1195 lines
41 KiB
C
1195 lines
41 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* SPDX-FileCopyrightText: Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include "py/gc.h"
|
|
#include "py/runtime.h"
|
|
|
|
#include "supervisor/shared/safe_mode.h"
|
|
|
|
#if CIRCUITPY_MEMORYMONITOR
|
|
#include "shared-module/memorymonitor/__init__.h"
|
|
#endif
|
|
|
|
#if MICROPY_ENABLE_GC
|
|
|
|
#if MICROPY_DEBUG_VERBOSE // print debugging info
|
|
#define DEBUG_PRINT (1)
|
|
#define DEBUG_printf DEBUG_printf
|
|
#else // don't print debugging info
|
|
#define DEBUG_PRINT (0)
|
|
#define DEBUG_printf(...) (void)0
|
|
#endif
|
|
|
|
// Uncomment this if you want to use a debugger to capture state at every allocation and free.
|
|
// #define LOG_HEAP_ACTIVITY 1
|
|
|
|
// make this 1 to dump the heap each time it changes
|
|
#define EXTENSIVE_HEAP_PROFILING (0)
|
|
|
|
// make this 1 to zero out swept memory to more eagerly
|
|
// detect untraced object still in use
|
|
#define CLEAR_ON_SWEEP (0)
|
|
|
|
// ATB = allocation table byte
|
|
// 0b00 = FREE -- free block
|
|
// 0b01 = HEAD -- head of a chain of blocks
|
|
// 0b10 = TAIL -- in the tail of a chain of blocks
|
|
// 0b11 = MARK -- marked head block
|
|
|
|
#define AT_FREE (0)
|
|
#define AT_HEAD (1)
|
|
#define AT_TAIL (2)
|
|
#define AT_MARK (3)
|
|
|
|
#define BLOCKS_PER_ATB (4)
|
|
|
|
#define BLOCK_SHIFT(block) (2 * ((block) & (BLOCKS_PER_ATB - 1)))
|
|
#define ATB_GET_KIND(block) ((MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] >> BLOCK_SHIFT(block)) & 3)
|
|
#define ATB_ANY_TO_FREE(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] &= (~(AT_MARK << BLOCK_SHIFT(block))); } while (0)
|
|
#define ATB_FREE_TO_HEAD(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_HEAD << BLOCK_SHIFT(block)); } while (0)
|
|
#define ATB_FREE_TO_TAIL(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_TAIL << BLOCK_SHIFT(block)); } while (0)
|
|
#define ATB_HEAD_TO_MARK(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_MARK << BLOCK_SHIFT(block)); } while (0)
|
|
#define ATB_MARK_TO_HEAD(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] &= (~(AT_TAIL << BLOCK_SHIFT(block))); } while (0)
|
|
|
|
#define BLOCK_FROM_PTR(ptr) (((byte *)(ptr) - MP_STATE_MEM(gc_pool_start)) / BYTES_PER_BLOCK)
|
|
#define PTR_FROM_BLOCK(block) (((block) * BYTES_PER_BLOCK + (uintptr_t)MP_STATE_MEM(gc_pool_start)))
|
|
#define ATB_FROM_BLOCK(bl) ((bl) / BLOCKS_PER_ATB)
|
|
|
|
#if MICROPY_ENABLE_FINALISER
|
|
// FTB = finaliser table byte
|
|
// if set, then the corresponding block may have a finaliser
|
|
|
|
#define BLOCKS_PER_FTB (8)
|
|
|
|
#define FTB_GET(block) ((MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] >> ((block) & 7)) & 1)
|
|
#define FTB_SET(block) do { MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] |= (1 << ((block) & 7)); } while (0)
|
|
#define FTB_CLEAR(block) do { MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] &= (~(1 << ((block) & 7))); } while (0)
|
|
#endif
|
|
|
|
#if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL
|
|
#define GC_ENTER() mp_thread_mutex_lock(&MP_STATE_MEM(gc_mutex), 1)
|
|
#define GC_EXIT() mp_thread_mutex_unlock(&MP_STATE_MEM(gc_mutex))
|
|
#else
|
|
#define GC_ENTER()
|
|
#define GC_EXIT()
|
|
#endif
|
|
|
|
#ifdef LOG_HEAP_ACTIVITY
|
|
volatile uint32_t change_me;
|
|
#pragma GCC push_options
|
|
#pragma GCC optimize ("O0")
|
|
void __attribute__ ((noinline)) gc_log_change(uint32_t start_block, uint32_t length) {
|
|
change_me += start_block;
|
|
change_me += length; // Break on this line.
|
|
}
|
|
#pragma GCC pop_options
|
|
#endif
|
|
|
|
// TODO waste less memory; currently requires that all entries in alloc_table have a corresponding block in pool
|
|
void gc_init(void *start, void *end) {
|
|
// align end pointer on block boundary
|
|
end = (void *)((uintptr_t)end & (~(BYTES_PER_BLOCK - 1)));
|
|
DEBUG_printf("Initializing GC heap: %p..%p = " UINT_FMT " bytes\n", start, end, (byte *)end - (byte *)start);
|
|
|
|
// calculate parameters for GC (T=total, A=alloc table, F=finaliser table, P=pool; all in bytes):
|
|
// T = A + F + P
|
|
// F = A * BLOCKS_PER_ATB / BLOCKS_PER_FTB
|
|
// P = A * BLOCKS_PER_ATB * BYTES_PER_BLOCK
|
|
// => T = A * (1 + BLOCKS_PER_ATB / BLOCKS_PER_FTB + BLOCKS_PER_ATB * BYTES_PER_BLOCK)
|
|
size_t total_byte_len = (byte *)end - (byte *)start;
|
|
#if MICROPY_ENABLE_FINALISER
|
|
MP_STATE_MEM(gc_alloc_table_byte_len) = total_byte_len * BITS_PER_BYTE / (BITS_PER_BYTE + BITS_PER_BYTE * BLOCKS_PER_ATB / BLOCKS_PER_FTB + BITS_PER_BYTE * BLOCKS_PER_ATB * BYTES_PER_BLOCK);
|
|
#else
|
|
MP_STATE_MEM(gc_alloc_table_byte_len) = total_byte_len / (1 + BITS_PER_BYTE / 2 * BYTES_PER_BLOCK);
|
|
#endif
|
|
|
|
MP_STATE_MEM(gc_alloc_table_start) = (byte *)start;
|
|
|
|
#if MICROPY_ENABLE_FINALISER
|
|
size_t gc_finaliser_table_byte_len = (MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB + BLOCKS_PER_FTB - 1) / BLOCKS_PER_FTB;
|
|
MP_STATE_MEM(gc_finaliser_table_start) = MP_STATE_MEM(gc_alloc_table_start) + MP_STATE_MEM(gc_alloc_table_byte_len);
|
|
#endif
|
|
|
|
size_t gc_pool_block_len = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB;
|
|
MP_STATE_MEM(gc_pool_start) = (byte *)end - gc_pool_block_len * BYTES_PER_BLOCK;
|
|
MP_STATE_MEM(gc_pool_end) = end;
|
|
|
|
#if MICROPY_ENABLE_FINALISER
|
|
assert(MP_STATE_MEM(gc_pool_start) >= MP_STATE_MEM(gc_finaliser_table_start) + gc_finaliser_table_byte_len);
|
|
#endif
|
|
|
|
// clear ATBs
|
|
memset(MP_STATE_MEM(gc_alloc_table_start), 0, MP_STATE_MEM(gc_alloc_table_byte_len));
|
|
|
|
#if MICROPY_ENABLE_FINALISER
|
|
// clear FTBs
|
|
memset(MP_STATE_MEM(gc_finaliser_table_start), 0, gc_finaliser_table_byte_len);
|
|
#endif
|
|
|
|
// Set first free ATB index to the start of the heap.
