2023-03-10 12:21:56 -05:00

546 lines
17 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
* Copyright (c) 2019 Lucian Copeland for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <sys/time.h>
#include "supervisor/board.h"
#include "supervisor/port.h"
#include "supervisor/filesystem.h"
#include "supervisor/shared/reload.h"
#include "py/runtime.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "bindings/espidf/__init__.h"
#include "bindings/espnow/__init__.h"
#include "bindings/espulp/__init__.h"
#include "common-hal/microcontroller/Pin.h"
#include "common-hal/analogio/AnalogOut.h"
#include "common-hal/busio/I2C.h"
#include "common-hal/busio/SPI.h"
#include "common-hal/busio/UART.h"
#include "common-hal/dualbank/__init__.h"
#include "common-hal/ps2io/Ps2.h"
#include "common-hal/pulseio/PulseIn.h"
#include "common-hal/pwmio/PWMOut.h"
#include "common-hal/watchdog/WatchDogTimer.h"
#include "common-hal/socketpool/Socket.h"
#include "common-hal/wifi/__init__.h"
#include "supervisor/background_callback.h"
#include "supervisor/memory.h"
#include "supervisor/shared/tick.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/microcontroller/RunMode.h"
#include "shared-bindings/rtc/__init__.h"
#include "shared-bindings/socketpool/__init__.h"
#include "shared-module/os/__init__.h"
#include "peripherals/rmt.h"
#include "peripherals/timer.h"
#if CIRCUITPY_COUNTIO || CIRCUITPY_ROTARYIO || CIRCUITPY_FREQUENCYIO
#include "peripherals/pcnt.h"
#endif
#if CIRCUITPY_TOUCHIO_USE_NATIVE
#include "peripherals/touch.h"
#endif
#if CIRCUITPY_AUDIOBUSIO
#include "common-hal/audiobusio/__init__.h"
#endif
#if CIRCUITPY_BLEIO
#include "shared-bindings/_bleio/__init__.h"
#endif
#if CIRCUITPY_ESPCAMERA
#include "esp_camera.h"
#endif
#ifndef CONFIG_IDF_TARGET_ESP32
#include "soc/cache_memory.h"
#endif
#include "soc/efuse_reg.h"
#include "soc/rtc_cntl_reg.h"
#include "esp_debug_helpers.h"
#include "bootloader_flash_config.h"
#include "esp_efuse.h"
#include "esp_ipc.h"
#include "esp_rom_efuse.h"
#ifdef CONFIG_IDF_TARGET_ESP32
#include "esp32/rom/efuse.h"
#endif
#include "esp_log.h"
#define TAG "port"
uint32_t *heap;
uint32_t heap_size;
STATIC esp_timer_handle_t _tick_timer;
STATIC esp_timer_handle_t _sleep_timer;
TaskHandle_t circuitpython_task = NULL;
extern void esp_restart(void) NORETURN;
STATIC void tick_on_cp_core(void *arg) {
supervisor_tick();
// CircuitPython's VM is run in a separate FreeRTOS task from timer callbacks. So, we have to
// notify the main task every time in case it's waiting for us.
xTaskNotifyGive(circuitpython_task);
}
// This function may happen on the PRO core when CP is on the APP core. So, make
// sure we run on the CP core.
STATIC void tick_timer_cb(void *arg) {
#if defined(CONFIG_FREERTOS_UNICORE) && CONFIG_FREERTOS_UNICORE
tick_on_cp_core(arg);
#else
// This only blocks until the start of the function. That's ok since the PRO
// core shouldn't care what we do.
esp_ipc_call(CONFIG_ESP_MAIN_TASK_AFFINITY, tick_on_cp_core, NULL);
#endif
}
void sleep_timer_cb(void *arg);
// The ESP-IDF determines these pins at runtime so we do too. This code is based on:
// https://github.com/espressif/esp-idf/blob/6d85d53ceec30c818a92c2fff8f5437d21c4720f/components/esp_hw_support/port/esp32/spiram_psram.c#L810
// IO-pins for PSRAM.
