circuitpython/cc3200/mods/pybuart.c
Damien George 7f9d1d6ab9 py: Overhaul and simplify printf/pfenv mechanism.
Previous to this patch the printing mechanism was a bit of a tangled
mess.  This patch attempts to consolidate printing into one interface.

All (non-debug) printing now uses the mp_print* family of functions,
mainly mp_printf.  All these functions take an mp_print_t structure as
their first argument, and this structure defines the printing backend
through the "print_strn" function of said structure.

Printing from the uPy core can reach the platform-defined print code via
two paths: either through mp_sys_stdout_obj (defined pert port) in
conjunction with mp_stream_write; or through the mp_plat_print structure
which uses the MP_PLAT_PRINT_STRN macro to define how string are printed
on the platform.  The former is only used when MICROPY_PY_IO is defined.

With this new scheme printing is generally more efficient (less layers
to go through, less arguments to pass), and, given an mp_print_t*
structure, one can call mp_print_str for efficiency instead of
mp_printf("%s", ...).  Code size is also reduced by around 200 bytes on
Thumb2 archs.
2015-04-16 14:30:16 +00:00

672 lines
24 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2015 Daniel Campora
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include "py/mpconfig.h"
#include MICROPY_HAL_H
#include "py/obj.h"
#include "py/runtime.h"
#include "py/objlist.h"
#include "py/stream.h"
#include "inc/hw_types.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_uart.h"
#include "rom_map.h"
#include "interrupt.h"
#include "prcm.h"
#include "uart.h"
#include "pybuart.h"
#include "pybioctl.h"
#include "pybsleep.h"
#include "mpcallback.h"
#include "mpexception.h"
#include "py/mpstate.h"
#include "osi.h"
/// \moduleref pyb
/// \class UART - duplex serial communication bus
///
/// UART implements the standard UART/USART duplex serial communications protocol. At
/// the physical level it consists of 2 lines: RX and TX.
///
/// UART objects can be created and initialised using:
///
/// from pyb import UART
///
/// uart = UART(0, 9600) # init with given baudrate
/// uart.init(9600, bits=8, stop=1, parity=None) # init with given parameters
///
/// Bits can be 5, 6, 7, 8, parity can be None, 0 (even), 1 (odd). Stop can be 1 or 2.
///
/// A UART object acts like a stream object and reading and writing is done
/// using the standard stream methods:
///
/// uart.read(10) # read 10 characters, returns a bytes object
/// uart.readall() # read all available characters
/// uart.readline() # read a line
/// uart.readinto(buf) # read and store into the given buffer
/// uart.write('abc') # write the 3 characters
///
/// Individual characters can be read/written using:
///
/// uart.readchar() # read 1 character and returns it as an integer
/// uart.writechar(42) # write 1 character
///
/// To check if there is anything to be read, use:
///
/// uart.any() # returns True if any characters waiting
/******************************************************************************
DEFINE CONSTANTS
******************************************************************************/
#define PYBUART_TX_WAIT_MS 1
#define PYBUART_TX_MAX_TIMEOUT_MS 5
/******************************************************************************
DECLARE PRIVATE FUNCTIONS
******************************************************************************/
STATIC void uart_init (pyb_uart_obj_t *self);
STATIC bool uart_rx_wait (pyb_uart_obj_t *self, uint32_t timeout);
STATIC void UARTGenericIntHandler(uint32_t uart_id);
STATIC void UART0IntHandler(void);
STATIC void UART1IntHandler(void);
STATIC void uart_callback_enable (mp_obj_t self_in);
STATIC void uart_callback_disable (mp_obj_t self_in);
/******************************************************************************
DEFINE PRIVATE TYPES
******************************************************************************/
struct _pyb_uart_obj_t {
mp_obj_base_t base;