|
|
for (size_t i = 0; i < MICROPY_ATB_INDICES; i++) {
|
|
MP_STATE_MEM(gc_first_free_atb_index)[i] = 0;
|
|
}
|
|
|
|
// Set last free ATB index to the end of the heap.
|
|
MP_STATE_MEM(gc_last_free_atb_index) = MP_STATE_MEM(gc_alloc_table_byte_len) - 1;
|
|
|
|
// Set the lowest long lived ptr to the end of the heap to start. This will be lowered as long
|
|
// lived objects are allocated.
|
|
MP_STATE_MEM(gc_lowest_long_lived_ptr) = (void *)PTR_FROM_BLOCK(MP_STATE_MEM(gc_alloc_table_byte_len * BLOCKS_PER_ATB));
|
|
|
|
// unlock the GC
|
|
MP_STATE_MEM(gc_lock_depth) = 0;
|
|
|
|
// allow auto collection
|
|
MP_STATE_MEM(gc_auto_collect_enabled) = true;
|
|
|
|
#if MICROPY_GC_ALLOC_THRESHOLD
|
|
// by default, maxuint for gc threshold, effectively turning gc-by-threshold off
|
|
MP_STATE_MEM(gc_alloc_threshold) = (size_t)-1;
|
|
MP_STATE_MEM(gc_alloc_amount) = 0;
|
|
#endif
|
|
|
|
#if MICROPY_PY_THREAD
|
|
mp_thread_mutex_init(&MP_STATE_MEM(gc_mutex));
|
|
#endif
|
|
|
|
MP_STATE_MEM(permanent_pointers) = NULL;
|
|
|
|
DEBUG_printf("GC layout:\n");
|
|
DEBUG_printf(" alloc table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_alloc_table_start), MP_STATE_MEM(gc_alloc_table_byte_len), MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB);
|
|
#if MICROPY_ENABLE_FINALISER
|
|
DEBUG_printf(" finaliser table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_finaliser_table_start), gc_finaliser_table_byte_len, gc_finaliser_table_byte_len * BLOCKS_PER_FTB);
|
|
#endif
|
|
DEBUG_printf(" pool at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_pool_start), gc_pool_block_len * BYTES_PER_BLOCK, gc_pool_block_len);
|
|
}
|
|
|
|
void gc_deinit(void) {
|
|
// Run any finalisers before we stop using the heap.
|
|
gc_sweep_all();
|
|
|
|
MP_STATE_MEM(gc_pool_start) = 0;
|
|
}
|
|
|
|
void gc_lock(void) {
|
|
GC_ENTER();
|
|
MP_STATE_MEM(gc_lock_depth)++;
|
|
GC_EXIT();
|
|
}
|
|
|
|
void gc_unlock(void) {
|
|
GC_ENTER();
|
|
MP_STATE_MEM(gc_lock_depth)--;
|
|
GC_EXIT();
|
|
}
|
|
|
|
bool gc_is_locked(void) {
|
|
return MP_STATE_MEM(gc_lock_depth) != 0;
|
|
}
|
|
|
|
#ifndef TRACE_MARK
|
|
#if DEBUG_PRINT
|
|
#define TRACE_MARK(block, ptr) DEBUG_printf("gc_mark(%p)\n", ptr)
|
|
#else
|
|
#define TRACE_MARK(block, ptr)
|
|
#endif
|
|
#endif
|
|
|
|
// Take the given block as the topmost block on the stack. Check all it's
|
|
// children: mark the unmarked child blocks and put those newly marked
|
|
// blocks on the stack. When all children have been checked, pop off the
|
|
// topmost block on the stack and repeat with that one.
|
|
STATIC void gc_mark_subtree(size_t block) {
|
|
// Start with the block passed in the argument.
|
|
size_t sp = 0;
|
|
for (;;) {
|
|
// work out number of consecutive blocks in the chain starting with this one
|
|
size_t n_blocks = 0;
|
|
do {
|
|
n_blocks += 1;
|
|
} while (ATB_GET_KIND(block + n_blocks) == AT_TAIL);
|
|
|
|
// check this block's children
|
|
void **ptrs = (void **)PTR_FROM_BLOCK(block);
|
|
for (size_t i = n_blocks * BYTES_PER_BLOCK / sizeof(void *); i > 0; i--, ptrs++) {
|
|
void *ptr = *ptrs;
|
|
if (VERIFY_PTR(ptr)) {
|
|
// Mark and push this pointer
|
|
size_t childblock = BLOCK_FROM_PTR(ptr);
|
|
if (ATB_GET_KIND(childblock) == AT_HEAD) {
|
|
// an unmarked head, mark it, and push it on gc stack
|
|
TRACE_MARK(childblock, ptr);
|
|
ATB_HEAD_TO_MARK(childblock);
|
|
if (sp < MICROPY_ALLOC_GC_STACK_SIZE) {
|
|
MP_STATE_MEM(gc_stack)[sp++] = childblock;
|
|
} else {
|
|
MP_STATE_MEM(gc_stack_overflow) = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Are there any blocks on the stack?
|
|
if (sp == 0) {
|
|
break; // No, stack is empty, we're done.