// WARNING: PSRAM shares all but the CS and CLK pins with the flash, so these defines
// hardcode the flash pins as well, making this code incompatible with either a setup
// that has the flash on non-standard pins or ESP32s with built-in flash.
#define PSRAM_SPIQ_SD0_IO 7
#define PSRAM_SPID_SD1_IO 8
#define PSRAM_SPIWP_SD3_IO 10
#define PSRAM_SPIHD_SD2_IO 9
#define FLASH_HSPI_CLK_IO 14
#define FLASH_HSPI_CS_IO 15
#define PSRAM_HSPI_SPIQ_SD0_IO 12
#define PSRAM_HSPI_SPID_SD1_IO 13
#define PSRAM_HSPI_SPIWP_SD3_IO 2
#define PSRAM_HSPI_SPIHD_SD2_IO 4
#ifdef CONFIG_SPIRAM
// PSRAM clock and cs IO should be configured based on hardware design.
// For ESP32-WROVER or ESP32-WROVER-B module, the clock IO is IO17, the cs IO is IO16,
// they are the default value for these two configs.
#define D0WD_PSRAM_CLK_IO CONFIG_D0WD_PSRAM_CLK_IO // Default value is 17
#define D0WD_PSRAM_CS_IO CONFIG_D0WD_PSRAM_CS_IO // Default value is 16
#define D2WD_PSRAM_CLK_IO CONFIG_D2WD_PSRAM_CLK_IO // Default value is 9
#define D2WD_PSRAM_CS_IO CONFIG_D2WD_PSRAM_CS_IO // Default value is 10
// There is no reason to change the pin of an embedded psram.
// So define the number of pin directly, instead of configurable.
#define D0WDR2_V3_PSRAM_CLK_IO 6
#define D0WDR2_V3_PSRAM_CS_IO 16
// For ESP32-PICO chip, the psram share clock with flash. The flash clock pin is fixed, which is IO6.
#define PICO_PSRAM_CLK_IO 6
#define PICO_PSRAM_CS_IO CONFIG_PICO_PSRAM_CS_IO // Default value is 10
#define PICO_V3_02_PSRAM_CLK_IO 10
#define PICO_V3_02_PSRAM_CS_IO 9
#endif // CONFIG_SPIRAM
static void _never_reset_spi_ram_flash(void) {
#if defined(CONFIG_IDF_TARGET_ESP32)
#if defined(CONFIG_SPIRAM)
uint32_t pkg_ver = esp_efuse_get_pkg_ver();
if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5) {
never_reset_pin_number(D2WD_PSRAM_CLK_IO);
never_reset_pin_number(D2WD_PSRAM_CS_IO);
} else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4 && esp_efuse_get_chip_ver() >= 3) {
// This chip is ESP32-PICO-V3 and doesn't have PSRAM.
