdd_GetDeviceQualifierDescriptor,
};
static pyb_usbdd_obj_t pyb_usbdd SECTION_NOZERO_BSS;
static int pyb_usbdd_detect_port(void) {
#if MBOOT_USB_AUTODETECT_PORT
mp_hal_pin_config(pin_A11, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_UP, 0);
mp_hal_pin_config(pin_A12, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_UP, 0);
int state = mp_hal_pin_read(pin_A11) == 0 && mp_hal_pin_read(pin_A12) == 0;
mp_hal_pin_config(pin_A11, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_NONE, 0);
mp_hal_pin_config(pin_A12, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_NONE, 0);
if (state) {
return USB_PHY_FS_ID;
}
mp_hal_pin_config(pin_B14, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_UP, 0);
mp_hal_pin_config(pin_B15, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_UP, 0);
state = mp_hal_pin_read(pin_B14) == 0 && mp_hal_pin_read(pin_B15) == 0;
mp_hal_pin_config(pin_B14, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_NONE, 0);
mp_hal_pin_config(pin_B15, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_NONE, 0);
if (state) {
return USB_PHY_HS_ID;
}
#endif
return MICROPY_HW_USB_MAIN_DEV;
}
static void pyb_usbdd_init(pyb_usbdd_obj_t *self, int phy_id) {
self->started = false;
self->tx_pending = false;
USBD_HandleTypeDef *usbd = &self->hUSBDDevice;
usbd->id = phy_id;
usbd->dev_state = USBD_STATE_DEFAULT;
usbd->pDesc = (USBD_DescriptorsTypeDef*)&pyb_usbdd_descriptors;
usbd->pClass = &pyb_usbdd_class;
usbd->pClassData = self;
}
static void pyb_usbdd_start(pyb_usbdd_obj_t *self) {
if (!self->started) {
#if defined(STM32H7)
PWR->CR3 |= PWR_CR3_USB33DEN;
while (!(PWR->CR3 & PWR_CR3_USB33RDY)) {
}
#endif
USBD_LL_Init(&self->hUSBDDevice, 0, usbd_fifo_size);
USBD_LL_Start(&self->hUSBDDevice);
self->started = true;
}
}
static void pyb_usbdd_stop(pyb_usbdd_obj_t *self) {
if (self->started) {
USBD_Stop(&self->hUSBDDevice);
self->started = false;
}
}
static int pyb_usbdd_shutdown(void) {
pyb_usbdd_stop(&pyb_usbdd);
return 0;
}
/******************************************************************************/
// main
#if defined(MBOOT_BOARD_GET_RESET_MODE)
static inline int mboot_get_reset_mode(void) {
return MBOOT_BOARD_GET_RESET_MODE();
}
#else
#define RESET_MODE_NUM_STATES (4)
#define RESET_MODE_TIMEOUT_CYCLES (8)
#ifdef LED2
#ifdef LED3
#define RESET_MODE_LED_STATES 0x8421
#else
#define RESET_MODE_LED_STATES 0x7421
#endif
#else
#define RESET_MODE_LED_STATES 0x3210
#endif
static void usrbtn_init(void) {
mp_hal_pin_config(MICROPY_HW_USRSW_PIN, MP_HAL_PIN_MODE_INPUT, MICROPY_HW_USRSW_PULL, 0);
}
static int usrbtn_state(void) {
return mp_hal_pin_read(MICROPY_HW_USRSW_PIN) == MICROPY_HW_USRSW_PRESSED;
}
static int mboot_get_reset_mode(void) {
usrbtn_init();
int reset_mode = BOARDCTRL_RESET_MODE_NORMAL;
if (usrbtn_state()) {
// Cycle through reset modes while USR is held
// Timeout is roughly 20s, where reset_mode=1
systick_init();
led_init();
reset_mode = 0;
for (int i = 0; i < (RESET_MODE_NUM_STATES * RESET_MODE_TIMEOUT_CYCLES + 1) * 32; i++) {
if (i % 32 == 0) {
if (++reset_mode > RESET_MODE_NUM_STATES) {
reset_mode = BOARDCTRL_RESET_MODE_NORMAL;
}
uint8_t l = RESET_MODE_LED_STATES >> ((reset_mode - 1) * 4);
led_state_all(l);
}
if (!usrbtn_state()) {
break;
}
mp_hal_delay_ms(19);
}
// Flash the selected reset mode
for (int i = 0; i < 6; i++) {
led_state_all(0);
mp_hal_delay_ms(50);
uint8_t l = RESET_MODE_LED_STATES >> ((reset_mode - 1) * 4);
led_state_all(l);
mp_hal_delay_ms(50);
}
mp_hal_delay_ms(300);
}
return reset_mode;
}
#endif
NORETURN static __attribute__((naked)) void branch_to_application(uint32_t r0, uint32_t bl_addr) {
__asm volatile (
"ldr r2, [r1, #0]\n" // get address of stack pointer
"msr msp, r2\n" // set stack pointer
"ldr r2, [r1, #4]\n" // get address of destination
"bx r2\n" // branch to application
);
MP_UNREACHABLE;
}
static void try_enter_application(int reset_mode) {
uint32_t msp = *(volatile uint32_t*)APPLICATION_ADDR;
if ((msp & APP_VALIDITY_BITS) != 0) {
// Application is invalid.
