841 lines
42 KiB
C
841 lines
42 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2021 Scott Shawcroft for Adafruit Industries
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
// This file contains all of the Python API definitions for the
|
|
// rp2pio.StateMachine class.
|
|
|
|
#include <string.h>
|
|
|
|
#include "shared-bindings/microcontroller/Pin.h"
|
|
#include "bindings/rp2pio/StateMachine.h"
|
|
#include "shared-bindings/util.h"
|
|
|
|
#include "shared/runtime/buffer_helper.h"
|
|
#include "shared/runtime/context_manager_helpers.h"
|
|
#include "shared/runtime/interrupt_char.h"
|
|
#include "py/binary.h"
|
|
#include "py/mperrno.h"
|
|
#include "py/objproperty.h"
|
|
#include "py/runtime.h"
|
|
#include "supervisor/shared/translate/translate.h"
|
|
|
|
|
|
//| class StateMachine:
|
|
//| """A single PIO StateMachine
|
|
//|
|
|
//| The programmable I/O peripheral on the RP2 series of microcontrollers is
|
|
//| unique. It is a collection of generic state machines that can be
|
|
//| used for a variety of protocols. State machines may be independent or
|
|
//| coordinated. Program memory and IRQs are shared between the state machines
|
|
//| in a particular PIO instance. They are independent otherwise.
|
|
//|
|
|
//| This class is designed to facilitate sharing of PIO resources. By default,
|
|
//| it is assumed that the state machine is used on its own and can be placed
|
|
//| in either PIO. State machines with the same program will be placed in the
|
|
//| same PIO if possible."""
|
|
//|
|
|
//| def __init__(
|
|
//| self,
|
|
//| program: ReadableBuffer,
|
|
//| frequency: int,
|
|
//| *,
|
|
//| init: Optional[ReadableBuffer] = None,
|
|
//| first_out_pin: Optional[microcontroller.Pin] = None,
|
|
//| out_pin_count: int = 1,
|
|
//| initial_out_pin_state: int = 0,
|
|
//| initial_out_pin_direction: int = 0xFFFFFFFF,
|
|
//| first_in_pin: Optional[microcontroller.Pin] = None,
|
|
//| in_pin_count: int = 1,
|
|
//| pull_in_pin_up: int = 0,
|
|
//| pull_in_pin_down: int = 0,
|
|
//| first_set_pin: Optional[microcontroller.Pin] = None,
|
|
//| set_pin_count: int = 1,
|
|
//| initial_set_pin_state: int = 0,
|
|
//| initial_set_pin_direction: int = 0x1F,
|
|
//| first_sideset_pin: Optional[microcontroller.Pin] = None,
|
|
//| sideset_pin_count: int = 1,
|
|
//| initial_sideset_pin_state: int = 0,
|
|
//| initial_sideset_pin_direction: int = 0x1F,
|
|
//| sideset_enable: bool = False,
|
|
//| jmp_pin: Optional[microcontroller.Pin] = None,
|
|
//| jmp_pin_pull: Optional[digitalio.Pull] = None,
|
|
//| exclusive_pin_use: bool = True,
|
|
//| auto_pull: bool = False,
|
|
//| pull_threshold: int = 32,
|
|
//| out_shift_right: bool = True,
|
|
//| wait_for_txstall: bool = True,
|
|
//| auto_push: bool = False,
|
|
//| push_threshold: int = 32,
|
|
//| in_shift_right: bool = True,
|
|
//| user_interruptible: bool = True,
|
|
//| wrap_target: int = 0,
|
|
//| wrap: int = -1,
|
|
//| ) -> None:
|
|
//|
|
|
//| """Construct a StateMachine object on the given pins with the given program.
|
|
//|
|
|
//| :param ReadableBuffer program: the program to run with the state machine
|
|
//| :param int frequency: the target clock frequency of the state machine. Actual may be less. Use 0 for system clock speed.
|
|
//| :param ReadableBuffer init: a program to run once at start up. This is run after program
|
|
//| is started so instructions may be intermingled
|
|
//| :param ~microcontroller.Pin first_out_pin: the first pin to use with the OUT instruction
|
|
//| :param int out_pin_count: the count of consecutive pins to use with OUT starting at first_out_pin
|
|
//| :param int initial_out_pin_state: the initial output value for out pins starting at first_out_pin
|
|
//| :param int initial_out_pin_direction: the initial output direction for out pins starting at first_out_pin
|
|
//| :param ~microcontroller.Pin first_in_pin: the first pin to use with the IN instruction
|
|
//| :param int in_pin_count: the count of consecutive pins to use with IN starting at first_in_pin
|
|
//| :param int pull_in_pin_up: a 1-bit in this mask sets pull up on the corresponding in pin
|
|
//| :param int pull_in_pin_down: a 1-bit in this mask sets pull down on the corresponding in pin. Setting both pulls enables a "bus keep" function, i.e. a weak pull to whatever is current high/low state of GPIO.
|
|
//| :param ~microcontroller.Pin first_set_pin: the first pin to use with the SET instruction
|
|
//| :param int set_pin_count: the count of consecutive pins to use with SET starting at first_set_pin
|
|
//| :param int initial_set_pin_state: the initial output value for set pins starting at first_set_pin
|
|
//| :param int initial_set_pin_direction: the initial output direction for set pins starting at first_set_pin
|
|
//| :param ~microcontroller.Pin first_sideset_pin: the first pin to use with a side set
|
|
//| :param int sideset_pin_count: the count of consecutive pins to use with a side set starting at first_sideset_pin. Does not include sideset enable
|
|
//| :param int initial_sideset_pin_state: the initial output value for sideset pins starting at first_sideset_pin
|
|
//| :param int initial_sideset_pin_direction: the initial output direction for sideset pins starting at first_sideset_pin
|
|
//| :param bool sideset_enable: True when the top sideset bit is to enable. This should be used with the ".side_set # opt" directive
|
|
//| :param ~microcontroller.Pin jmp_pin: the pin which determines the branch taken by JMP PIN instructions
|
|
//| :param ~digitalio.Pull jmp_pin_pull: The pull value for the jmp pin, default is no pull.
