6839fff313
* atmel-samd: Remove ASF3. This will break builds. * atmel-samd: Add ASF4 for the SAMD21 and SAMD51. * Introduce the supervisor concept to facilitate porting. The supervisor is the code which runs individual MicroPython VMs. By splitting it out we make it more consistent and easier to find. This also adds very basic SAMD21 and SAMD51 support using the supervisor. Only the REPL currently works. This begins the work for #178.
256 lines
10 KiB
C
256 lines
10 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
#include "shared_dma.h"
|
|
|
|
#include "py/gc.h"
|
|
#include "py/mpstate.h"
|
|
|
|
#undef ENABLE
|
|
|
|
// We allocate two DMA resources for the entire lifecycle of the board (not the
|
|
// vm) because the general_dma resource will be shared between the REPL and SPI
|
|
// flash. Both uses must block each other in order to prevent conflict.
|
|
struct dma_resource audio_dma;
|
|
struct dma_resource general_dma_tx;
|
|
struct dma_resource general_dma_rx;
|
|
|
|
void init_shared_dma(void) {
|
|
struct dma_resource_config config;
|
|
dma_get_config_defaults(&config);
|
|
|
|
// This allocates the lowest channel first so make sure the audio is first
|
|
// so it gets the highest priority.
|
|
config.peripheral_trigger = DAC_DMAC_ID_EMPTY;
|
|
config.trigger_action = DMA_TRIGGER_ACTION_BEAT;
|
|
config.event_config.input_action = DMA_EVENT_INPUT_TRIG;
|
|
config.event_config.event_output_enable = true;
|
|
dma_allocate(&audio_dma, &config);
|
|
// Turn on the transfer complete interrupt so that the job_status changes to done.
|
|
g_chan_interrupt_flag[audio_dma.channel_id] |= (1UL << DMA_CALLBACK_TRANSFER_DONE);
|
|
|
|
// Prioritize the RX channel over the TX channel because TX can cause an RX
|
|
// overflow.
|
|
dma_get_config_defaults(&config);
|
|
config.trigger_action = DMA_TRIGGER_ACTION_BEAT;
|
|
config.event_config.input_action = DMA_EVENT_INPUT_TRIG;
|
|
dma_allocate(&general_dma_rx, &config);
|
|
g_chan_interrupt_flag[general_dma_rx.channel_id] |= (1UL << DMA_CALLBACK_TRANSFER_DONE);
|
|
|
|
dma_get_config_defaults(&config);
|
|
config.trigger_action = DMA_TRIGGER_ACTION_BEAT;
|
|
config.event_config.input_action = DMA_EVENT_INPUT_TRIG;
|
|
dma_allocate(&general_dma_tx, &config);
|
|
g_chan_interrupt_flag[general_dma_tx.channel_id] |= (1UL << DMA_CALLBACK_TRANSFER_DONE);
|
|
|
|
// Be sneaky and reuse the active descriptor memory.
|
|
audio_dma.descriptor = &descriptor_section[audio_dma.channel_id];
|
|
general_dma_rx.descriptor = &descriptor_section[general_dma_rx.channel_id];
|
|
general_dma_tx.descriptor = &descriptor_section[general_dma_tx.channel_id];
|
|
}
|
|
|
|
static uint8_t sercom_index(Sercom* sercom) {
|
|
return ((uint32_t) sercom - (uint32_t) SERCOM0) / 0x400;
|
|
}
|
|
|
|
static void dma_configure(uint8_t channel, uint8_t trigsrc, bool output_event) {
|
|
system_interrupt_enter_critical_section();
|
|
/** Select the DMA channel and clear software trigger */
|
|
DMAC->CHID.reg = DMAC_CHID_ID(channel);
|
|
DMAC->CHCTRLA.reg &= ~DMAC_CHCTRLA_ENABLE;
|
|
DMAC->CHCTRLA.reg = DMAC_CHCTRLA_SWRST;
|
|
DMAC->SWTRIGCTRL.reg &= (uint32_t)(~(1 << channel));
|
|
uint32_t event_output_enable = 0;
|
|
if (output_event) {
|
|
event_output_enable = DMAC_CHCTRLB_EVOE;
|
|
}
|
|
DMAC->CHCTRLB.reg = DMAC_CHCTRLB_LVL(DMA_PRIORITY_LEVEL_0) |
|
|
DMAC_CHCTRLB_TRIGSRC(trigsrc) |
|
|
DMAC_CHCTRLB_TRIGACT(DMA_TRIGGER_ACTION_BEAT) |
|
|
event_output_enable;
|
|
system_interrupt_leave_critical_section();
|
|
}
|
|
|
|
enum status_code shared_dma_write(Sercom* sercom, const uint8_t* buffer, uint32_t length) {
|
|
if (general_dma_tx.job_status != STATUS_OK) {
|
|
return general_dma_tx.job_status;
|
|
}
|
|
dma_configure(general_dma_tx.channel_id, sercom_index(sercom) * 2 + 2, false);
|
|
|
|
// Set up TX second.