pyb_uart_id_t uart_id;
uint reg;
uint baudrate;
uint config;
uint flowcontrol;
byte *read_buf; // read buffer pointer
uint16_t timeout; // timeout waiting for first char
uint16_t timeout_char; // timeout waiting between chars
uint16_t read_buf_len; // len in chars; buf can hold len-1 chars
volatile uint16_t read_buf_head; // indexes first empty slot
uint16_t read_buf_tail; // indexes first full slot (not full if equals head)
byte peripheral;
};
/******************************************************************************
DECLARE PRIVATE DATA
******************************************************************************/
STATIC pyb_uart_obj_t pyb_uart_obj[PYB_NUM_UARTS];
STATIC const mp_cb_methods_t uart_cb_methods;
/******************************************************************************
DEFINE PUBLIC FUNCTIONS
******************************************************************************/
void uart_init0 (void) {
}
bool uart_rx_any(pyb_uart_obj_t *self) {
return (self->read_buf_tail != self->read_buf_head || MAP_UARTCharsAvail(self->reg));
}
int uart_rx_char(pyb_uart_obj_t *self) {
if (self->read_buf_tail != self->read_buf_head) {
// buffering via IRQ
int data = self->read_buf[self->read_buf_tail];
self->read_buf_tail = (self->read_buf_tail + 1) % self->read_buf_len;
return data;
} else {
// no buffering
return MAP_UARTCharGetNonBlocking(self->reg);
}
}
bool uart_tx_char(pyb_uart_obj_t *self, int c) {
uint32_t timeout = 0;
while (!MAP_UARTCharPutNonBlocking(self->reg, c)) {
if (timeout++ > (PYBUART_TX_MAX_TIMEOUT_MS / PYBUART_TX_WAIT_MS)) {
return false;
}
HAL_Delay (PYBUART_TX_WAIT_MS);
}
return true;
}
bool uart_tx_strn(pyb_uart_obj_t *self, const char *str, uint len) {
for (const char *top = str + len; str < top; str++) {
if (!uart_tx_char(self, *str)) {
return false;
}
}
return true;
}
void uart_tx_strn_cooked(pyb_uart_obj_t *self, const char *str, uint len) {
for (const char *top = str + len; str < top; str++) {
if (*str == '\n') {
uart_tx_char(self, '\r');
}
uart_tx_char(self, *str);
}
}
mp_obj_t uart_callback_new (pyb_uart_obj_t *self, mp_obj_t handler, uint rxbuffer_size, mp_int_t priority) {
// disable the uart interrupts before updating anything
uart_callback_disable (self);
if (self->uart_id == PYB_UART_0) {
MAP_IntPrioritySet(INT_UARTA0, priority);
MAP_UARTIntRegister(self->reg, UART0IntHandler);
}
else {
MAP_IntPrioritySet(INT_UARTA1, priority);
MAP_UARTIntRegister(self->reg, UART1IntHandler);
}
// check the rx buffer size
if (rxbuffer_size > 0) {
// allocate the read buffer
self->read_buf_len = rxbuffer_size;
self->read_buf = m_new(byte, rxbuffer_size);
}
// create the callback
mp_obj_t _callback = mpcallback_new ((mp_obj_t)self, handler, &uart_cb_methods);
// enable the interrupts now
uart_callback_enable (self);
return _callback;
}
/******************************************************************************
DEFINE PRIVATE FUNCTIONS
******************************************************************************/
// assumes init parameters have been set up correctly
STATIC void uart_init (pyb_uart_obj_t *self) {
if (self->uart_id == PYB_UART_0) {
self->reg = UARTA0_BASE;
self->peripheral = PRCM_UARTA0;
}
else {
self->reg = UARTA1_BASE;
self->peripheral = PRCM_UARTA1;
}
// Enable the peripheral clock
MAP_PRCMPeripheralClkEnable(self->peripheral, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
// Reset the uart
MAP_PRCMPeripheralReset(self->peripheral);
// Initialize the UART
MAP_UARTConfigSetExpClk(self->reg, MAP_PRCMPeripheralClockGet(self->peripheral),
self->baudrate, self->config);
// Enable the FIFO
MAP_UARTFIFOEnable(self->reg);
// Configure the FIFO interrupt levels
MAP_UARTFIFOLevelSet(self->reg, UART_FIFO_TX4_8, UART_FIFO_RX4_8);
// Configure the flow control mode
UARTFlowControlSet(self->reg, self->flowcontrol);
}
// Waits at most timeout milliseconds for at least 1 char to become ready for
// reading (from buf or for direct reading).
// Returns true if something available, false if not.