return;
}
// undo our DFU settings
// TODO probably should disable all IRQ sources first
#if defined(MBOOT_BOARD_CLEANUP)
MBOOT_BOARD_CLEANUP(reset_mode);
#endif
#if USE_CACHE && defined(STM32F7)
SCB_DisableICache();
SCB_DisableDCache();
#endif
// Jump to the application.
branch_to_application(reset_mode, APPLICATION_ADDR);
}
static void leave_bootloader(void) {
#if !MBOOT_LEAVE_BOOTLOADER_VIA_RESET
// Try to enter the application via a jump, if it's valid.
try_enter_application(BOARDCTRL_RESET_MODE_BOOTLOADER);
#endif
NVIC_SystemReset();
}
extern PCD_HandleTypeDef pcd_fs_handle;
extern PCD_HandleTypeDef pcd_hs_handle;
void stm32_main(int initial_r0) {
#if defined(STM32H7)
// Configure write-once power options, and wait for voltage levels to be ready
PWR->CR3 = PWR_CR3_LDOEN;
while (!(PWR->CSR1 & PWR_CSR1_ACTVOSRDY)) {
}
// Reset the kernel clock configuration registers for all domains.
RCC->D1CCIPR = 0x00000000;
RCC->D2CCIP1R = 0x00000000;
RCC->D2CCIP2R = 0x00000000;
RCC->D3CCIPR = 0x00000000;
#endif
// Make sure IRQ vector table points to flash where this bootloader lives.
SCB->VTOR = MBOOT_VTOR;
// Enable 8-byte stack alignment for IRQ handlers, in accord with EABI
SCB->CCR |= SCB_CCR_STKALIGN_Msk;
#if defined(STM32F4)
#if INSTRUCTION_CACHE_ENABLE
__HAL_FLASH_INSTRUCTION_CACHE_ENABLE();
#endif
#if DATA_CACHE_ENABLE
__HAL_FLASH_DATA_CACHE_ENABLE();
#endif
#if PREFETCH_ENABLE
__HAL_FLASH_PREFETCH_BUFFER_ENABLE();
#endif
#elif defined(STM32F7)
#if ART_ACCLERATOR_ENABLE
__HAL_FLASH_ART_ENABLE();
#endif
#endif
NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
#if USE_CACHE && defined(STM32F7)
SCB_EnableICache();
SCB_EnableDCache();
#endif
#if defined(MBOOT_BOARD_EARLY_INIT)
MBOOT_BOARD_EARLY_INIT();
#endif
#ifdef MBOOT_BOOTPIN_PIN
mp_hal_pin_config(MBOOT_BOOTPIN_PIN, MP_HAL_PIN_MODE_INPUT, MBOOT_BOOTPIN_PULL, 0);
if (mp_hal_pin_read(MBOOT_BOOTPIN_PIN) == MBOOT_BOOTPIN_ACTIVE) {
goto enter_bootloader;
}
#endif
if ((initial_r0 & 0xffffff00) == 0x70ad0000) {
goto enter_bootloader;
}
int reset_mode = mboot_get_reset_mode();
if (reset_mode != BOARDCTRL_RESET_MODE_BOOTLOADER) {
// Bootloader mode was not selected so try to enter the application,
// passing through the reset_mode. This will return if the application
// is invalid.
try_enter_application(reset_mode);
}
enter_bootloader:
// Init subsystems (mboot_get_reset_mode() may call these, calling them again is ok)
led_init();
// set the system clock to be HSE
SystemClock_Config();
#if USE_USB_POLLING
// irqs with a priority value greater or equal to "pri" will be disabled
// "pri" should be between 1 and 15 inclusive
uint32_t pri = 2;
pri <<= (8 - __NVIC_PRIO_BITS);
__ASM volatile ("msr basepri_max, %0" : : "r" (pri) : "memory");
#endif
#if defined(MBOOT_SPIFLASH_ADDR)
MBOOT_SPIFLASH_SPIFLASH->config = MBOOT_SPIFLASH_CONFIG;
mp_spiflash_init(MBOOT_SPIFLASH_SPIFLASH);
#endif
#if defined(MBOOT_SPIFLASH2_ADDR)
MBOOT_SPIFLASH2_SPIFLASH->config = MBOOT_SPIFLASH2_CONFIG;
mp_spiflash_init(MBOOT_SPIFLASH2_SPIFLASH);
#endif
#if MBOOT_ENABLE_PACKING
mboot_pack_init();
#endif
#if MBOOT_FSLOAD
if ((initial_r0 & 0xffffff80) == 0x70ad0080) {
// Application passed through elements, validate then process them
const uint8_t *elem_end = elem_search(ELEM_DATA_START, ELEM_TYPE_END);
if (elem_end != NULL && elem_end[-1] == 0) {
int ret = fsload_process();
// If there is a valid ELEM_TYPE_STATUS element then store the status in the given location.