|
|
//| :param bool exclusive_pin_use: When True, do not share any pins with other state machines. Pins are never shared with other peripherals
|
|
//| :param bool auto_pull: When True, automatically load data from the tx FIFO into the
|
|
//| output shift register (OSR) when an OUT instruction shifts more than pull_threshold bits
|
|
//| :param int pull_threshold: Number of bits to shift before loading a new value into the OSR from the tx FIFO
|
|
//| :param bool out_shift_right: When True, data is shifted out the right side (LSB) of the
|
|
//| OSR. It is shifted out the left (MSB) otherwise. NOTE! This impacts data alignment
|
|
//| when the number of bytes is not a power of two (1, 2 or 4 bytes).
|
|
//| :param bool wait_for_txstall: When True, writing data out will block until the TX FIFO and OSR are empty
|
|
//| and an instruction is stalled waiting for more data. When False, data writes won't
|
|
//| wait for the OSR to empty (only the TX FIFO) so make sure you give enough time before
|
|
//| deiniting or stopping the state machine.
|
|
//| :param bool auto_push: When True, automatically save data from input shift register
|
|
//| (ISR) into the rx FIFO when an IN instruction shifts more than push_threshold bits
|
|
//| :param int push_threshold: Number of bits to shift before saving the ISR value to the RX FIFO
|
|
//| :param bool in_shift_right: When True, data is shifted into the right side (LSB) of the
|
|
//| ISR. It is shifted into the left (MSB) otherwise. NOTE! This impacts data alignment
|
|
//| when the number of bytes is not a power of two (1, 2 or 4 bytes).
|
|
//| :param bool user_interruptible: When True (the default),
|
|
//| `write()`, `readinto()`, and `write_readinto()` can be interrupted by a ctrl-C.
|
|
//| This is useful when developing a PIO program: if there is an error in the program
|
|
//| that causes an infinite loop, you will be able to interrupt the loop.
|
|
//| However, if you are writing to a device that can get into a bad state if a read or write
|
|
//| is interrupted, you may want to set this to False after your program has been vetted.
|
|
//| :param int wrap_target: The target instruction number of automatic wrap. Defaults to the first instruction of the program.
|
|
//| :param int wrap: The instruction after which to wrap to the ``wrap``
|
|
//| instruction. As a special case, -1 (the default) indicates the
|
|
//| last instruction of the program.
|
|
//| """
|
|
//| ...
|
|
|
|
STATIC mp_obj_t rp2pio_statemachine_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
|
|
rp2pio_statemachine_obj_t *self = m_new_obj(rp2pio_statemachine_obj_t);
|
|
self->base.type = &rp2pio_statemachine_type;
|
|
enum { ARG_program, ARG_frequency, ARG_init,
|
|
ARG_first_out_pin, ARG_out_pin_count, ARG_initial_out_pin_state, ARG_initial_out_pin_direction,
|
|
ARG_first_in_pin, ARG_in_pin_count,
|
|
ARG_pull_in_pin_up, ARG_pull_in_pin_down,
|
|
ARG_first_set_pin, ARG_set_pin_count, ARG_initial_set_pin_state, ARG_initial_set_pin_direction,
|
|
ARG_first_sideset_pin, ARG_sideset_pin_count, ARG_initial_sideset_pin_state, ARG_initial_sideset_pin_direction,
|
|
ARG_sideset_enable,
|
|
ARG_jmp_pin, ARG_jmp_pin_pull,
|
|
ARG_exclusive_pin_use,
|
|
ARG_auto_pull, ARG_pull_threshold, ARG_out_shift_right,
|
|
ARG_wait_for_txstall,
|
|
ARG_auto_push, ARG_push_threshold, ARG_in_shift_right,
|
|
ARG_user_interruptible,
|
|
ARG_wrap_target,
|
|
ARG_wrap,};
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_program, MP_ARG_REQUIRED | MP_ARG_OBJ },
|
|
{ MP_QSTR_frequency, MP_ARG_REQUIRED | MP_ARG_INT },
|
|
{ MP_QSTR_init, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
|
|
|
|
{ MP_QSTR_first_out_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
|
|
{ MP_QSTR_out_pin_count, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
|
|
{ MP_QSTR_initial_out_pin_state, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
|
{ MP_QSTR_initial_out_pin_direction, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
|
|
|
|
{ MP_QSTR_first_in_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
|
|
{ MP_QSTR_in_pin_count, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
|
|
{ MP_QSTR_pull_in_pin_up, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
|
{ MP_QSTR_pull_in_pin_down, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
|
|
|
{ MP_QSTR_first_set_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
|
|
{ MP_QSTR_set_pin_count, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
|
|
{ MP_QSTR_initial_set_pin_state, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
|
{ MP_QSTR_initial_set_pin_direction, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x1f} },
|
|
|
|
{ MP_QSTR_first_sideset_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
|
|
{ MP_QSTR_sideset_pin_count, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
|
|
{ MP_QSTR_initial_sideset_pin_state, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
|
{ MP_QSTR_initial_sideset_pin_direction, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x1f} },
|
|
|
|
{ MP_QSTR_sideset_enable, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
|
|
|
|
{ MP_QSTR_jmp_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
|
|
{ MP_QSTR_jmp_pin_pull, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
|
|
|
|
{ MP_QSTR_exclusive_pin_use, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} },
|
|
{ MP_QSTR_auto_pull, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
|
|
{ MP_QSTR_pull_threshold, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 32} },
|
|
{ MP_QSTR_out_shift_right, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} },
|
|
{ MP_QSTR_wait_for_txstall, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} },
|
|
{ MP_QSTR_auto_push, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
|
|
{ MP_QSTR_push_threshold, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 32} },
|
|
{ MP_QSTR_in_shift_right, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} },
|
|
{ MP_QSTR_user_interruptible, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} },
|
|
|
|
{ MP_QSTR_wrap_target, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
|
{ MP_QSTR_wrap, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
|
|
};
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
mp_buffer_info_t bufinfo;
|
|
mp_get_buffer_raise(args[ARG_program].u_obj, &bufinfo, MP_BUFFER_READ);
|
|
|
|
mp_buffer_info_t init_bufinfo;
|
|
init_bufinfo.len = 0;
|
|
mp_get_buffer(args[ARG_init].u_obj, &init_bufinfo, MP_BUFFER_READ);
|
|
|
|
// We don't validate pin in use here because we may be ok sharing them within a PIO.
