circuitpython/ports/atmel-samd/supervisor/port.c
Scott Shawcroft 73c15dcf8b Merge commit 'f869d6b2e339c04469c6c9ea3fb2fabd7bbb2d8c' into nrf2_merge
This is prep for merging in the NRF5 pull request.
2017-10-24 22:31:16 -07:00

269 lines
9.9 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "boards/board.h"
#include "supervisor/port.h"
// ASF 4
#include "atmel_start_pins.h"
#include "hal/include/hal_delay.h"
#include "hal/include/hal_gpio.h"
#include "hal/include/hal_init.h"
#include "hal/include/hal_usb_device.h"
#include "hpl/gclk/hpl_gclk_base.h"
#include "hpl/pm/hpl_pm_base.h"
#include "common-hal/microcontroller/Pin.h"
#include "tick.h"
extern volatile bool mp_msc_enabled;
#if defined(SAMD21) && defined(ENABLE_MICRO_TRACE_BUFFER)
// Stores 2 ^ TRACE_BUFFER_MAGNITUDE_PACKETS packets.
// 7 -> 128 packets
#define TRACE_BUFFER_MAGNITUDE_PACKETS 7
// Size in uint32_t. Two per packet.
#define TRACE_BUFFER_SIZE (1 << (TRACE_BUFFER_MAGNITUDE_PACKETS + 1))
// Size in bytes. 4 bytes per uint32_t.
#define TRACE_BUFFER_SIZE_BYTES (TRACE_BUFFER_SIZE << 2)
__attribute__((__aligned__(TRACE_BUFFER_SIZE_BYTES))) uint32_t mtb[TRACE_BUFFER_SIZE];
#endif
safe_mode_t port_init(void) {
#if defined(SAMD21)
#ifdef ENABLE_MICRO_TRACE_BUFFER
REG_MTB_POSITION = ((uint32_t) (mtb - REG_MTB_BASE)) & 0xFFFFFFF8;
REG_MTB_FLOW = (((uint32_t) mtb - REG_MTB_BASE) + TRACE_BUFFER_SIZE_BYTES) & 0xFFFFFFF8;
REG_MTB_MASTER = 0x80000000 + (TRACE_BUFFER_MAGNITUDE_PACKETS - 1);
#else
// Triple check that the MTB is off. Switching between debug and non-debug
// builds can leave it set over reset and wreak havok as a result.
REG_MTB_MASTER = 0x00000000 + 6;
#endif
#endif
// // On power on start or external reset, set _ezero to the canary word. If it
// // gets killed, we boot in safe mod. _ezero is the boundary between statically
// // allocated memory including the fixed MicroPython heap and the stack. If either
// // misbehaves, the canary will not be in tact after soft reset.
// #ifdef CIRCUITPY_CANARY_WORD
// if (PM->RCAUSE.bit.POR == 1 || PM->RCAUSE.bit.EXT == 1) {
// _ezero = CIRCUITPY_CANARY_WORD;
// } else if (PM->RCAUSE.bit.SYST == 1) {
// // If we're starting from a system reset we're likely coming from the
// // bootloader or hard fault handler. If we're coming from the handler
// // the canary will be CIRCUITPY_SAFE_RESTART_WORD and we don't want to
// // revive the canary so that a second hard fault won't restart. Resets
// // from anywhere else are ok.
// if (_ezero == CIRCUITPY_SAFE_RESTART_WORD) {
// _ezero = ~CIRCUITPY_CANARY_WORD;
// } else {
// _ezero = CIRCUITPY_CANARY_WORD;
// }
// }
// #endif
//
// load_serial_number();
init_mcu();
board_init();
// Configure millisecond timer initialization.
tick_init();
// Uncomment to init PIN_PA17 for debugging.
// struct port_config pin_conf;
// port_get_config_defaults(&pin_conf);
//
// pin_conf.direction = PORT_PIN_DIR_OUTPUT;
// port_pin_set_config(MICROPY_HW_LED1, &pin_conf);
// port_pin_set_output_level(MICROPY_HW_LED1, false);
// Output clocks for debugging.
#ifdef SAMD51
gpio_set_pin_function(PIN_PA10, GPIO_PIN_FUNCTION_M); // GCLK4, D3
gpio_set_pin_function(PIN_PA11, GPIO_PIN_FUNCTION_M); // GCLK5, A4
gpio_set_pin_function(PIN_PB14, GPIO_PIN_FUNCTION_M); // GCLK0, D5
gpio_set_pin_function(PIN_PB15, GPIO_PIN_FUNCTION_M); // GCLK1, D6
#endif
// Init the nvm controller.
// struct nvm_config config_nvm;
// nvm_get_config_defaults(&config_nvm);
// config_nvm.manual_page_write = false;
// nvm_set_config(&config_nvm);
// init_shared_dma();
#ifdef CIRCUITPY_CANARY_WORD
// Run in safe mode if the canary is corrupt.
if (_ezero != CIRCUITPY_CANARY_WORD) {
return HARD_CRASH;
}
#endif
// if (PM->RCAUSE.bit.BOD33 == 1 || PM->RCAUSE.bit.BOD12 == 1) {
// return BROWNOUT;
// }
if (board_requests_safe_mode()) {
return USER_SAFE_MODE;
}
// #if CIRCUITPY_INTERNAL_NVM_SIZE > 0
// // Upgrade the nvm flash to include one sector for eeprom emulation.