} else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4)) {
never_reset_pin_number(PICO_PSRAM_CLK_IO);
never_reset_pin_number(PICO_PSRAM_CS_IO);
} else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOV302) {
never_reset_pin_number(PICO_V3_02_PSRAM_CLK_IO);
never_reset_pin_number(PICO_V3_02_PSRAM_CS_IO);
} else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ6) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ5)) {
never_reset_pin_number(D0WD_PSRAM_CLK_IO);
never_reset_pin_number(D0WD_PSRAM_CS_IO);
} else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDR2V3) {
never_reset_pin_number(D0WDR2_V3_PSRAM_CLK_IO);
never_reset_pin_number(D0WDR2_V3_PSRAM_CS_IO);
}
#endif // CONFIG_SPIRAM
const uint32_t spiconfig = esp_rom_efuse_get_flash_gpio_info();
if (spiconfig == ESP_ROM_EFUSE_FLASH_DEFAULT_SPI) {
never_reset_pin_number(SPI_IOMUX_PIN_NUM_CLK);
never_reset_pin_number(SPI_IOMUX_PIN_NUM_CS);
never_reset_pin_number(PSRAM_SPIQ_SD0_IO);
never_reset_pin_number(PSRAM_SPID_SD1_IO);
never_reset_pin_number(PSRAM_SPIWP_SD3_IO);
never_reset_pin_number(PSRAM_SPIHD_SD2_IO);
} else if (spiconfig == ESP_ROM_EFUSE_FLASH_DEFAULT_HSPI) {
never_reset_pin_number(FLASH_HSPI_CLK_IO);
never_reset_pin_number(FLASH_HSPI_CS_IO);
never_reset_pin_number(PSRAM_HSPI_SPIQ_SD0_IO);
never_reset_pin_number(PSRAM_HSPI_SPID_SD1_IO);
never_reset_pin_number(PSRAM_HSPI_SPIWP_SD3_IO);
never_reset_pin_number(PSRAM_HSPI_SPIHD_SD2_IO);
} else {
never_reset_pin_number(EFUSE_SPICONFIG_RET_SPICLK(spiconfig));
never_reset_pin_number(EFUSE_SPICONFIG_RET_SPICS0(spiconfig));
never_reset_pin_number(EFUSE_SPICONFIG_RET_SPIQ(spiconfig));
never_reset_pin_number(EFUSE_SPICONFIG_RET_SPID(spiconfig));
never_reset_pin_number(EFUSE_SPICONFIG_RET_SPIHD(spiconfig));
never_reset_pin_number(bootloader_flash_get_wp_pin());
}
#endif // CONFIG_IDF_TARGET_ESP32
}
safe_mode_t port_init(void) {
esp_timer_create_args_t args;
args.callback = &tick_timer_cb;
args.arg = NULL;
args.dispatch_method = ESP_TIMER_TASK;
args.name = "CircuitPython Tick";
esp_timer_create(&args, &_tick_timer);
args.callback = &sleep_timer_cb;
args.arg = NULL;
args.dispatch_method = ESP_TIMER_TASK;
args.name = "CircuitPython Sleep";
esp_timer_create(&args, &_sleep_timer);
circuitpython_task = xTaskGetCurrentTaskHandle();
// Send the ROM output out of the UART. This includes early logs.
#ifdef DEBUG
ets_install_uart_printf();
#endif
heap = NULL;
#ifndef DEBUG
#define DEBUG (0)
#endif
#define pin_GPIOn(n) pin_GPIO##n
#define pin_GPIOn_EXPAND(x) pin_GPIOn(x)
#ifdef CONFIG_CONSOLE_UART_TX_GPIO
common_hal_never_reset_pin(&pin_GPIOn_EXPAND(CONFIG_CONSOLE_UART_TX_GPIO));
#endif
#ifdef CONFIG_CONSOLE_UART_RX_GPIO
common_hal_never_reset_pin(&pin_GPIOn_EXPAND(CONFIG_CONSOLE_UART_RX_GPIO));
#endif
#if DEBUG
// debug UART
#ifdef CONFIG_IDF_TARGET_ESP32C3
common_hal_never_reset_pin(&pin_GPIO20);
common_hal_never_reset_pin(&pin_GPIO21);
#elif defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3)
common_hal_never_reset_pin(&pin_GPIO43);
common_hal_never_reset_pin(&pin_GPIO44);
#endif
#endif
#ifndef ENABLE_JTAG
#define ENABLE_JTAG (defined(DEBUG) && DEBUG)
#endif
#if ENABLE_JTAG
// JTAG
#ifdef CONFIG_IDF_TARGET_ESP32C3
common_hal_never_reset_pin(&pin_GPIO4);