|
|
const mcu_pin_obj_t *first_out_pin = validate_obj_is_pin_or_none(args[ARG_first_out_pin].u_obj);
|
|
mp_int_t out_pin_count = mp_arg_validate_int_min(args[ARG_out_pin_count].u_int, 1, MP_QSTR_out_pin_count);
|
|
|
|
const mcu_pin_obj_t *first_in_pin = validate_obj_is_pin_or_none(args[ARG_first_in_pin].u_obj);
|
|
mp_int_t in_pin_count = mp_arg_validate_int_min(args[ARG_in_pin_count].u_int, 1, MP_QSTR_in_pin_count);
|
|
|
|
const mcu_pin_obj_t *first_set_pin = validate_obj_is_pin_or_none(args[ARG_first_set_pin].u_obj);
|
|
mp_int_t set_pin_count = mp_arg_validate_int_range(args[ARG_set_pin_count].u_int, 1, 5, MP_QSTR_set_pin_count);
|
|
|
|
const mcu_pin_obj_t *first_sideset_pin = validate_obj_is_pin_or_none(args[ARG_first_sideset_pin].u_obj);
|
|
mp_int_t sideset_pin_count = mp_arg_validate_int_range(args[ARG_sideset_pin_count].u_int, 1, 5, MP_QSTR_set_pin_count);
|
|
|
|
const mcu_pin_obj_t *jmp_pin = validate_obj_is_pin_or_none(args[ARG_jmp_pin].u_obj);
|
|
digitalio_pull_t jmp_pin_pull = validate_pull(args[ARG_jmp_pin_pull].u_rom_obj, MP_QSTR_jmp_pull);
|
|
|
|
mp_int_t pull_threshold =
|
|
mp_arg_validate_int_range(args[ARG_pull_threshold].u_int, 1, 32, MP_QSTR_pull_threshold);
|
|
mp_int_t push_threshold =
|
|
mp_arg_validate_int_range(args[ARG_push_threshold].u_int, 1, 32, MP_QSTR_push_threshold);
|
|
|
|
mp_arg_validate_length_range(bufinfo.len, 2, 64, MP_QSTR_program);
|
|
if (bufinfo.len % 2 != 0) {
|
|
mp_raise_ValueError(translate("Program size invalid"));
|
|
}
|
|
|
|
mp_arg_validate_length_range(init_bufinfo.len, 0, 64, MP_QSTR_init);
|
|
if (init_bufinfo.len % 2 != 0) {
|
|
mp_raise_ValueError(translate("Init program size invalid"));
|
|
}
|
|
|
|
int wrap = args[ARG_wrap].u_int;
|
|
int wrap_target = args[ARG_wrap_target].u_int;
|
|
|
|
common_hal_rp2pio_statemachine_construct(self,
|
|
bufinfo.buf, bufinfo.len / 2,
|
|
args[ARG_frequency].u_int,
|
|
init_bufinfo.buf, init_bufinfo.len / 2,
|
|
first_out_pin, args[ARG_out_pin_count].u_int, args[ARG_initial_out_pin_state].u_int, args[ARG_initial_out_pin_direction].u_int,
|
|
first_in_pin, args[ARG_in_pin_count].u_int, args[ARG_pull_in_pin_up].u_int, args[ARG_pull_in_pin_down].u_int,
|
|
first_set_pin, args[ARG_set_pin_count].u_int, args[ARG_initial_set_pin_state].u_int, args[ARG_initial_set_pin_direction].u_int,
|
|
first_sideset_pin, args[ARG_sideset_pin_count].u_int, args[ARG_initial_sideset_pin_state].u_int, args[ARG_initial_sideset_pin_direction].u_int,
|
|
args[ARG_sideset_enable].u_bool,
|
|
jmp_pin, jmp_pin_pull,
|
|
0,
|
|
args[ARG_exclusive_pin_use].u_bool,
|
|
args[ARG_auto_pull].u_bool, pull_threshold, args[ARG_out_shift_right].u_bool,
|
|
args[ARG_wait_for_txstall].u_bool,
|
|
args[ARG_auto_push].u_bool, push_threshold, args[ARG_in_shift_right].u_bool,
|
|
args[ARG_user_interruptible].u_bool,
|
|
wrap_target, wrap);
|
|
return MP_OBJ_FROM_PTR(self);
|
|
}
|
|
|
|
//| def deinit(self) -> None:
|
|
//| """Turn off the state machine and release its resources."""