|
|
}
|
|
|
|
// pop the next block off the stack
|
|
block = MP_STATE_MEM(gc_stack)[--sp];
|
|
}
|
|
}
|
|
|
|
STATIC void gc_deal_with_stack_overflow(void) {
|
|
while (MP_STATE_MEM(gc_stack_overflow)) {
|
|
MP_STATE_MEM(gc_stack_overflow) = 0;
|
|
|
|
// scan entire memory looking for blocks which have been marked but not their children
|
|
for (size_t block = 0; block < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; block++) {
|
|
// trace (again) if mark bit set
|
|
if (ATB_GET_KIND(block) == AT_MARK) {
|
|
gc_mark_subtree(block);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC void gc_sweep(void) {
|
|
#if MICROPY_PY_GC_COLLECT_RETVAL
|
|
MP_STATE_MEM(gc_collected) = 0;
|
|
#endif
|
|
// free unmarked heads and their tails
|
|
int free_tail = 0;
|
|
for (size_t block = 0; block < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; block++) {
|
|
switch (ATB_GET_KIND(block)) {
|
|
case AT_HEAD:
|
|
#if MICROPY_ENABLE_FINALISER
|
|
if (FTB_GET(block)) {
|
|
mp_obj_base_t *obj = (mp_obj_base_t *)PTR_FROM_BLOCK(block);
|
|
if (obj->type != NULL) {
|
|
// if the object has a type then see if it has a __del__ method
|
|
mp_obj_t dest[2];
|
|
mp_load_method_maybe(MP_OBJ_FROM_PTR(obj), MP_QSTR___del__, dest);
|
|
if (dest[0] != MP_OBJ_NULL) {
|
|
// load_method returned a method, execute it in a protected environment
|
|
#if MICROPY_ENABLE_SCHEDULER
|
|
mp_sched_lock();
|
|
#endif
|
|
mp_call_function_1_protected(dest[0], dest[1]);
|
|
#if MICROPY_ENABLE_SCHEDULER
|
|
mp_sched_unlock();
|
|
#endif
|
|
}
|
|
}
|
|
// clear finaliser flag
|
|
FTB_CLEAR(block);
|
|
}
|
|
#endif
|
|
free_tail = 1;
|
|
ATB_ANY_TO_FREE(block);
|
|
#if CLEAR_ON_SWEEP
|
|
memset((void *)PTR_FROM_BLOCK(block), 0, BYTES_PER_BLOCK);
|
|
#endif
|
|
DEBUG_printf("gc_sweep(%x)\n", PTR_FROM_BLOCK(block));
|
|
|
|
#ifdef LOG_HEAP_ACTIVITY
|
|
gc_log_change(block, 0);
|
|
#endif
|
|
#if MICROPY_PY_GC_COLLECT_RETVAL
|
|
MP_STATE_MEM(gc_collected)++;
|
|
#endif
|
|
break;
|
|
|
|
case AT_TAIL:
|
|
if (free_tail) {
|
|
ATB_ANY_TO_FREE(block);
|
|
#if CLEAR_ON_SWEEP
|
|
memset((void *)PTR_FROM_BLOCK(block), 0, BYTES_PER_BLOCK);
|
|
#endif
|
|
}
|
|
break;
|
|
|
|
case AT_MARK:
|
|
ATB_MARK_TO_HEAD(block);
|
|
free_tail = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Mark can handle NULL pointers because it verifies the pointer is within the heap bounds.
|
|
STATIC void gc_mark(void *ptr) {
|
|
if (VERIFY_PTR(ptr)) {
|
|
size_t block = BLOCK_FROM_PTR(ptr);
|
|
if (ATB_GET_KIND(block) == AT_HEAD) {
|
|
// An unmarked head: mark it, and mark all its children
|
|
TRACE_MARK(block, ptr);
|
|
ATB_HEAD_TO_MARK(block);
|
|
gc_mark_subtree(block);
|
|
}
|
|
}
|
|
}
|
|
|
|
void gc_collect_start(void) {
|
|
GC_ENTER();
|
|
MP_STATE_MEM(gc_lock_depth)++;
|
|
#if MICROPY_GC_ALLOC_THRESHOLD
|
|
MP_STATE_MEM(gc_alloc_amount) = 0;
|
|
#endif
|
|
MP_STATE_MEM(gc_stack_overflow) = 0;
|
|
|
|
// Trace root pointers. This relies on the root pointers being organised
|
|
// correctly in the mp_state_ctx structure. We scan nlr_top, dict_locals,
|
|
// dict_globals, then the root pointer section of mp_state_vm.
|
|
void **ptrs = (void **)(void *)&mp_state_ctx;
|
|
size_t root_start = offsetof(mp_state_ctx_t, thread.dict_locals);
|
|
size_t root_end = offsetof(mp_state_ctx_t, vm.qstr_last_chunk);
|
|
gc_collect_root(ptrs + root_start / sizeof(void *), (root_end - root_start) / sizeof(void *));
|
|
|
|
gc_mark(MP_STATE_MEM(permanent_pointers));
|
|
|
|
#if MICROPY_ENABLE_PYSTACK
|
|
// Trace root pointers from the Python stack.