STATIC bool uart_rx_wait (pyb_uart_obj_t *self, uint32_t timeout) {
for ( ; ; ) {
if (uart_rx_any(self)) {
return true; // have at least 1 char ready for reading
}
if (timeout > 0) {
HAL_Delay (1);
timeout--;
}
else {
return false;
}
}
}
STATIC void UARTGenericIntHandler(uint32_t uart_id) {
pyb_uart_obj_t *self;
uint32_t status;
self = &pyb_uart_obj[uart_id];
status = MAP_UARTIntStatus(self->reg, true);
// receive interrupt
if (status & (UART_INT_RX | UART_INT_RT)) {
MAP_UARTIntClear(self->reg, UART_INT_RX | UART_INT_RT);
while (UARTCharsAvail(self->reg)) {
int data = MAP_UARTCharGetNonBlocking(self->reg);
if (pyb_stdio_uart == self && data == user_interrupt_char) {
// raise an exception when interrupts are finished
mpexception_keyboard_nlr_jump();
}
else if (self->read_buf_len != 0) {
uint16_t next_head = (self->read_buf_head + 1) % self->read_buf_len;
if (next_head != self->read_buf_tail) {
// only store data if room in buf
self->read_buf[self->read_buf_head] = data;
self->read_buf_head = next_head;
}
}
}
// call the user defined handler
mp_obj_t _callback = mpcallback_find(self);
mpcallback_handler(_callback);
}
}
STATIC void UART0IntHandler(void) {
UARTGenericIntHandler(0);
}
STATIC void UART1IntHandler(void) {
UARTGenericIntHandler(1);
}
STATIC void uart_callback_enable (mp_obj_t self_in) {
pyb_uart_obj_t *self = self_in;
MAP_UARTIntClear(self->reg, UART_INT_RX | UART_INT_RT);
MAP_UARTIntEnable(self->reg, UART_INT_RX | UART_INT_RT);
}
STATIC void uart_callback_disable (mp_obj_t self_in) {
pyb_uart_obj_t *self = self_in;
MAP_UARTIntDisable(self->reg, UART_INT_RX | UART_INT_RT);
}
/******************************************************************************/
/* Micro Python bindings */
STATIC void pyb_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_uart_obj_t *self = self_in;
if (self->baudrate > 0) {
mp_printf(print, "<UART%u, baudrate=%u, bits=", self->uart_id, self->baudrate);
switch (self->config & UART_CONFIG_WLEN_MASK) {
case UART_CONFIG_WLEN_5:
mp_print_str(print, "5");
break;
case UART_CONFIG_WLEN_6:
mp_print_str(print, "6");
break;
case UART_CONFIG_WLEN_7:
mp_print_str(print, "7");
break;
case UART_CONFIG_WLEN_8:
mp_print_str(print, "8");
break;
default:
break;
}
if ((self->config & UART_CONFIG_PAR_MASK) == UART_CONFIG_PAR_NONE) {
mp_print_str(print, ", parity=None");
} else {
mp_printf(print, ", parity=%u", (self->config & UART_CONFIG_PAR_MASK) == UART_CONFIG_PAR_EVEN ? 0 : 1);
}
mp_printf(print, ", stop=%u, timeout=%u, timeout_char=%u, read_buf_len=%u>",
(self->config & UART_CONFIG_STOP_MASK) == UART_CONFIG_STOP_ONE ? 1 : 2,
self->timeout, self->timeout_char, self->read_buf_len);
}
else {
mp_printf(print, "<UART%u>", self->uart_id);
}
}
/// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0)
///
/// Initialise the UART bus with the given parameters:
///
/// - `baudrate` is the clock rate.
/// - `bits` is the number of bits per byte, 7, 8 or 9.
/// - `parity` is the parity, `None`, 0 (even) or 1 (odd).
/// - `stop` is the number of stop bits, 1 or 2.
/// - `flowcontrol` is the flow control mode, `None`, `UART.FLOW_TX`,
/// `UART.FLOW_RX', 'UART.FLOW_TXRX`.
/// - `timeout` is the timeout (in milliseconds) when waiting for the first character.
/// - `timeout_char` is the timeout (in milliseconds) between characters.