|
|
//| ...
|
|
STATIC mp_obj_t rp2pio_statemachine_obj_deinit(mp_obj_t self_in) {
|
|
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
common_hal_rp2pio_statemachine_deinit(self);
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_deinit_obj, rp2pio_statemachine_obj_deinit);
|
|
|
|
//| def __enter__(self) -> StateMachine:
|
|
//| """No-op used by Context Managers.
|
|
//| Provided by context manager helper."""
|
|
//| ...
|
|
|
|
//| def __exit__(self) -> None:
|
|
//| """Automatically deinitializes the hardware when exiting a context. See
|
|
//| :ref:`lifetime-and-contextmanagers` for more info."""
|
|
//| ...
|
|
STATIC mp_obj_t rp2pio_statemachine_obj___exit__(size_t n_args, const mp_obj_t *args) {
|
|
(void)n_args;
|
|
common_hal_rp2pio_statemachine_deinit(args[0]);
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rp2pio_statemachine_obj___exit___obj, 4, 4, rp2pio_statemachine_obj___exit__);
|
|
|
|
|
|
STATIC void check_for_deinit(rp2pio_statemachine_obj_t *self) {
|
|
if (common_hal_rp2pio_statemachine_deinited(self)) {
|
|
raise_deinited_error();
|
|
}
|
|
}
|
|
|
|
//| def restart(self) -> None:
|
|
//| """Resets this state machine, runs any init and enables the clock."""
|
|
//| ...
|
|
// TODO: "and any others given. They must share an underlying PIO. An exception will be raised otherwise.""
|
|
STATIC mp_obj_t rp2pio_statemachine_restart(mp_obj_t self_obj) {
|
|
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_obj);
|
|
check_for_deinit(self);
|
|
|
|
common_hal_rp2pio_statemachine_restart(self);
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_restart_obj, rp2pio_statemachine_restart);
|
|
|
|
|
|
//| def run(self, instructions: ReadableBuffer) -> None:
|
|
//| """Runs all given instructions. They will likely be interleaved with
|
|
//| in-memory instructions. Make sure this doesn't wait for input!
|
|
//|
|
|
//| This can be used to output internal state to the RX FIFO and then
|
|
//| read with `readinto`."""
|
|
//| ...
|
|
STATIC mp_obj_t rp2pio_statemachine_run(mp_obj_t self_obj, mp_obj_t instruction_obj) {
|
|
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_obj);
|
|
check_for_deinit(self);
|
|
|
|
mp_buffer_info_t bufinfo;
|
|
mp_get_buffer_raise(instruction_obj, &bufinfo, MP_BUFFER_READ);
|
|
|
|
common_hal_rp2pio_statemachine_run(self, bufinfo.buf, bufinfo.len);
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_2(rp2pio_statemachine_run_obj, rp2pio_statemachine_run);
|
|
|
|
//| def stop(self) -> None:
|
|
//| """Stops the state machine clock. Use `restart` to enable it."""
|
|
//| ...
|
|
STATIC mp_obj_t rp2pio_statemachine_stop(mp_obj_t self_obj) {
|
|
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_obj);
|
|
check_for_deinit(self);
|
|
|
|
common_hal_rp2pio_statemachine_stop(self);
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_stop_obj, rp2pio_statemachine_stop);
|
|
|
|
//| def write(
|
|
//| self,
|
|
//| buffer: ReadableBuffer,
|
|
//| *,
|
|
//| start: int = 0,
|
|
//| end: Optional[int] = None,
|
|
//| swap: bool = False
|
|
//| ) -> None:
|
|
//| """Write the data contained in ``buffer`` to the state machine. If the buffer is empty, nothing happens.
|
|
//|
|
|
//| Writes to the FIFO will match the input buffer's element size. For example, bytearray elements
|
|
//| will perform 8 bit writes to the PIO FIFO. The RP2040's memory bus will duplicate the value into
|
|
//| the other byte positions. So, pulling more data in the PIO assembly will read the duplicated values.
|
|
//|
|
|
//| To perform 16 or 32 bits writes into the FIFO use an `array.array` with a type code of the desired
|
|
//| size.
|
|
//|
|
|
//| :param ~circuitpython_typing.ReadableBuffer buffer: Write out the data in this buffer
|
|
//| :param int start: Start of the slice of ``buffer`` to write out: ``buffer[start:end]``
|
|
//| :param int end: End of the slice; this index is not included. Defaults to ``len(buffer)``
|
|
//| :param bool swap: For 2- and 4-byte elements, swap (reverse) the byte order"""
|
|
//| ...
|
|
STATIC mp_obj_t rp2pio_statemachine_write(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
enum { ARG_buffer, ARG_start, ARG_end, ARG_swap };
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_buffer, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
|
{ MP_QSTR_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} },
|
|
{ MP_QSTR_swap, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
|
|
};
|
|
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
|
|
check_for_deinit(self);
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
mp_buffer_info_t bufinfo;
|
|
mp_get_buffer_raise(args[ARG_buffer].u_obj, &bufinfo, MP_BUFFER_READ);
|
|
int32_t start = args[ARG_start].u_int;
|
|
size_t length = bufinfo.len;
|
|
normalize_buffer_bounds(&start, args[ARG_end].u_int, &length);
|
|
if (length == 0) {
|
|
return mp_const_none;
|
|
}
|
|
|
|
uint8_t *original_pointer = bufinfo.buf;
|
|
int stride_in_bytes = mp_binary_get_size('@', bufinfo.typecode, NULL);
|
|
if (stride_in_bytes > 4) {
|
|
mp_raise_ValueError(translate("Buffer elements must be 4 bytes long or less"));
|
|
}
|
|
|
|
bool ok = common_hal_rp2pio_statemachine_write(self, ((uint8_t *)bufinfo.buf) + start, length, stride_in_bytes, args[ARG_swap].u_bool);
|
|
if (mp_hal_is_interrupted()) {
|
|
return mp_const_none;
|
|
}
|
|
if (!ok) {
|
|
mp_raise_OSError(MP_EIO);
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(rp2pio_statemachine_write_obj, 2, rp2pio_statemachine_write);
|
|
|
|
//| def background_write(
|
|
//| self,
|
|
//| once: Optional[ReadableBuffer] = None,
|
|
//| *,
|
|
//| loop: Optional[ReadableBuffer] = None,
|
|
//| swap: bool = False
|
|
//| ) -> None:
|
|
//| """Write data to the TX fifo in the background, with optional looping.