|
|
ptrs = (void **)(void *)MP_STATE_THREAD(pystack_start);
|
|
gc_collect_root(ptrs, (MP_STATE_THREAD(pystack_cur) - MP_STATE_THREAD(pystack_start)) / sizeof(void *));
|
|
#endif
|
|
}
|
|
|
|
void gc_collect_ptr(void *ptr) {
|
|
gc_mark(ptr);
|
|
}
|
|
|
|
void gc_collect_root(void **ptrs, size_t len) {
|
|
for (size_t i = 0; i < len; i++) {
|
|
void *ptr = ptrs[i];
|
|
gc_mark(ptr);
|
|
}
|
|
}
|
|
|
|
void gc_collect_end(void) {
|
|
gc_deal_with_stack_overflow();
|
|
gc_sweep();
|
|
for (size_t i = 0; i < MICROPY_ATB_INDICES; i++) {
|
|
MP_STATE_MEM(gc_first_free_atb_index)[i] = 0;
|
|
}
|
|
MP_STATE_MEM(gc_last_free_atb_index) = MP_STATE_MEM(gc_alloc_table_byte_len) - 1;
|
|
MP_STATE_MEM(gc_lock_depth)--;
|
|
GC_EXIT();
|
|
}
|
|
|
|
void gc_sweep_all(void) {
|
|
GC_ENTER();
|
|
MP_STATE_MEM(gc_lock_depth)++;
|
|
MP_STATE_MEM(gc_stack_overflow) = 0;
|
|
gc_collect_end();
|
|
}
|
|
|
|
void gc_info(gc_info_t *info) {
|
|
GC_ENTER();
|
|
info->total = MP_STATE_MEM(gc_pool_end) - MP_STATE_MEM(gc_pool_start);
|
|
info->used = 0;
|
|
info->free = 0;
|
|
info->max_free = 0;
|
|
info->num_1block = 0;
|
|
info->num_2block = 0;
|
|
info->max_block = 0;
|
|
bool finish = false;
|
|
for (size_t block = 0, len = 0, len_free = 0; !finish;) {
|
|
size_t kind = ATB_GET_KIND(block);
|
|
switch (kind) {
|
|
case AT_FREE:
|
|
info->free += 1;
|
|
len_free += 1;
|
|
len = 0;
|
|
break;
|
|
|
|
case AT_HEAD:
|
|
info->used += 1;
|
|
len = 1;
|
|
break;
|
|
|
|
case AT_TAIL:
|
|
info->used += 1;
|
|
len += 1;
|
|
break;
|
|
|
|
case AT_MARK:
|
|
// shouldn't happen
|
|
break;
|
|
}
|
|
|
|
block++;
|
|
finish = (block == MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB);
|
|
// Get next block type if possible
|
|
if (!finish) {
|
|
kind = ATB_GET_KIND(block);
|
|
}
|
|
|
|
if (finish || kind == AT_FREE || kind == AT_HEAD) {
|
|
if (len == 1) {
|
|
info->num_1block += 1;
|
|
} else if (len == 2) {
|
|
info->num_2block += 1;
|
|
}
|
|
if (len > info->max_block) {
|
|
info->max_block = len;
|
|
}
|
|
if (finish || kind == AT_HEAD) {
|
|
if (len_free > info->max_free) {
|
|
info->max_free = len_free;
|
|
}
|
|
len_free = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
info->used *= BYTES_PER_BLOCK;
|
|
info->free *= BYTES_PER_BLOCK;
|
|
GC_EXIT();
|
|
}
|
|
|
|
bool gc_alloc_possible(void) {
|
|
return MP_STATE_MEM(gc_pool_start) != 0;
|
|
}
|
|
|
|
// We place long lived objects at the end of the heap rather than the start. This reduces
|
|
// fragmentation by localizing the heap churn to one portion of memory (the start of the heap.)
|
|
void *gc_alloc(size_t n_bytes, unsigned int alloc_flags, bool long_lived) {
|
|
bool has_finaliser = alloc_flags & GC_ALLOC_FLAG_HAS_FINALISER;
|
|
size_t n_blocks = ((n_bytes + BYTES_PER_BLOCK - 1) & (~(BYTES_PER_BLOCK - 1))) / BYTES_PER_BLOCK;
|
|
DEBUG_printf("gc_alloc(" UINT_FMT " bytes -> " UINT_FMT " blocks)\n", n_bytes, n_blocks);
|
|
|
|
// check for 0 allocation
|
|
if (n_blocks == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
if (MP_STATE_MEM(gc_pool_start) == 0) {
|
|
reset_into_safe_mode(GC_ALLOC_OUTSIDE_VM);
|
|
}
|
|
|
|
GC_ENTER();
|
|
|
|
// check if GC is locked
|
|
if (MP_STATE_MEM(gc_lock_depth) > 0) {
|
|
GC_EXIT();
|
|
return NULL;
|
|
}
|
|
|
|
size_t found_block = 0xffffffff;
|
|
size_t end_block;
|
|
size_t start_block;
|
|
size_t n_free;
|
|
bool collected = !MP_STATE_MEM(gc_auto_collect_enabled);
|
|
|
|
#if MICROPY_GC_ALLOC_THRESHOLD
|
|
if (!collected && MP_STATE_MEM(gc_alloc_amount) >= MP_STATE_MEM(gc_alloc_threshold)) {
|
|
GC_EXIT();
|
|
gc_collect();
|
|
collected = 1;
|
|
GC_ENTER();
|
|
}
|
|
#endif
|
|
|
|
bool keep_looking = true;
|
|
|
|
// When we start searching on the other side of the crossover block we make sure to
|
|
// perform a collect. That way we'll get the closest free block in our section.
|
|
size_t crossover_block = BLOCK_FROM_PTR(MP_STATE_MEM(gc_lowest_long_lived_ptr));
|
|
while (keep_looking) {
|
|
int8_t direction = 1;
|
|
size_t bucket = MIN(n_blocks, MICROPY_ATB_INDICES) - 1;
|
|
size_t first_free = MP_STATE_MEM(gc_first_free_atb_index)[bucket];
|
|
size_t start = first_free;
|
|
if (long_lived) {
|
|
direction = -1;
|
|
start = MP_STATE_MEM(gc_last_free_atb_index);
|
|
}
|
|
n_free = 0;
|
|
// look for a run of n_blocks available blocks
|
|
for (size_t i = start; keep_looking && first_free <= i && i <= MP_STATE_MEM(gc_last_free_atb_index); i += direction) {
|
|
byte a = MP_STATE_MEM(gc_alloc_table_start)[i];
|
|
// Four ATB states are packed into a single byte.
|
|
int j = 0;
|
|
if (direction == -1) {
|
|
j = 3;
|
|
}
|
|
for (; keep_looking && 0 <= j && j <= 3; j += direction) {
|
|
if ((a & (0x3 << (j * 2))) == 0) {
|
|
if (++n_free >= n_blocks) {
|
|
found_block = i * BLOCKS_PER_ATB + j;
|
|
keep_looking = false;
|
|
}
|
|
} else {
|
|
if (!collected) {
|
|
size_t block = i * BLOCKS_PER_ATB + j;
|
|
if ((direction == 1 && block >= crossover_block) ||
|
|
(direction == -1 && block < crossover_block)) {
|
|
keep_looking = false;
|
|
}
|
|
}
|
|
n_free = 0;
|
|
}
|
|
}
|
|
}
|
|
if (n_free >= n_blocks) {
|
|
break;
|
|
}
|
|
|
|
GC_EXIT();
|
|
// nothing found!
|
|
if (collected) {
|
|
return NULL;
|
|
}
|
|
DEBUG_printf("gc_alloc(" UINT_FMT "): no free mem, triggering GC\n", n_bytes);
|
|
gc_collect();
|
|
collected = true;
|
|
// Try again since we've hopefully freed up space.
|
|
keep_looking = true;
|
|
GC_ENTER();
|
|
}
|
|
assert(found_block != 0xffffffff);
|
|
|
|
// Found free space ending at found_block inclusive.