STATIC const mp_arg_t pyb_uart_init_args[] = {
{ MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_parity, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_stop, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_int = UART_FLOWCONTROL_NONE} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} },
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
};
STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(pyb_uart_init_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(pyb_uart_init_args), pyb_uart_init_args, args);
// set timeouts
self->timeout = args[5].u_int;
self->timeout_char = args[6].u_int;
// no read buffer for the moment
self->read_buf_head = 0;
self->read_buf_tail = 0;
self->read_buf_len = 0;
self->read_buf = NULL;
// get the baudrate
self->baudrate = args[0].u_int;
// set the UART configuration values
if (n_args > 1) {
switch (args[1].u_int) {
case 5:
self->config = UART_CONFIG_WLEN_5;
break;
case 6:
self->config = UART_CONFIG_WLEN_6;
break;
case 7:
self->config = UART_CONFIG_WLEN_7;
break;
case 8:
self->config = UART_CONFIG_WLEN_8;
break;
default:
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
break;
}
// Parity
if (args[2].u_obj == mp_const_none) {
self->config |= UART_CONFIG_PAR_NONE;
} else {
self->config |= ((mp_obj_get_int(args[2].u_obj) & 1) ? UART_CONFIG_PAR_ODD : UART_CONFIG_PAR_EVEN);
}
// Stop bits
self->config |= (args[3].u_int == 1 ? UART_CONFIG_STOP_ONE : UART_CONFIG_STOP_TWO);
// Flow control
self->flowcontrol = args[4].u_int;
}
else {
self->config = UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE;
self->flowcontrol = UART_FLOWCONTROL_NONE;
}
// initialize and enable the uart
uart_init (self);
// register it with the sleep module
pybsleep_add ((const mp_obj_t)self, (WakeUpCB_t)uart_init);
return mp_const_none;
}
/// \classmethod \constructor(bus, ...)
///
/// Construct a UART object on the given bus id. `bus id` can be 0 or 1
/// With no additional parameters, the UART object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any).
/// When only the baud rate is given the UART object is created and
/// initialized with the default configuration of: 8 bit transfers,
/// 1 stop bit, no parity and flow control disabled.
/// See `init` for parameters of initialisation.
/// If extra arguments are given, the bus is initialised with these arguments
/// See `init` for parameters of initialisation.
///
STATIC mp_obj_t pyb_uart_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_ARRAY_SIZE(pyb_uart_init_args), true);
// work out the uart id
pyb_uart_id_t uart_id = mp_obj_get_int(args[0]);
if (uart_id < PYB_UART_0 || uart_id > PYB_UART_1) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_resource_not_avaliable));
}
// get the correct uart instance
pyb_uart_obj_t *self = &pyb_uart_obj[uart_id];
self->base.type = &pyb_uart_type;
self->uart_id = uart_id;
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
}
return self;
}
STATIC mp_obj_t pyb_uart_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_uart_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init);
/// \method deinit()
/// Turn off the UART bus.
mp_obj_t pyb_uart_deinit(mp_obj_t self_in) {
pyb_uart_obj_t *self = self_in;
// unregister it with the sleep module
pybsleep_remove (self);
// invalidate the baudrate
self->baudrate = 0;
MAP_UARTIntDisable(self->reg, UART_INT_RX | UART_INT_RT);
MAP_UARTDisable(self->reg);
MAP_PRCMPeripheralClkDisable(self->peripheral, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit);
/// \method any()
/// Return `True` if any characters waiting, else `False`.
STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) {
pyb_uart_obj_t *self = self_in;
if (uart_rx_any(self)) {
return mp_const_true;
} else {
return mp_const_false;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any);
/// \method callback(handler, value, priority)
/// Creates a callback object associated with the uart
/// min num of arguments is 1 (value). The value is the size of the rx buffer
STATIC mp_obj_t pyb_uart_callback (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
mp_arg_val_t args[mpcallback_INIT_NUM_ARGS];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, mpcallback_INIT_NUM_ARGS, mpcallback_init_args, args);
// check if any parameters were passed
pyb_uart_obj_t *self = pos_args[0];
mp_obj_t _callback = mpcallback_find((mp_obj_t)self);
if (kw_args->used > 0 || !_callback) {
// convert the priority to the correct value
uint priority = mpcallback_translate_priority (args[2].u_int);
// check the power mode
if (PYB_PWR_MODE_ACTIVE != args[3].u_int) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
// register a new callback
return uart_callback_new (self, args[1].u_obj, args[3].u_int, priority);
}
return _callback;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_callback_obj, 1, pyb_uart_callback);
/// \method writechar(char)
/// Write a single character on the bus. `char` is an integer to write.
/// Return value: `None`.
STATIC mp_obj_t pyb_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) {
pyb_uart_obj_t *self = self_in;
// get the character to write
uint8_t data = mp_obj_get_int(char_in);
// send the character
if (!uart_tx_char(self, data)) {
nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(ETIMEDOUT)));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_uart_writechar_obj, pyb_uart_writechar);
/// \method readchar()
/// Receive a single character on the bus.