|
|
//|
|
|
//| First, if any previous ``once`` or ``loop`` buffer has not been started, this function blocks until they have.
|
|
//| This means that any ``once`` or ``loop`` buffer will be written at least once.
|
|
//| Then the ``once`` and/or ``loop`` buffers are queued. and the function returns.
|
|
//| The ``once`` buffer (if specified) will be written just once.
|
|
//| Finally, the ``loop`` buffer (if specified) will continue being looped indefinitely.
|
|
//|
|
|
//| Writes to the FIFO will match the input buffer's element size. For example, bytearray elements
|
|
//| will perform 8 bit writes to the PIO FIFO. The RP2040's memory bus will duplicate the value into
|
|
//| the other byte positions. So, pulling more data in the PIO assembly will read the duplicated values.
|
|
//|
|
|
//| To perform 16 or 32 bits writes into the FIFO use an `array.array` with a type code of the desired
|
|
//| size, or use `memoryview.cast` to change the interpretation of an
|
|
//| existing buffer. To send just part of a larger buffer, slice a `memoryview`
|
|
//| of it.
|
|
//|
|
|
//| If a buffer is modified while it is being written out, the updated
|
|
//| values will be used. However, because of interactions between CPU
|
|
//| writes, DMA and the PIO FIFO are complex, it is difficult to predict
|
|
//| the result of modifying multiple values. Instead, alternate between
|
|
//| a pair of buffers.
|
|
//|
|
|
//| Having both a ``once`` and a ``loop`` parameter is to support a special case in PWM generation
|
|
//| where a change in duty cycle requires a special transitional buffer to be used exactly once. Most
|
|
//| use cases will probably only use one of ``once`` or ``loop``.
|
|
//|
|
|
//| Having neither ``once`` nor ``loop`` terminates an existing
|
|
//| background looping write after exactly a whole loop. This is in contrast to
|
|
//| `stop_background_write`, which interrupts an ongoing DMA operation.
|
|
//|
|
|
//| :param ~Optional[circuitpython_typing.ReadableBuffer] once: Data to be written once
|
|
//| :param ~Optional[circuitpython_typing.ReadableBuffer] loop: Data to be written repeatedly
|
|
//| :param bool swap: For 2- and 4-byte elements, swap (reverse) the byte order
|
|
//| """
|
|
//| ...
|
|
|
|
STATIC void fill_buf_info(sm_buf_info *info, mp_obj_t obj, size_t *stride_in_bytes) {
|
|
if (obj != mp_const_none) {
|
|
info->obj = obj;
|
|
mp_get_buffer_raise(obj, &info->info, MP_BUFFER_READ);
|
|
size_t stride = mp_binary_get_size('@', info->info.typecode, NULL);
|
|
if (stride > 4) {
|
|
mp_raise_ValueError(translate("Buffer elements must be 4 bytes long or less"));
|
|
}
|
|
if (*stride_in_bytes && stride != *stride_in_bytes) {
|
|
mp_raise_ValueError(translate("Mismatched data size"));
|
|
}
|
|
*stride_in_bytes = stride;
|
|
} else {
|
|
memset(info, 0, sizeof(*info));
|
|
}
|
|
}
|
|
|
|
STATIC mp_obj_t rp2pio_statemachine_background_write(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
enum { ARG_once, ARG_loop, ARG_swap };
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_once, MP_ARG_OBJ, {.u_obj = mp_const_none} },
|
|
{ MP_QSTR_loop, MP_ARG_OBJ | MP_ARG_KW_ONLY, {.u_obj = mp_const_none} },
|
|
{ MP_QSTR_swap, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
|
|
};
|
|
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
|
|
check_for_deinit(self);
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
sm_buf_info once_info;
|
|
sm_buf_info loop_info;
|
|
size_t stride_in_bytes = 0;
|
|
fill_buf_info(&once_info, args[ARG_once].u_obj, &stride_in_bytes);
|
|
fill_buf_info(&loop_info, args[ARG_loop].u_obj, &stride_in_bytes);
|
|
if (!stride_in_bytes) {
|
|
return mp_const_none;
|
|
}
|
|
|
|
bool ok = common_hal_rp2pio_statemachine_background_write(self, &once_info, &loop_info, stride_in_bytes, args[ARG_swap].u_bool);
|
|
|
|
if (mp_hal_is_interrupted()) {
|
|
return mp_const_none;
|
|
}
|
|
if (!ok) {
|
|
mp_raise_OSError(MP_EIO);
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(rp2pio_statemachine_background_write_obj, 1, rp2pio_statemachine_background_write);
|
|
|
|
//| def stop_background_write(self) -> None:
|
|
//| """Immediately stop a background write, if one is in progress. Any
|
|
//| DMA in progress is halted, but items already in the TX FIFO are not
|
|
//| affected."""