|
|
// Also, set last free ATB index to block after last block we found, for start of
|
|
// next scan. Also, whenever we free or shrink a block we must check if this index needs
|
|
// adjusting (see gc_realloc and gc_free).
|
|
if (!long_lived) {
|
|
end_block = found_block;
|
|
start_block = found_block - n_free + 1;
|
|
if (n_blocks < MICROPY_ATB_INDICES) {
|
|
size_t next_free_atb = (found_block + n_blocks) / BLOCKS_PER_ATB;
|
|
// Update all atb indices for larger blocks too.
|
|
for (size_t i = n_blocks - 1; i < MICROPY_ATB_INDICES; i++) {
|
|
MP_STATE_MEM(gc_first_free_atb_index)[i] = next_free_atb;
|
|
}
|
|
}
|
|
} else {
|
|
start_block = found_block;
|
|
end_block = found_block + n_free - 1;
|
|
// Always update the bounds of the long lived area because we assume it is contiguous. (It
|
|
// can still be reset by a sweep.)
|
|
MP_STATE_MEM(gc_last_free_atb_index) = (found_block - 1) / BLOCKS_PER_ATB;
|
|
}
|
|
|
|
#ifdef LOG_HEAP_ACTIVITY
|
|
gc_log_change(start_block, end_block - start_block + 1);
|
|
#endif
|
|
|
|
// mark first block as used head
|
|
ATB_FREE_TO_HEAD(start_block);
|
|
|
|
// mark rest of blocks as used tail
|
|
// TODO for a run of many blocks can make this more efficient
|
|
for (size_t bl = start_block + 1; bl <= end_block; bl++) {
|
|
ATB_FREE_TO_TAIL(bl);
|
|
}
|
|
|
|
// get pointer to first block
|
|
// we must create this pointer before unlocking the GC so a collection can find it
|
|
void *ret_ptr = (void *)(MP_STATE_MEM(gc_pool_start) + start_block * BYTES_PER_BLOCK);
|
|
DEBUG_printf("gc_alloc(%p)\n", ret_ptr);
|
|
|
|
// If the allocation was long live then update the lowest value. Its used to trigger early
|
|
// collects when allocations fail in their respective section. Its also used to ignore calls to
|
|
// gc_make_long_lived where the pointer is already in the long lived section.
|
|
if (long_lived && ret_ptr < MP_STATE_MEM(gc_lowest_long_lived_ptr)) {
|
|
MP_STATE_MEM(gc_lowest_long_lived_ptr) = ret_ptr;
|
|
}
|
|
|
|
#if MICROPY_GC_ALLOC_THRESHOLD
|
|
MP_STATE_MEM(gc_alloc_amount) += n_blocks;
|
|
#endif
|
|
|
|
GC_EXIT();
|
|
|
|
#if MICROPY_GC_CONSERVATIVE_CLEAR
|
|
// be conservative and zero out all the newly allocated blocks
|
|
memset((byte *)ret_ptr, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK);
|
|
#else
|
|
// zero out the additional bytes of the newly allocated blocks
|
|
// This is needed because the blocks may have previously held pointers
|
|
// to the heap and will not be set to something else if the caller
|
|
// doesn't actually use the entire block. As such they will continue
|
|
// to point to the heap and may prevent other blocks from being reclaimed.
|
|
memset((byte *)ret_ptr + n_bytes, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK - n_bytes);
|
|
#endif
|
|
|
|
#if MICROPY_ENABLE_FINALISER
|
|
if (has_finaliser) {
|
|
// clear type pointer in case it is never set
|
|
((mp_obj_base_t *)ret_ptr)->type = NULL;
|
|
// set mp_obj flag only if it has a finaliser
|
|
GC_ENTER();
|
|
FTB_SET(start_block);
|
|
GC_EXIT();
|
|
}
|
|
#else
|
|
(void)has_finaliser;
|
|
#endif
|
|
|
|
#if EXTENSIVE_HEAP_PROFILING
|
|
gc_dump_alloc_table();
|
|
#endif
|
|
|
|
#if CIRCUITPY_MEMORYMONITOR
|
|
memorymonitor_track_allocation(end_block - start_block + 1);
|
|
#endif
|
|
|
|
return ret_ptr;
|
|
}
|
|
|
|
/*
|
|
void *gc_alloc(mp_uint_t n_bytes) {
|
|
return _gc_alloc(n_bytes, false);
|
|
}
|
|
|
|
void *gc_alloc_with_finaliser(mp_uint_t n_bytes) {
|
|
return _gc_alloc(n_bytes, true);
|
|
}
|
|
*/
|
|
|
|
// force the freeing of a piece of memory
|
|
// TODO: freeing here does not call finaliser
|
|
void gc_free(void *ptr) {
|
|
GC_ENTER();
|
|
if (MP_STATE_MEM(gc_lock_depth) > 0) {
|
|
// TODO how to deal with this error?
|
|
GC_EXIT();
|
|
return;
|
|
}
|
|
|
|
DEBUG_printf("gc_free(%p)\n", ptr);
|
|
|
|
if (ptr == NULL) {
|
|
GC_EXIT();
|
|
} else {
|
|
if (MP_STATE_MEM(gc_pool_start) == 0) {
|
|
reset_into_safe_mode(GC_ALLOC_OUTSIDE_VM);
|
|
}
|
|
// get the GC block number corresponding to this pointer
|
|
assert(VERIFY_PTR(ptr));
|
|
size_t start_block = BLOCK_FROM_PTR(ptr);
|
|
assert(ATB_GET_KIND(start_block) == AT_HEAD);
|
|
|
|
#if MICROPY_ENABLE_FINALISER
|
|
FTB_CLEAR(start_block);
|
|
#endif
|
|
|
|
// free head and all of its tail blocks
|
|
#ifdef LOG_HEAP_ACTIVITY
|
|
gc_log_change(start_block, 0);
|
|
#endif
|
|
size_t block = start_block;
|
|
do {
|
|
ATB_ANY_TO_FREE(block);
|
|
block += 1;
|
|
} while (ATB_GET_KIND(block) == AT_TAIL);
|
|
|
|
// Update the first free pointer for our size only. Not much calls gc_free directly so there
|
|
// is decent chance we'll want to allocate this size again. By only updating the specific
|
|
// size we don't risk something smaller fitting in.