|
|
struct dma_descriptor_config descriptor_config;
|
|
dma_descriptor_get_config_defaults(&descriptor_config);
|
|
descriptor_config.beat_size = DMA_BEAT_SIZE_BYTE;
|
|
descriptor_config.dst_increment_enable = false;
|
|
descriptor_config.block_transfer_count = length;
|
|
descriptor_config.source_address = ((uint32_t)buffer + length);
|
|
// DATA register is consistently addressed across all SERCOM modes.
|
|
descriptor_config.destination_address = ((uint32_t)&sercom->SPI.DATA.reg);
|
|
|
|
dma_descriptor_create(general_dma_tx.descriptor, &descriptor_config);
|
|
enum status_code status = dma_start_transfer_job(&general_dma_tx);
|
|
if (status != STATUS_OK) {
|
|
return status;
|
|
}
|
|
|
|
// Wait for the dma transfer to finish.
|
|
while (general_dma_tx.job_status == STATUS_BUSY) {}
|
|
|
|
// Wait for the SPI transfer to complete.
|
|
while (sercom->SPI.INTFLAG.bit.TXC == 0) {}
|
|
|
|
// This transmit will cause the RX buffer overflow but we're OK with that.
|
|
// So, read the garbage and clear the overflow flag.
|
|
while (sercom->SPI.INTFLAG.bit.RXC == 1) {
|
|
sercom->SPI.DATA.reg;
|
|
}
|
|
sercom->SPI.STATUS.bit.BUFOVF = 1;
|
|
sercom->SPI.INTFLAG.reg = SERCOM_SPI_INTFLAG_ERROR;
|
|
|
|
return general_dma_tx.job_status;
|
|
}
|
|
|
|
enum status_code shared_dma_read(Sercom* sercom, uint8_t* buffer, uint32_t length, uint8_t tx) {
|
|
if (general_dma_tx.job_status != STATUS_OK) {
|
|
return general_dma_tx.job_status;
|
|
}
|
|
|
|
dma_configure(general_dma_tx.channel_id, sercom_index(sercom) * 2 + 2, false);
|
|
dma_configure(general_dma_rx.channel_id, sercom_index(sercom) * 2 + 1, false);
|
|
|
|
// Set up RX first.
|
|
struct dma_descriptor_config descriptor_config;
|
|
dma_descriptor_get_config_defaults(&descriptor_config);
|
|
descriptor_config.beat_size = DMA_BEAT_SIZE_BYTE;
|
|
descriptor_config.src_increment_enable = false;
|
|
descriptor_config.dst_increment_enable = true;
|
|
descriptor_config.block_transfer_count = length;
|
|
// DATA register is consistently addressed across all SERCOM modes.
|
|
descriptor_config.source_address = ((uint32_t)&sercom->SPI.DATA.reg);
|
|
descriptor_config.destination_address = ((uint32_t)buffer + length);
|
|
|
|
dma_descriptor_create(general_dma_rx.descriptor, &descriptor_config);
|
|
|
|
// Set up TX to retransmit the same byte over and over.
|
|
dma_descriptor_get_config_defaults(&descriptor_config);
|
|
descriptor_config.beat_size = DMA_BEAT_SIZE_BYTE;
|
|
descriptor_config.src_increment_enable = false;
|
|
descriptor_config.dst_increment_enable = false;
|
|
descriptor_config.block_transfer_count = length;
|
|
descriptor_config.source_address = ((uint32_t)&tx);
|
|
// DATA register is consistently addressed across all SERCOM modes.