|
|
STATIC mp_obj_t rp2pio_statemachine_obj_stop_background_write(mp_obj_t self_in) {
|
|
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
bool ok = common_hal_rp2pio_statemachine_stop_background_write(self);
|
|
if (mp_hal_is_interrupted()) {
|
|
return mp_const_none;
|
|
}
|
|
if (!ok) {
|
|
mp_raise_OSError(MP_EIO);
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_stop_background_write_obj, rp2pio_statemachine_obj_stop_background_write);
|
|
|
|
//| writing: bool
|
|
//| """Returns True if a background write is in progress"""
|
|
STATIC mp_obj_t rp2pio_statemachine_obj_get_writing(mp_obj_t self_in) {
|
|
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
return mp_obj_new_bool(common_hal_rp2pio_statemachine_get_writing(self));
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_get_writing_obj, rp2pio_statemachine_obj_get_writing);
|
|
|
|
const mp_obj_property_t rp2pio_statemachine_writing_obj = {
|
|
.base.type = &mp_type_property,
|
|
.proxy = {(mp_obj_t)&rp2pio_statemachine_get_writing_obj,
|
|
MP_ROM_NONE,
|
|
MP_ROM_NONE},
|
|
};
|
|
|
|
|
|
//| pending: int
|
|
//| """Returns the number of pending buffers for background writing.
|
|
//|
|
|
//| If the number is 0, then a `StateMachine.background_write` call will not block."""
|
|
STATIC mp_obj_t rp2pio_statemachine_obj_get_pending(mp_obj_t self_in) {
|
|
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
return mp_obj_new_int(common_hal_rp2pio_statemachine_get_pending(self));
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_get_pending_obj, rp2pio_statemachine_obj_get_pending);
|
|
|
|
const mp_obj_property_t rp2pio_statemachine_pending_obj = {
|
|
.base.type = &mp_type_property,
|
|
.proxy = {(mp_obj_t)&rp2pio_statemachine_get_pending_obj,
|
|
MP_ROM_NONE,
|
|
MP_ROM_NONE},
|
|
};
|
|
|
|
//| def readinto(
|
|
//| self,
|
|
//| buffer: WriteableBuffer,
|
|
//| *,
|
|
//| start: int = 0,
|
|
//| end: Optional[int] = None,
|
|
//| swap: bool = False
|
|
//| ) -> None:
|
|
//| """Read into ``buffer``. If the number of bytes to read is 0, nothing happens. The buffer
|
|
//| includes any data added to the fifo even if it was added before this was called.
|
|
//|
|
|
//| Reads from the FIFO will match the input buffer's element size. For example, bytearray elements
|
|
//| will perform 8 bit reads from the PIO FIFO. The alignment within the 32 bit value depends on
|
|
//| ``in_shift_right``. When ``in_shift_right`` is True, the upper N bits will be read. The lower
|
|
//| bits will be read when ``in_shift_right`` is False.
|
|
//|
|
|
//| To perform 16 or 32 bits writes into the FIFO use an `array.array` with a type code of the desired
|
|
//| size.
|
|
//|
|
|
//| :param ~circuitpython_typing.WriteableBuffer buffer: Read data into this buffer
|
|
//| :param int start: Start of the slice of ``buffer`` to read into: ``buffer[start:end]``
|
|
//| :param int end: End of the slice; this index is not included. Defaults to ``len(buffer)``
|
|
//| :param bool swap: For 2- and 4-byte elements, swap (reverse) the byte order"""
|
|
//| ...
|
|
|
|
STATIC mp_obj_t rp2pio_statemachine_readinto(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
enum { ARG_buffer, ARG_start, ARG_end, ARG_swap };
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_buffer, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
|
{ MP_QSTR_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} },
|
|
{ MP_QSTR_swap, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
|
|
};
|
|
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
|
|
check_for_deinit(self);
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
mp_buffer_info_t bufinfo;
|
|
mp_get_buffer_raise(args[ARG_buffer].u_obj, &bufinfo, MP_BUFFER_WRITE);
|
|
int32_t start = args[ARG_start].u_int;
|
|
size_t length = bufinfo.len;
|
|
normalize_buffer_bounds(&start, args[ARG_end].u_int, &length);
|
|
|
|
if (length == 0) {
|
|
return mp_const_none;
|
|
}
|
|
|
|
uint8_t *original_pointer = bufinfo.buf;
|
|
int stride_in_bytes = mp_binary_get_size('@', bufinfo.typecode, NULL);
|
|
if (stride_in_bytes > 4) {
|
|
mp_raise_ValueError(translate("Buffer elements must be 4 bytes long or less"));
|
|
}
|
|
|
|
bool ok = common_hal_rp2pio_statemachine_readinto(self, ((uint8_t *)bufinfo.buf) + start, length, stride_in_bytes, args[ARG_swap].u_bool);
|
|
if (!ok) {
|
|
mp_raise_OSError(MP_EIO);
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(rp2pio_statemachine_readinto_obj, 2, rp2pio_statemachine_readinto);
|
|
|
|
//| def write_readinto(
|
|
//| self,
|
|
//| buffer_out: ReadableBuffer,
|
|
//| buffer_in: WriteableBuffer,
|
|
//| *,
|
|
//| out_start: int = 0,
|
|
//| out_end: Optional[int] = None,
|
|
//| in_start: int = 0,
|
|
//| in_end: Optional[int] = None
|
|
//| ) -> None:
|
|
//| """Write out the data in ``buffer_out`` while simultaneously reading data into ``buffer_in``.
|
|
//| The lengths of the slices defined by ``buffer_out[out_start:out_end]`` and ``buffer_in[in_start:in_end]``
|
|
//| may be different. The function will return once both are filled.