|
|
size_t n_blocks = block - start_block;
|
|
size_t bucket = MIN(n_blocks, MICROPY_ATB_INDICES) - 1;
|
|
size_t new_free_atb = start_block / BLOCKS_PER_ATB;
|
|
if (new_free_atb < MP_STATE_MEM(gc_first_free_atb_index)[bucket]) {
|
|
MP_STATE_MEM(gc_first_free_atb_index)[bucket] = new_free_atb;
|
|
}
|
|
// set the last_free pointer to this block if it's earlier in the heap
|
|
if (new_free_atb > MP_STATE_MEM(gc_last_free_atb_index)) {
|
|
MP_STATE_MEM(gc_last_free_atb_index) = new_free_atb;
|
|
}
|
|
|
|
GC_EXIT();
|
|
|
|
#if EXTENSIVE_HEAP_PROFILING
|
|
gc_dump_alloc_table();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
size_t gc_nbytes(const void *ptr) {
|
|
GC_ENTER();
|
|
if (VERIFY_PTR(ptr)) {
|
|
size_t block = BLOCK_FROM_PTR(ptr);
|
|
if (ATB_GET_KIND(block) == AT_HEAD) {
|
|
// work out number of consecutive blocks in the chain starting with this on
|
|
size_t n_blocks = 0;
|
|
do {
|
|
n_blocks += 1;
|
|
} while (ATB_GET_KIND(block + n_blocks) == AT_TAIL);
|
|
GC_EXIT();
|
|
return n_blocks * BYTES_PER_BLOCK;
|
|
}
|
|
}
|
|
|
|
// invalid pointer
|
|
GC_EXIT();
|
|
return 0;
|
|
}
|
|
|
|
bool gc_has_finaliser(const void *ptr) {
|
|
#if MICROPY_ENABLE_FINALISER
|
|
GC_ENTER();
|
|
if (VERIFY_PTR(ptr)) {
|
|
bool has_finaliser = FTB_GET(BLOCK_FROM_PTR(ptr));
|
|
GC_EXIT();
|
|
return has_finaliser;
|
|
}
|
|
|
|
// invalid pointer
|
|
GC_EXIT();
|
|
#else
|
|
(void)ptr;
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
void *gc_make_long_lived(void *old_ptr) {
|
|
// If its already in the long lived section then don't bother moving it.
|
|
if (old_ptr >= MP_STATE_MEM(gc_lowest_long_lived_ptr)) {
|
|
return old_ptr;
|
|
}
|
|
size_t n_bytes = gc_nbytes(old_ptr);
|
|
if (n_bytes == 0) {
|
|
return old_ptr;
|
|
}
|
|
bool has_finaliser = gc_has_finaliser(old_ptr);
|
|
|
|
// Try and find a new area in the long lived section to copy the memory to.
|
|
void *new_ptr = gc_alloc(n_bytes, has_finaliser, true);
|
|
if (new_ptr == NULL) {
|
|
return old_ptr;
|
|
} else if (old_ptr > new_ptr) {
|
|
// Return the old pointer if the new one is lower in the heap and free the new space.
|
|
gc_free(new_ptr);
|
|
return old_ptr;
|
|
}
|
|
// We copy everything over and let the garbage collection process delete the old copy. That way
|
|
// we ensure we don't delete memory that has a second reference. (Though if there is we may
|
|
// confuse things when its mutable.)
|
|
memcpy(new_ptr, old_ptr, n_bytes);
|
|
return new_ptr;
|
|
}
|
|
|
|
#if 0
|
|
// old, simple realloc that didn't expand memory in place
|
|
void *gc_realloc(void *ptr, mp_uint_t n_bytes) {
|
|
mp_uint_t n_existing = gc_nbytes(ptr);
|
|
if (n_bytes <= n_existing) {
|
|
return ptr;
|
|
} else {
|
|
bool has_finaliser;
|
|
if (ptr == NULL) {
|
|
has_finaliser = false;
|
|
} else {
|
|
#if MICROPY_ENABLE_FINALISER
|
|
has_finaliser = FTB_GET(BLOCK_FROM_PTR((mp_uint_t)ptr));
|
|
#else
|
|
has_finaliser = false;
|
|
#endif
|
|
}
|
|
void *ptr2 = gc_alloc(n_bytes, has_finaliser);
|
|
if (ptr2 == NULL) {
|
|
return ptr2;
|
|
}
|
|
memcpy(ptr2, ptr, n_existing);
|
|
gc_free(ptr);
|
|
return ptr2;
|
|
}
|
|
}
|
|
|
|
#else // Alternative gc_realloc impl
|
|
|
|
void *gc_realloc(void *ptr_in, size_t n_bytes, bool allow_move) {
|
|
// check for pure allocation
|
|
if (ptr_in == NULL) {
|
|
return gc_alloc(n_bytes, false, false);
|
|
}
|
|
|
|
// check for pure free
|
|
if (n_bytes == 0) {
|
|
gc_free(ptr_in);
|
|
return NULL;
|
|
}
|
|
|
|
void *ptr = ptr_in;
|
|
|
|
GC_ENTER();
|
|
|
|
if (MP_STATE_MEM(gc_lock_depth) > 0) {
|
|
GC_EXIT();
|
|
return NULL;
|
|
}
|
|
|
|
// get the GC block number corresponding to this pointer
|
|
assert(VERIFY_PTR(ptr));
|
|
size_t block = BLOCK_FROM_PTR(ptr);
|
|
assert(ATB_GET_KIND(block) == AT_HEAD);
|
|
|
|
// compute number of new blocks that are requested
|
|
size_t new_blocks = (n_bytes + BYTES_PER_BLOCK - 1) / BYTES_PER_BLOCK;
|
|
|
|
// Get the total number of consecutive blocks that are already allocated to
|
|
// this chunk of memory, and then count the number of free blocks following
|
|
// it. Stop if we reach the end of the heap, or if we find enough extra
|
|
// free blocks to satisfy the realloc. Note that we need to compute the
|
|
// total size of the existing memory chunk so we can correctly and
|
|
// efficiently shrink it (see below for shrinking code).