|
|
descriptor_config.destination_address = ((uint32_t)&sercom->SPI.DATA.reg);
|
|
|
|
dma_descriptor_create(general_dma_tx.descriptor, &descriptor_config);
|
|
|
|
// Start the RX job first so we don't miss the first byte. The TX job clocks
|
|
// the output.
|
|
general_dma_rx.transfered_size = 0;
|
|
dma_start_transfer_job(&general_dma_rx);
|
|
general_dma_tx.transfered_size = 0;
|
|
dma_start_transfer_job(&general_dma_tx);
|
|
|
|
// Wait for the transfer to finish.
|
|
while (general_dma_rx.job_status == STATUS_BUSY) {}
|
|
|
|
while (sercom->SPI.INTFLAG.bit.RXC == 1) {}
|
|
return general_dma_rx.job_status;
|
|
}
|
|
|
|
bool allocate_block_counter() {
|
|
// Find a timer to count DMA block completions.
|
|
Tc *t = NULL;
|
|
Tc *tcs[TC_INST_NUM] = TC_INSTS;
|
|
for (uint8_t i = TC_INST_NUM; i > 0; i--) {
|
|
if (tcs[i - 1]->COUNT16.CTRLA.bit.ENABLE == 0) {
|
|
t = tcs[i - 1];
|
|
break;
|
|
}
|
|
}
|
|
if (t == NULL) {
|
|
return false;
|
|
}
|
|
MP_STATE_VM(audiodma_block_counter) = gc_alloc(sizeof(struct tc_module), false);
|
|
if (MP_STATE_VM(audiodma_block_counter) == NULL) {
|
|
return false;
|
|
}
|
|
|
|
// Don't bother setting the period. We set it before you playback anything.
|
|
struct tc_config config_tc;
|
|
tc_get_config_defaults(&config_tc);
|
|
config_tc.counter_size = TC_COUNTER_SIZE_16BIT;
|
|
config_tc.clock_prescaler = TC_CLOCK_PRESCALER_DIV1;
|
|
if (tc_init(MP_STATE_VM(audiodma_block_counter), t, &config_tc) != STATUS_OK) {
|
|
return false;
|
|
};
|
|
|
|
struct tc_events events_tc;
|
|
events_tc.generate_event_on_overflow = false;
|
|
events_tc.on_event_perform_action = true;
|
|
events_tc.event_action = TC_EVENT_ACTION_INCREMENT_COUNTER;
|
|
tc_enable_events(MP_STATE_VM(audiodma_block_counter), &events_tc);
|
|
|
|
// Connect the timer overflow event, which happens at the target frequency,
|
|
// to the DAC conversion trigger.
|
|
MP_STATE_VM(audiodma_block_event) = gc_alloc(sizeof(struct events_resource), false);
|
|
if (MP_STATE_VM(audiodma_block_event) == NULL) {
|
|
return false;
|
|
}
|
|
struct events_config config;
|
|
events_get_config_defaults(&config);
|
|
|
|
uint8_t user = EVSYS_ID_USER_TC3_EVU;
|
|
if (t == TC4) {
|
|
user = EVSYS_ID_USER_TC4_EVU;
|
|
} else if (t == TC5) {
|
|
user = EVSYS_ID_USER_TC5_EVU;
|
|
#ifdef TC6
|
|
} else if (t == TC6) {
|
|
user = EVSYS_ID_USER_TC6_EVU;
|
|
#endif
|
|
#ifdef TC7
|
|
} else if (t == TC7) {
|
|
user = EVSYS_ID_USER_TC7_EVU;
|
|
#endif
|
|
}
|
|
|
|
config.generator = EVSYS_ID_GEN_DMAC_CH_0;
|
|
config.path = EVENTS_PATH_ASYNCHRONOUS;
|
|
if (events_allocate(MP_STATE_VM(audiodma_block_event), &config) != STATUS_OK ||
|
|
events_attach_user(MP_STATE_VM(audiodma_block_event), user) != STATUS_OK) {
|
|
return false;
|
|
}
|
|
|
|
tc_enable(MP_STATE_VM(audiodma_block_counter));
|
|
tc_stop_counter(MP_STATE_VM(audiodma_block_counter));
|
|
return true;
|
|
}
|
|
|
|
void switch_audiodma_trigger(uint8_t trigger_dmac_id) {
|
|
dma_configure(audio_dma.channel_id, trigger_dmac_id, true);
|
|
}
|