|
|
//| If buffer slice lengths are both 0, nothing happens.
|
|
//|
|
|
//| Data transfers to and from the FIFOs will match the corresponding buffer's element size. See
|
|
//| `write` and `readinto` for details.
|
|
//|
|
|
//| To perform 16 or 32 bits writes into the FIFO use an `array.array` with a type code of the desired
|
|
//| size.
|
|
//|
|
|
//| :param ~circuitpython_typing.ReadableBuffer buffer_out: Write out the data in this buffer
|
|
//| :param ~circuitpython_typing.WriteableBuffer buffer_in: Read data into this buffer
|
|
//| :param int out_start: Start of the slice of buffer_out to write out: ``buffer_out[out_start:out_end]``
|
|
//| :param int out_end: End of the slice; this index is not included. Defaults to ``len(buffer_out)``
|
|
//| :param int in_start: Start of the slice of ``buffer_in`` to read into: ``buffer_in[in_start:in_end]``
|
|
//| :param int in_end: End of the slice; this index is not included. Defaults to ``len(buffer_in)``
|
|
//| :param bool swap_out: For 2- and 4-byte elements, swap (reverse) the byte order for the buffer being transmitted (written)
|
|
//| :param bool swap_in: For 2- and 4-rx elements, swap (reverse) the byte order for the buffer being received (read)"""
|
|
//| ...
|
|
|
|
STATIC mp_obj_t rp2pio_statemachine_write_readinto(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
enum { ARG_buffer_out, ARG_buffer_in, ARG_out_start, ARG_out_end, ARG_in_start, ARG_in_end, ARG_swap_out, ARG_swap_in };
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_buffer_out, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_buffer_in, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_out_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
|
{ MP_QSTR_out_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} },
|
|
{ MP_QSTR_in_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
|
{ MP_QSTR_in_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} },
|
|
{ MP_QSTR_swap_out, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
|
|
{ MP_QSTR_swap_in, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
|
|
};
|
|
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
|
|
check_for_deinit(self);
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
mp_buffer_info_t buf_out_info;
|
|
mp_get_buffer_raise(args[ARG_buffer_out].u_obj, &buf_out_info, MP_BUFFER_READ);
|
|
int32_t out_start = args[ARG_out_start].u_int;
|
|
size_t out_length = buf_out_info.len;
|
|
normalize_buffer_bounds(&out_start, args[ARG_out_end].u_int, &out_length);
|
|
|
|
mp_buffer_info_t buf_in_info;
|
|
mp_get_buffer_raise(args[ARG_buffer_in].u_obj, &buf_in_info, MP_BUFFER_WRITE);
|
|
int32_t in_start = args[ARG_in_start].u_int;
|
|
size_t in_length = buf_in_info.len;
|
|
normalize_buffer_bounds(&in_start, args[ARG_in_end].u_int, &in_length);
|
|
|
|
if (out_length == 0 && in_length == 0) {
|
|
return mp_const_none;
|
|
}
|
|
|
|
int in_stride_in_bytes = mp_binary_get_size('@', buf_in_info.typecode, NULL);
|
|
if (in_stride_in_bytes > 4) {
|
|
mp_raise_ValueError(translate("In-buffer elements must be <= 4 bytes long"));
|
|
}
|
|
|
|
int out_stride_in_bytes = mp_binary_get_size('@', buf_out_info.typecode, NULL);
|
|
if (out_stride_in_bytes > 4) {
|
|
mp_raise_ValueError(translate("Out-buffer elements must be <= 4 bytes long"));
|
|
}
|
|
|
|
bool ok = common_hal_rp2pio_statemachine_write_readinto(self,
|
|
((uint8_t *)buf_out_info.buf) + out_start,
|
|
out_length,
|
|
out_stride_in_bytes,
|
|
((uint8_t *)buf_in_info.buf) + in_start,
|
|
in_length,
|
|
in_stride_in_bytes, args[ARG_swap_out].u_bool, args[ARG_swap_in].u_bool);
|
|
if (!ok) {
|
|
mp_raise_OSError(MP_EIO);
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(rp2pio_statemachine_write_readinto_obj, 2, rp2pio_statemachine_write_readinto);
|
|
|
|
//| def clear_rxfifo(self) -> None:
|
|
//| """Clears any unread bytes in the rxfifo."""
|
|
//| ...
|
|
STATIC mp_obj_t rp2pio_statemachine_obj_clear_rxfifo(mp_obj_t self_in) {
|
|
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
common_hal_rp2pio_statemachine_clear_rxfifo(self);
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_clear_rxfifo_obj, rp2pio_statemachine_obj_clear_rxfifo);
|
|
|
|
//| def clear_txstall(self) -> None:
|
|
//| """Clears the txstall flag."""
|
|
//| ...
|
|
STATIC mp_obj_t rp2pio_statemachine_obj_clear_txstall(mp_obj_t self_in) {
|
|
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
common_hal_rp2pio_statemachine_clear_txstall(self);
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_clear_txstall_obj, rp2pio_statemachine_obj_clear_txstall);
|
|
|
|
|
|
//| frequency: int
|
|
//| """The actual state machine frequency. This may not match the frequency requested
|
|
//| due to internal limitations."""