|
|
size_t n_free = 0;
|
|
size_t n_blocks = 1; // counting HEAD block
|
|
size_t max_block = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB;
|
|
for (size_t bl = block + n_blocks; bl < max_block; bl++) {
|
|
byte block_type = ATB_GET_KIND(bl);
|
|
if (block_type == AT_TAIL) {
|
|
n_blocks++;
|
|
continue;
|
|
}
|
|
if (block_type == AT_FREE) {
|
|
n_free++;
|
|
if (n_blocks + n_free >= new_blocks) {
|
|
// stop as soon as we find enough blocks for n_bytes
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// return original ptr if it already has the requested number of blocks
|
|
if (new_blocks == n_blocks) {
|
|
GC_EXIT();
|
|
return ptr_in;
|
|
}
|
|
|
|
// check if we can shrink the allocated area
|
|
if (new_blocks < n_blocks) {
|
|
// free unneeded tail blocks
|
|
for (size_t bl = block + new_blocks, count = n_blocks - new_blocks; count > 0; bl++, count--) {
|
|
ATB_ANY_TO_FREE(bl);
|
|
}
|
|
|
|
// set the last_free pointer to end of this block if it's earlier in the heap
|
|
size_t new_free_atb = (block + new_blocks) / BLOCKS_PER_ATB;
|
|
size_t bucket = MIN(n_blocks - new_blocks, MICROPY_ATB_INDICES) - 1;
|
|
if (new_free_atb < MP_STATE_MEM(gc_first_free_atb_index)[bucket]) {
|
|
MP_STATE_MEM(gc_first_free_atb_index)[bucket] = new_free_atb;
|
|
}
|
|
if (new_free_atb > MP_STATE_MEM(gc_last_free_atb_index)) {
|
|
MP_STATE_MEM(gc_last_free_atb_index) = new_free_atb;
|
|
}
|
|
|
|
GC_EXIT();
|
|
|
|
#if EXTENSIVE_HEAP_PROFILING
|
|
gc_dump_alloc_table();
|
|
#endif
|
|
|
|
#ifdef LOG_HEAP_ACTIVITY
|
|
gc_log_change(block, new_blocks);
|
|
#endif
|
|
|
|
#if CIRCUITPY_MEMORYMONITOR
|
|
memorymonitor_track_allocation(new_blocks);
|
|
#endif
|
|
|
|
return ptr_in;
|
|
}
|
|
|
|
// check if we can expand in place
|
|
if (new_blocks <= n_blocks + n_free) {
|
|
// mark few more blocks as used tail
|
|
for (size_t bl = block + n_blocks; bl < block + new_blocks; bl++) {
|
|
assert(ATB_GET_KIND(bl) == AT_FREE);
|
|
ATB_FREE_TO_TAIL(bl);
|
|
}
|
|
|
|
GC_EXIT();
|
|
|
|
#if MICROPY_GC_CONSERVATIVE_CLEAR
|
|
// be conservative and zero out all the newly allocated blocks
|
|
memset((byte *)ptr_in + n_blocks * BYTES_PER_BLOCK, 0, (new_blocks - n_blocks) * BYTES_PER_BLOCK);
|
|
#else
|
|
// zero out the additional bytes of the newly allocated blocks (see comment above in gc_alloc)
|
|
memset((byte *)ptr_in + n_bytes, 0, new_blocks * BYTES_PER_BLOCK - n_bytes);
|
|
#endif
|
|
|
|
#if EXTENSIVE_HEAP_PROFILING
|
|
gc_dump_alloc_table();
|
|
#endif
|
|
|
|
#ifdef LOG_HEAP_ACTIVITY
|
|
gc_log_change(block, new_blocks);
|
|
#endif
|
|
|
|
#if CIRCUITPY_MEMORYMONITOR
|
|
memorymonitor_track_allocation(new_blocks);
|
|
#endif
|
|
|
|
return ptr_in;
|
|
}
|
|
|
|
#if MICROPY_ENABLE_FINALISER
|
|
bool ftb_state = FTB_GET(block);
|
|
#else
|
|
bool ftb_state = false;
|
|
#endif
|
|
|
|
GC_EXIT();
|
|
|
|
if (!allow_move) {
|
|
// not allowed to move memory block so return failure
|
|
return NULL;
|
|
}
|
|
|
|
// can't resize inplace; try to find a new contiguous chain
|
|
void *ptr_out = gc_alloc(n_bytes, ftb_state, false);
|
|
|
|
// check that the alloc succeeded
|
|
if (ptr_out == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
DEBUG_printf("gc_realloc(%p -> %p)\n", ptr_in, ptr_out);
|
|
memcpy(ptr_out, ptr_in, n_blocks * BYTES_PER_BLOCK);
|
|
gc_free(ptr_in);
|
|
return ptr_out;
|
|
}
|
|
#endif // Alternative gc_realloc impl
|
|
|
|
bool gc_never_free(void *ptr) {
|
|
// Check to make sure the pointer is on the heap in the first place.
|
|
if (gc_nbytes(ptr) == 0) {
|
|
return false;
|
|
}
|
|
// Pointers are stored in a linked list where each block is BYTES_PER_BLOCK long and the first
|
|
// pointer is the next block of pointers.
|
|
void **current_reference_block = MP_STATE_MEM(permanent_pointers);
|
|
while (current_reference_block != NULL) {
|
|
for (size_t i = 1; i < BYTES_PER_BLOCK / sizeof(void *); i++) {
|
|
if (current_reference_block[i] == NULL) {
|
|
current_reference_block[i] = ptr;
|
|
return true;
|
|
}
|
|
}
|
|
current_reference_block = current_reference_block[0];
|
|
}
|
|
void **next_block = gc_alloc(BYTES_PER_BLOCK, false, true);
|
|
if (next_block == NULL) {
|
|
return false;
|
|
}
|
|
if (MP_STATE_MEM(permanent_pointers) == NULL) {
|
|
MP_STATE_MEM(permanent_pointers) = next_block;
|
|
} else {
|
|
current_reference_block[0] = next_block;
|
|
}
|
|
next_block[1] = ptr;
|
|
return true;
|
|
}
|
|
|
|
void gc_dump_info(void) {
|
|
gc_info_t info;
|
|
gc_info(&info);
|
|
mp_printf(&mp_plat_print, "GC: total: %u, used: %u, free: %u\n",
|
|
(uint)info.total, (uint)info.used, (uint)info.free);
|
|
mp_printf(&mp_plat_print, " No. of 1-blocks: %u, 2-blocks: %u, max blk sz: %u, max free sz: %u\n",
|
|
(uint)info.num_1block, (uint)info.num_2block, (uint)info.max_block, (uint)info.max_free);
|
|
}
|
|
|
|
void gc_dump_alloc_table(void) {
|
|
GC_ENTER();
|
|
static const size_t DUMP_BYTES_PER_LINE = 64;
|
|
#if !EXTENSIVE_HEAP_PROFILING
|
|
// When comparing heap output we don't want to print the starting
|
|
// pointer of the heap because it changes from run to run.