common_hal_never_reset_pin(&pin_GPIO5);
common_hal_never_reset_pin(&pin_GPIO6);
common_hal_never_reset_pin(&pin_GPIO7);
#elif defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3)
common_hal_never_reset_pin(&pin_GPIO39);
common_hal_never_reset_pin(&pin_GPIO40);
common_hal_never_reset_pin(&pin_GPIO41);
common_hal_never_reset_pin(&pin_GPIO42);
#endif
#endif
#ifdef CONFIG_SPIRAM
{
intptr_t heap_start = common_hal_espidf_get_psram_start();
intptr_t heap_end = common_hal_espidf_get_psram_end();
size_t spiram_size = heap_end - heap_start;
if (spiram_size > 0) {
heap = (uint32_t *)heap_start;
heap_size = (heap_end - heap_start) / sizeof(uint32_t);
} else {
ESP_LOGE(TAG, "CONFIG_SPIRAM enabled but no spiram heap available");
}
}
#endif
_never_reset_spi_ram_flash();
if (heap == NULL) {
size_t heap_total = heap_caps_get_total_size(MALLOC_CAP_8BIT);
heap_size = MIN(heap_caps_get_largest_free_block(MALLOC_CAP_8BIT), heap_total / 2);
heap = malloc(heap_size);
heap_size = heap_size / sizeof(uint32_t);
}
if (heap == NULL) {
heap_size = 0;
return SAFE_MODE_NO_HEAP;
}
esp_reset_reason_t reason = esp_reset_reason();
switch (reason) {
case ESP_RST_BROWNOUT:
return SAFE_MODE_BROWNOUT;
case ESP_RST_PANIC:
return SAFE_MODE_HARD_FAULT;
case ESP_RST_INT_WDT:
// The interrupt watchdog is used internally to make sure that latency sensitive
// interrupt code isn't blocked. User watchdog resets come through ESP_RST_WDT.
return SAFE_MODE_WATCHDOG;
case ESP_RST_WDT:
default:
break;
}
return SAFE_MODE_NONE;
}
void reset_port(void) {
// TODO deinit for esp32-camera
#if CIRCUITPY_ESPCAMERA
esp_camera_deinit();
#endif
reset_all_pins();
#if CIRCUITPY_ANALOGIO
analogout_reset();
#endif
#if CIRCUITPY_AUDIOBUSIO
i2s_reset();
#endif
#if CIRCUITPY_BUSIO
i2c_reset();
spi_reset();
uart_reset();
#endif
#if CIRCUITPY_COUNTIO || CIRCUITPY_ROTARYIO || CIRCUITPY_FREQUENCYIO
peripherals_pcnt_reset();
#endif
#if CIRCUITPY_DUALBANK
dualbank_reset();
#endif
#if CIRCUITPY_ESPNOW
espnow_reset();
#endif
#if CIRCUITPY_ESPULP
espulp_reset();
#endif
#if CIRCUITPY_FREQUENCYIO
peripherals_timer_reset();
#endif
#if CIRCUITPY_PS2IO
ps2_reset();
#endif
#if CIRCUITPY_PULSEIO
peripherals_rmt_reset();
pulsein_reset();
#endif
#if CIRCUITPY_PWMIO
pwmout_reset();
#endif
#if CIRCUITPY_RTC
rtc_reset();
#endif
#if CIRCUITPY_SOCKETPOOL
socketpool_user_reset();
#endif
#if CIRCUITPY_TOUCHIO_USE_NATIVE
peripherals_touch_reset();
#endif
#if CIRCUITPY_WATCHDOG
watchdog_reset();
#endif
// Yield so the idle task can run and do any IDF cleanup needed.
port_yield();
}
void reset_to_bootloader(void) {
common_hal_mcu_on_next_reset(RUNMODE_BOOTLOADER);
esp_restart();
}
void reset_cpu(void) {
#ifndef CONFIG_IDF_TARGET_ESP32C3
esp_backtrace_print(100);
#endif
esp_restart();
}
uint32_t *port_heap_get_bottom(void) {
return heap;
}
uint32_t *port_heap_get_top(void) {
return heap + heap_size;
}
uint32_t *port_stack_get_limit(void) {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-align"
return (uint32_t *)pxTaskGetStackStart(NULL);
#pragma GCC diagnostic pop
}
uint32_t *port_stack_get_top(void) {
// The sizeof-arithmetic is so that the pointer arithmetic is done on units
// of uint32_t instead of units of StackType_t. StackType_t is an alias
// for a byte sized type.