/// Return value: The character read, as an integer. Returns -1 on timeout.
STATIC mp_obj_t pyb_uart_readchar(mp_obj_t self_in) {
pyb_uart_obj_t *self = self_in;
if (uart_rx_wait(self, self->timeout)) {
return mp_obj_new_int(uart_rx_char(self));
} else {
// return -1 on timeout
return MP_OBJ_NEW_SMALL_INT(-1);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_readchar_obj, pyb_uart_readchar);
STATIC const mp_map_elem_t pyb_uart_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_uart_init_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_uart_deinit_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_any), (mp_obj_t)&pyb_uart_any_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_uart_callback_obj },
/// \method read([nbytes])
{ MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&mp_stream_read_obj },
/// \method readall()
{ MP_OBJ_NEW_QSTR(MP_QSTR_readall), (mp_obj_t)&mp_stream_readall_obj },
/// \method readline()
{ MP_OBJ_NEW_QSTR(MP_QSTR_readline), (mp_obj_t)&mp_stream_unbuffered_readline_obj},
/// \method readinto(buf[, nbytes])
{ MP_OBJ_NEW_QSTR(MP_QSTR_readinto), (mp_obj_t)&mp_stream_readinto_obj },
/// \method write(buf)
{ MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&mp_stream_write_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_writechar), (mp_obj_t)&pyb_uart_writechar_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_readchar), (mp_obj_t)&pyb_uart_readchar_obj },
// class constants
{ MP_OBJ_NEW_QSTR(MP_QSTR_FLOW_NONE), MP_OBJ_NEW_SMALL_INT(UART_FLOWCONTROL_NONE) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_FLOW_TX), MP_OBJ_NEW_SMALL_INT(UART_FLOWCONTROL_TX) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_FLOW_RX), MP_OBJ_NEW_SMALL_INT(UART_FLOWCONTROL_RX) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_FLOW_TXRX), MP_OBJ_NEW_SMALL_INT(UART_FLOWCONTROL_TX | UART_FLOWCONTROL_RX) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table);
STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
pyb_uart_obj_t *self = self_in;
byte *buf = buf_in;
// make sure we want at least 1 char
if (size == 0) {
return 0;
}
// wait for first char to become available
if (!uart_rx_wait(self, self->timeout)) {
// we can either return 0 to indicate EOF (then read() method returns b'')
// or return EAGAIN error to indicate non-blocking (then read() method returns None)
return 0;
}
// read the data
byte *orig_buf = buf;
for ( ; ; ) {
*buf++ = uart_rx_char(self);
if (--size == 0 || !uart_rx_wait(self, self->timeout_char)) {
// return number of bytes read
return buf - orig_buf;
}
}
}
STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
pyb_uart_obj_t *self = self_in;
const char *buf = buf_in;
// write the data
if (!uart_tx_strn(self, buf, size)) {
nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(ETIMEDOUT)));
}
return size;
}
STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) {
pyb_uart_obj_t *self = self_in;
mp_uint_t ret;
if (request == MP_IOCTL_POLL) {
mp_uint_t flags = arg;
ret = 0;
if ((flags & MP_IOCTL_POLL_RD) && uart_rx_any(self)) {
ret |= MP_IOCTL_POLL_RD;
}
if ((flags & MP_IOCTL_POLL_WR) && MAP_UARTSpaceAvail(self->reg)) {
ret |= MP_IOCTL_POLL_WR;
}
} else {
*errcode = EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}
STATIC const mp_stream_p_t uart_stream_p = {
.read = pyb_uart_read,
.write = pyb_uart_write,
.ioctl = pyb_uart_ioctl,
.is_text = false,
};
STATIC const mp_cb_methods_t uart_cb_methods = {
.init = pyb_uart_callback,
.enable = uart_callback_enable,
.disable = uart_callback_disable,
};
const mp_obj_type_t pyb_uart_type = {
{ &mp_type_type },
.name = MP_QSTR_UART,
.print = pyb_uart_print,
.make_new = pyb_uart_make_new,
.getiter = mp_identity,
.iternext = mp_stream_unbuffered_iter,
.stream_p = &uart_stream_p,
.locals_dict = (mp_obj_t)&pyb_uart_locals_dict,
};