|
|
mp_printf(&mp_plat_print, "GC memory layout; from %p:", MP_STATE_MEM(gc_pool_start));
|
|
#endif
|
|
for (size_t bl = 0; bl < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; bl++) {
|
|
if (bl % DUMP_BYTES_PER_LINE == 0) {
|
|
// a new line of blocks
|
|
{
|
|
// check if this line contains only free blocks
|
|
size_t bl2 = bl;
|
|
while (bl2 < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB && ATB_GET_KIND(bl2) == AT_FREE) {
|
|
bl2++;
|
|
}
|
|
if (bl2 - bl >= 2 * DUMP_BYTES_PER_LINE) {
|
|
// there are at least 2 lines containing only free blocks, so abbreviate their printing
|
|
mp_printf(&mp_plat_print, "\n (%u lines all free)", (uint)(bl2 - bl) / DUMP_BYTES_PER_LINE);
|
|
bl = bl2 & (~(DUMP_BYTES_PER_LINE - 1));
|
|
if (bl >= MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB) {
|
|
// got to end of heap
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// print header for new line of blocks
|
|
// (the cast to uint32_t is for 16-bit ports)
|
|
// mp_printf(&mp_plat_print, "\n%05x: ", (uint)(PTR_FROM_BLOCK(bl) & (uint32_t)0xfffff));
|
|
mp_printf(&mp_plat_print, "\n%05x: ", (uint)((bl * BYTES_PER_BLOCK) & (uint32_t)0xfffff));
|
|
}
|
|
int c = ' ';
|
|
switch (ATB_GET_KIND(bl)) {
|
|
case AT_FREE:
|
|
c = '.';
|
|
break;
|
|
/* this prints out if the object is reachable from BSS or STACK (for unix only)
|
|
case AT_HEAD: {
|
|
c = 'h';
|
|
void **ptrs = (void**)(void*)&mp_state_ctx;
|
|
mp_uint_t len = offsetof(mp_state_ctx_t, vm.stack_top) / sizeof(mp_uint_t);
|
|
for (mp_uint_t i = 0; i < len; i++) {
|
|
mp_uint_t ptr = (mp_uint_t)ptrs[i];
|
|
if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) {
|
|
c = 'B';
|
|
break;
|
|
}
|
|
}
|
|
if (c == 'h') {
|
|
ptrs = (void**)&c;
|
|
len = ((mp_uint_t)MP_STATE_THREAD(stack_top) - (mp_uint_t)&c) / sizeof(mp_uint_t);
|
|
for (mp_uint_t i = 0; i < len; i++) {
|
|
mp_uint_t ptr = (mp_uint_t)ptrs[i];
|
|
if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) {
|
|
c = 'S';
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
*/
|
|
/* this prints the uPy object type of the head block */
|
|
case AT_HEAD: {
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wcast-align"
|
|
void **ptr = (void **)(MP_STATE_MEM(gc_pool_start) + bl * BYTES_PER_BLOCK);
|
|
#pragma GCC diagnostic pop
|
|
if (*ptr == &mp_type_tuple) {
|
|
c = 'T';
|
|
} else if (*ptr == &mp_type_list) {
|
|
c = 'L';
|
|
} else if (*ptr == &mp_type_dict) {
|
|
c = 'D';
|
|
} else if (*ptr == &mp_type_str || *ptr == &mp_type_bytes) {
|
|
c = 'S';
|
|
}
|
|
#if MICROPY_PY_BUILTINS_BYTEARRAY
|
|
else if (*ptr == &mp_type_bytearray) {
|
|
c = 'A';
|
|
}
|
|
#endif
|
|
#if MICROPY_PY_ARRAY
|
|
else if (*ptr == &mp_type_array) {
|
|
c = 'A';
|
|
}
|
|
#endif
|
|
#if MICROPY_PY_BUILTINS_FLOAT
|
|
else if (*ptr == &mp_type_float) {
|
|
c = 'F';
|
|
}
|
|
#endif
|
|
else if (*ptr == &mp_type_fun_bc) {
|
|
c = 'B';
|
|
} else if (*ptr == &mp_type_module) {
|
|
c = 'M';
|
|
} else {
|
|
c = 'h';
|
|
#if 0
|
|
// This code prints "Q" for qstr-pool data, and "q" for qstr-str
|
|
// data. It can be useful to see how qstrs are being allocated,
|
|
// but is disabled by default because it is very slow.
|
|
for (qstr_pool_t *pool = MP_STATE_VM(last_pool); c == 'h' && pool != NULL; pool = pool->prev) {
|
|
if ((qstr_pool_t *)ptr == pool) {
|
|
c = 'Q';
|
|
break;
|
|
}
|
|
for (const byte **q = pool->qstrs, **q_top = pool->qstrs + pool->len; q < q_top; q++) {
|
|
if ((const byte *)ptr == *q) {
|
|
c = 'q';
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
break;
|
|
}
|
|
case AT_TAIL:
|
|
c = '=';
|
|
break;
|
|
case AT_MARK:
|
|
c = 'm';
|
|
break;
|
|
}
|
|
mp_printf(&mp_plat_print, "%c", c);
|
|
}
|
|
mp_print_str(&mp_plat_print, "\n");
|
|
GC_EXIT();
|
|
}
|
|
|
|
#if 0
|
|
// For testing the GC functions
|
|
void gc_test(void) {
|
|
mp_uint_t len = 500;
|
|
mp_uint_t *heap = malloc(len);
|
|
gc_init(heap, heap + len / sizeof(mp_uint_t));
|
|
void *ptrs[100];
|
|
{
|
|
mp_uint_t **p = gc_alloc(16, false);
|
|
p[0] = gc_alloc(64, false);
|
|
p[1] = gc_alloc(1, false);
|
|
p[2] = gc_alloc(1, false);
|
|
p[3] = gc_alloc(1, false);
|
|
mp_uint_t ***p2 = gc_alloc(16, false);
|
|
p2[0] = p;
|
|
p2[1] = p;
|
|
ptrs[0] = p2;
|
|
}
|
|
for (int i = 0; i < 25; i += 2) {
|
|
mp_uint_t *p = gc_alloc(i, false);
|
|
printf("p=%p\n", p);
|
|
if (i & 3) {
|
|
// ptrs[i] = p;
|
|
}
|
|
}
|
|
|
|
printf("Before GC:\n");
|
|
gc_dump_alloc_table();
|
|
printf("Starting GC...\n");
|
|
gc_collect_start();
|
|
gc_collect_root(ptrs, sizeof(ptrs) / sizeof(void *));
|
|
gc_collect_end();
|
|
printf("After GC:\n");
|
|
gc_dump_alloc_table();
|
|
}
|
|
#endif
|
|
|
|
#endif // MICROPY_ENABLE_GC
|