//
// The main stack is bigger than CONFIG_ESP_MAIN_TASK_STACK_SIZE -- an
// "extra" size is added to it (TASK_EXTRA_STACK_SIZE). This total size is
// available as ESP_TASK_MAIN_STACK. Presumably TASK_EXTRA_STACK_SIZE is
// additional stack that can be used by the esp-idf runtime. But what's
// important for us is that some very outermost stack frames, such as
// pyexec_friendly_repl, could lie inside the "extra" area and be invisible
// to the garbage collector.
return port_stack_get_limit() + ESP_TASK_MAIN_STACK / (sizeof(uint32_t) / sizeof(StackType_t));
}
bool port_has_fixed_stack(void) {
return true;
}
// Place the word to save just after our BSS section that gets blanked.
void port_set_saved_word(uint32_t value) {
REG_WRITE(RTC_CNTL_STORE0_REG, value);
}
uint32_t port_get_saved_word(void) {
return REG_READ(RTC_CNTL_STORE0_REG);
}
uint64_t port_get_raw_ticks(uint8_t *subticks) {
// Convert microseconds to subticks of 1/32768 seconds
// 32768/1000000 = 64/15625 in lowest terms
// this arithmetic overflows after 570 years
int64_t all_subticks = esp_timer_get_time() * 512 / 15625;
if (subticks != NULL) {
*subticks = all_subticks % 32;
}
return all_subticks / 32;
}
// Enable 1/1024 second tick.
void port_enable_tick(void) {
esp_timer_start_periodic(_tick_timer, 1000000 / 1024);
}
// Disable 1/1024 second tick.
void port_disable_tick(void) {
esp_timer_stop(_tick_timer);
}
void port_wake_main_task() {
xTaskNotifyGive(circuitpython_task);
}
void port_wake_main_task_from_isr() {
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
vTaskNotifyGiveFromISR(circuitpython_task, &xHigherPriorityTaskWoken);
if (xHigherPriorityTaskWoken == pdTRUE) {
portYIELD_FROM_ISR();
}
}
void port_yield() {
vTaskDelay(4);
}
void sleep_timer_cb(void *arg) {
port_wake_main_task();
}
void port_interrupt_after_ticks(uint32_t ticks) {
uint64_t timeout_us = ticks * 1000000ull / 1024;
if (esp_timer_start_once(_sleep_timer, timeout_us) != ESP_OK) {
esp_timer_stop(_sleep_timer);
esp_timer_start_once(_sleep_timer, timeout_us);
}
}
// On the ESP we use FreeRTOS notifications instead of interrupts so this is a
// bit of a misnomer.
void port_idle_until_interrupt(void) {
if (!background_callback_pending() && !autoreload_pending()) {
xTaskNotifyWait(0x01, 0x01, NULL, portMAX_DELAY);
}
}
void port_post_boot_py(bool heap_valid) {
if (!heap_valid && filesystem_present()) {
mp_int_t reserved;
if (common_hal_os_getenv_int("CIRCUITPY_RESERVED_PSRAM", &reserved) == GETENV_OK) {
common_hal_espidf_set_reserved_psram(reserved);
}
common_hal_espidf_reserve_psram();
}
}
// Wrap main in app_main that the IDF expects.
extern void main(void);
extern void app_main(void);
void app_main(void) {
main();
}