|
|
|
|
STATIC mp_obj_t rp2pio_statemachine_obj_get_frequency(mp_obj_t self_in) {
|
|
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
check_for_deinit(self);
|
|
return MP_OBJ_NEW_SMALL_INT(common_hal_rp2pio_statemachine_get_frequency(self));
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_get_frequency_obj, rp2pio_statemachine_obj_get_frequency);
|
|
|
|
STATIC mp_obj_t rp2pio_statemachine_obj_set_frequency(mp_obj_t self_in, mp_obj_t frequency) {
|
|
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
check_for_deinit(self);
|
|
|
|
common_hal_rp2pio_statemachine_set_frequency(self, mp_obj_get_int(frequency));
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_2(rp2pio_statemachine_set_frequency_obj, rp2pio_statemachine_obj_set_frequency);
|
|
|
|
MP_PROPERTY_GETSET(rp2pio_statemachine_frequency_obj,
|
|
(mp_obj_t)&rp2pio_statemachine_get_frequency_obj,
|
|
(mp_obj_t)&rp2pio_statemachine_set_frequency_obj);
|
|
|
|
//| txstall: bool
|
|
//| """True when the state machine has stalled due to a full TX FIFO since the last
|
|
//| `clear_txstall` call."""
|
|
|
|
STATIC mp_obj_t rp2pio_statemachine_obj_get_txstall(mp_obj_t self_in) {
|
|
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
check_for_deinit(self);
|
|
return MP_OBJ_NEW_SMALL_INT(common_hal_rp2pio_statemachine_get_txstall(self));
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_get_txstall_obj, rp2pio_statemachine_obj_get_txstall);
|
|
|
|
const mp_obj_property_t rp2pio_statemachine_txstall_obj = {
|
|
.base.type = &mp_type_property,
|
|
.proxy = {(mp_obj_t)&rp2pio_statemachine_get_txstall_obj,
|
|
MP_ROM_NONE,
|
|
MP_ROM_NONE},
|
|
};
|
|
|
|
|
|
//| rxstall: bool
|
|
//| """True when the state machine has stalled due to a full RX FIFO since the last
|
|
//| `clear_rxfifo` call."""
|
|
|
|
STATIC mp_obj_t rp2pio_statemachine_obj_get_rxstall(mp_obj_t self_in) {
|
|
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
check_for_deinit(self);
|
|
return MP_OBJ_NEW_SMALL_INT(common_hal_rp2pio_statemachine_get_rxstall(self));
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_get_rxstall_obj, rp2pio_statemachine_obj_get_rxstall);
|
|
|
|
MP_PROPERTY_GETTER(rp2pio_statemachine_rxstall_obj,
|
|
(mp_obj_t)&rp2pio_statemachine_get_rxstall_obj);
|
|
|
|
//| in_waiting: int
|
|
//| """The number of words available to readinto"""
|
|
|
|
STATIC mp_obj_t rp2pio_statemachine_obj_get_in_waiting(mp_obj_t self_in) {
|
|
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
check_for_deinit(self);
|
|
return MP_OBJ_NEW_SMALL_INT(common_hal_rp2pio_statemachine_get_in_waiting(self));
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_get_in_waiting_obj, rp2pio_statemachine_obj_get_in_waiting);
|
|
|
|
MP_PROPERTY_GETTER(rp2pio_statemachine_in_waiting_obj,
|
|
(mp_obj_t)&rp2pio_statemachine_get_in_waiting_obj);
|
|
|
|
STATIC const mp_rom_map_elem_t rp2pio_statemachine_locals_dict_table[] = {
|
|
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&rp2pio_statemachine_deinit_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR___enter__), MP_ROM_PTR(&default___enter___obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR___exit__), MP_ROM_PTR(&rp2pio_statemachine_obj___exit___obj) },
|
|
|
|
{ MP_ROM_QSTR(MP_QSTR_stop), MP_ROM_PTR(&rp2pio_statemachine_stop_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_restart), MP_ROM_PTR(&rp2pio_statemachine_restart_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_run), MP_ROM_PTR(&rp2pio_statemachine_run_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_clear_rxfifo), MP_ROM_PTR(&rp2pio_statemachine_clear_rxfifo_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_clear_txstall), MP_ROM_PTR(&rp2pio_statemachine_clear_txstall_obj) },
|
|
|
|
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&rp2pio_statemachine_readinto_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&rp2pio_statemachine_write_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&rp2pio_statemachine_write_readinto_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_background_write), MP_ROM_PTR(&rp2pio_statemachine_background_write_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_stop_background_write), MP_ROM_PTR(&rp2pio_statemachine_stop_background_write_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_writing), MP_ROM_PTR(&rp2pio_statemachine_writing_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_pending), MP_ROM_PTR(&rp2pio_statemachine_pending_obj) },
|
|
|
|
{ MP_ROM_QSTR(MP_QSTR_frequency), MP_ROM_PTR(&rp2pio_statemachine_frequency_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_rxstall), MP_ROM_PTR(&rp2pio_statemachine_rxstall_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_txstall), MP_ROM_PTR(&rp2pio_statemachine_txstall_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_in_waiting), MP_ROM_PTR(&rp2pio_statemachine_in_waiting_obj) },
|
|
};
|
|
STATIC MP_DEFINE_CONST_DICT(rp2pio_statemachine_locals_dict, rp2pio_statemachine_locals_dict_table);
|
|
|
|
const mp_obj_type_t rp2pio_statemachine_type = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_StateMachine,
|
|
.make_new = rp2pio_statemachine_make_new,
|
|
.locals_dict = (mp_obj_dict_t *)&rp2pio_statemachine_locals_dict,
|
|
};
|
|
|
|
static rp2pio_statemachine_obj_t *validate_obj_is_statemachine(mp_obj_t obj) {
|
|
if (!mp_obj_is_type(obj, &rp2pio_statemachine_type)) {
|
|
mp_raise_TypeError_varg(translate("Expected a %q"), rp2pio_statemachine_type.name);
|
|
}
|
|
return MP_OBJ_TO_PTR(obj);
|
|
}
|