// struct nvm_fusebits fuses;
// if (nvm_get_fuses(&fuses) == STATUS_OK &&
// fuses.eeprom_size == NVM_EEPROM_EMULATOR_SIZE_0) {
// #ifdef INTERNAL_FLASH_FS
// // Shift the internal file system up one row.
// for (uint8_t row = 0; row < TOTAL_INTERNAL_FLASH_SIZE / NVMCTRL_ROW_SIZE; row++) {
// uint32_t new_row_address = INTERNAL_FLASH_MEM_SEG1_START_ADDR + row * NVMCTRL_ROW_SIZE;
// nvm_erase_row(new_row_address);
// nvm_write_buffer(new_row_address,
// (uint8_t*) (new_row_address + CIRCUITPY_INTERNAL_EEPROM_SIZE),
// NVMCTRL_ROW_SIZE);
// }
// #endif
// uint32_t nvm_size = CIRCUITPY_INTERNAL_NVM_SIZE;
// uint8_t enum_value = 6;
// while (nvm_size > 256 && enum_value != 255) {
// nvm_size /= 2;
// enum_value -= 1;
// }
// if (enum_value != 255 && nvm_size == 256) {
// // Mark the last section as eeprom now.
// fuses.eeprom_size = (enum nvm_eeprom_emulator_size) enum_value;
// nvm_set_fuses(&fuses);
// }
// }
// #endif
return NO_SAFE_MODE;
}
void reset_port(void) {
// Reset all SERCOMs except the one being used by the SPI flash.
// Sercom *sercom_instances[SERCOM_INST_NUM] = SERCOM_INSTS;
// for (int i = 0; i < SERCOM_INST_NUM; i++) {
// #ifdef SPI_FLASH_SERCOM
// if (sercom_instances[i] == SPI_FLASH_SERCOM) {
// continue;
// }
// #endif
// #ifdef MICROPY_HW_APA102_SERCOM
// if (sercom_instances[i] == MICROPY_HW_APA102_SERCOM) {
// continue;
// }
// #endif
// sercom_instances[i]->SPI.CTRLA.bit.SWRST = 1;
// }
//
// #ifdef EXPRESS_BOARD
// audioout_reset();
// touchin_reset();
// pdmin_reset();
// pulsein_reset();
// pulseout_reset();
// pwmout_reset();
// #endif
//
// analogin_reset();
//
// #ifdef CIRCUITPY_GAMEPAD_TICKS
// gamepad_reset();
// #endif
//
// // Wait for the DAC to sync then reset.
// while (DAC->STATUS.reg & DAC_STATUS_SYNCBUSY) {}
// DAC->CTRLA.reg |= DAC_CTRLA_SWRST;
reset_all_pins();
//
//
// usb_hid_reset();
//
// #ifdef CALIBRATE_CRYSTALLESS
// // If we are on USB lets double check our fine calibration for the clock and
// // save the new value if its different enough.
// if (mp_msc_enabled) {
// SYSCTRL->DFLLSYNC.bit.READREQ = 1;
// uint16_t saved_calibration = 0x1ff;
// if (strcmp((char*) INTERNAL_CIRCUITPY_CONFIG_START_ADDR, "CIRCUITPYTHON1") == 0) {
// saved_calibration = ((uint16_t *) INTERNAL_CIRCUITPY_CONFIG_START_ADDR)[8];
// }
// while (SYSCTRL->PCLKSR.bit.DFLLRDY == 0) {
// // TODO(tannewt): Run the mass storage stuff if this takes a while.
// }
// int16_t current_calibration = SYSCTRL->DFLLVAL.bit.FINE;
// if (abs(current_calibration - saved_calibration) > 10) {
// enum status_code error_code;
// uint8_t page_buffer[NVMCTRL_ROW_SIZE];
// for (int i = 0; i < NVMCTRL_ROW_PAGES; i++) {
// do
// {
// error_code = nvm_read_buffer(INTERNAL_CIRCUITPY_CONFIG_START_ADDR + i * NVMCTRL_PAGE_SIZE,
// page_buffer + i * NVMCTRL_PAGE_SIZE,
// NVMCTRL_PAGE_SIZE);
// } while (error_code == STATUS_BUSY);
// }
// // If this is the first write, include the header.
// if (strcmp((char*) page_buffer, "CIRCUITPYTHON1") != 0) {
// memcpy(page_buffer, "CIRCUITPYTHON1", 15);
// }
// // First 16 bytes (0-15) are ID. Little endian!
// page_buffer[16] = current_calibration & 0xff;
// page_buffer[17] = current_calibration >> 8;
// do
// {
// error_code = nvm_erase_row(INTERNAL_CIRCUITPY_CONFIG_START_ADDR);
// } while (error_code == STATUS_BUSY);
// for (int i = 0; i < NVMCTRL_ROW_PAGES; i++) {
// do
// {
// error_code = nvm_write_buffer(INTERNAL_CIRCUITPY_CONFIG_START_ADDR + i * NVMCTRL_PAGE_SIZE,
// page_buffer + i * NVMCTRL_PAGE_SIZE,
// NVMCTRL_PAGE_SIZE);
// } while (error_code == STATUS_BUSY);
// }
// }
// }
// #endif
}
/**
* \brief Default interrupt handler for unused IRQs.
*/
__attribute__((used)) void HardFault_Handler(void)
{
while (true) {
asm("");
}
for (uint32_t i = 0; i < 100000; i++) {
asm("noop;");
}
}