const uint8_t *elem_status = elem_search(ELEM_DATA_START, ELEM_TYPE_STATUS);
if (elem_status != NULL && elem_status[-1] == 4) {
uint32_t *status_ptr = (uint32_t *)get_le32(&elem_status[0]);
LL_PWR_EnableBkUpAccess(); // In case status_ptr points to backup registers
*status_ptr = ret;
}
}
// Always reset because the application is expecting to resume
led_state_all(0);
leave_bootloader();
}
#endif
dfu_init();
pyb_usbdd_init(&pyb_usbdd, pyb_usbdd_detect_port());
pyb_usbdd_start(&pyb_usbdd);
#if defined(MBOOT_I2C_SCL)
initial_r0 &= 0x7f;
if (initial_r0 == 0) {
initial_r0 = 0x23; // Default I2C address
}
i2c_init(initial_r0);
#endif
led_state_all(0);
led0_state(LED0_STATE_SLOW_FLASH);
#if MBOOT_USB_RESET_ON_DISCONNECT
bool has_connected = false;
#endif
while (!dfu_context.leave_dfu) {
#if USE_USB_POLLING
#if MBOOT_USB_AUTODETECT_PORT || MICROPY_HW_USB_MAIN_DEV == USB_PHY_FS_ID
if (USB_OTG_FS->GINTSTS & USB_OTG_FS->GINTMSK) {
HAL_PCD_IRQHandler(&pcd_fs_handle);
}
#endif
#if MBOOT_USB_AUTODETECT_PORT || MICROPY_HW_USB_MAIN_DEV == USB_PHY_HS_ID
if (USB_OTG_HS->GINTSTS & USB_OTG_HS->GINTMSK) {
HAL_PCD_IRQHandler(&pcd_hs_handle);
}
#endif
if (!pyb_usbdd.tx_pending) {
dfu_process();
}
#else // !USE_USB_POLLING
__WFI();
#endif
#if MBOOT_USB_RESET_ON_DISCONNECT
if (pyb_usbdd.hUSBDDevice.dev_state == USBD_STATE_CONFIGURED) {
has_connected = true;
}
if (has_connected && pyb_usbdd.hUSBDDevice.dev_state == USBD_STATE_SUSPENDED) {
break;
}
#endif
}
// Shutdown and leave the bootloader.
led_state_all(0);
mp_hal_delay_ms(50);
pyb_usbdd_shutdown();
#if defined(MBOOT_I2C_SCL)
i2c_slave_shutdown(MBOOT_I2Cx, I2Cx_EV_IRQn);
#endif
mp_hal_delay_ms(50);
leave_bootloader();
}
void NMI_Handler(void) {
}
void MemManage_Handler(void) {
while (1) {
__fatal_error("MemManage");
}
}
void BusFault_Handler(void) {
while (1) {
__fatal_error("BusFault");
}
}
void UsageFault_Handler(void) {
while (1) {
__fatal_error("UsageFault");
}
}
void SVC_Handler(void) {
}
void DebugMon_Handler(void) {
}
void PendSV_Handler(void) {
}
void SysTick_Handler(void) {
systick_ms += 1;
// Read the systick control regster. This has the side effect of clearing
// the COUNTFLAG bit, which makes the logic in mp_hal_ticks_us
// work properly.
SysTick->CTRL;
// Update the LED0 state from here to ensure it's consistent regardless of
// other processing going on in interrupts or main.
led0_update();
}
#if defined(MBOOT_I2C_SCL)
void I2Cx_EV_IRQHandler(void) {
i2c_slave_ev_irq_handler(MBOOT_I2Cx);
}
#endif
#if !USE_USB_POLLING
#if defined(STM32WB)
void USB_LP_IRQHandler(void) {
HAL_PCD_IRQHandler(&pcd_fs_handle);
}
#else
#if MBOOT_USB_AUTODETECT_PORT || MICROPY_HW_USB_MAIN_DEV == USB_PHY_FS_ID
void OTG_FS_IRQHandler(void) {
HAL_PCD_IRQHandler(&pcd_fs_handle);
}
#endif
#if MBOOT_USB_AUTODETECT_PORT || MICROPY_HW_USB_MAIN_DEV == USB_PHY_HS_ID
void OTG_HS_IRQHandler(void) {
HAL_PCD_IRQHandler(&pcd_hs_handle);
}
#endif
#endif
#endif