dd5353a405
MICROPY_ENABLE_COMPILER can be used to enable/disable the entire compiler, which is useful when only loading of pre-compiled bytecode is supported. It is enabled by default. MICROPY_PY_BUILTINS_EVAL_EXEC controls support of eval and exec builtin functions. By default they are only included if MICROPY_ENABLE_COMPILER is enabled. Disabling both options saves about 40k of code size on 32-bit x86.
1086 lines
42 KiB
C
1086 lines
42 KiB
C
/*
|
|
* This file is part of the Micro Python project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013-2015 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
#include "py/nlr.h"
|
|
#include "py/lexer.h"
|
|
#include "py/parse.h"
|
|
#include "py/parsenum.h"
|
|
#include "py/smallint.h"
|
|
#include "py/runtime.h"
|
|
#include "py/builtin.h"
|
|
|
|
#if MICROPY_ENABLE_COMPILER
|
|
|
|
#define RULE_ACT_ARG_MASK (0x0f)
|
|
#define RULE_ACT_KIND_MASK (0x30)
|
|
#define RULE_ACT_ALLOW_IDENT (0x40)
|
|
#define RULE_ACT_ADD_BLANK (0x80)
|
|
#define RULE_ACT_OR (0x10)
|
|
#define RULE_ACT_AND (0x20)
|
|
#define RULE_ACT_LIST (0x30)
|
|
|
|
#define RULE_ARG_KIND_MASK (0xf000)
|
|
#define RULE_ARG_ARG_MASK (0x0fff)
|
|
#define RULE_ARG_TOK (0x1000)
|
|
#define RULE_ARG_RULE (0x2000)
|
|
#define RULE_ARG_OPT_RULE (0x3000)
|
|
|
|
#define ADD_BLANK_NODE(rule) ((rule->act & RULE_ACT_ADD_BLANK) != 0)
|
|
|
|
// (un)comment to use rule names; for debugging
|
|
//#define USE_RULE_NAME (1)
|
|
|
|
typedef struct _rule_t {
|
|
byte rule_id;
|
|
byte act;
|
|
#ifdef USE_RULE_NAME
|
|
const char *rule_name;
|
|
#endif
|
|
uint16_t arg[];
|
|
} rule_t;
|
|
|
|
enum {
|
|
#define DEF_RULE(rule, comp, kind, ...) RULE_##rule,
|
|
#include "py/grammar.h"
|
|
#undef DEF_RULE
|
|
RULE_maximum_number_of,
|
|
RULE_string, // special node for non-interned string
|
|
RULE_bytes, // special node for non-interned bytes
|
|
RULE_const_object, // special node for a constant, generic Python object
|
|
};
|
|
|
|
#define ident (RULE_ACT_ALLOW_IDENT)
|
|
#define blank (RULE_ACT_ADD_BLANK)
|
|
#define or(n) (RULE_ACT_OR | n)
|
|
#define and(n) (RULE_ACT_AND | n)
|
|
#define one_or_more (RULE_ACT_LIST | 2)
|
|
#define list (RULE_ACT_LIST | 1)
|
|
#define list_with_end (RULE_ACT_LIST | 3)
|
|
#define tok(t) (RULE_ARG_TOK | MP_TOKEN_##t)
|
|
#define rule(r) (RULE_ARG_RULE | RULE_##r)
|
|
#define opt_rule(r) (RULE_ARG_OPT_RULE | RULE_##r)
|
|
#ifdef USE_RULE_NAME
|
|
#define DEF_RULE(rule, comp, kind, ...) static const rule_t rule_##rule = { RULE_##rule, kind, #rule, { __VA_ARGS__ } };
|
|
#else
|
|
#define DEF_RULE(rule, comp, kind, ...) static const rule_t rule_##rule = { RULE_##rule, kind, { __VA_ARGS__ } };
|
|
#endif
|
|
#include "py/grammar.h"
|
|
#undef or
|
|
#undef and
|
|
#undef list
|
|
#undef list_with_end
|
|
#undef tok
|
|
#undef rule
|
|
#undef opt_rule
|
|
#undef one_or_more
|
|
#undef DEF_RULE
|
|
|
|
STATIC const rule_t *rules[] = {
|
|
#define DEF_RULE(rule, comp, kind, ...) &rule_##rule,
|
|
#include "py/grammar.h"
|
|
#undef DEF_RULE
|
|
};
|
|
|
|
typedef struct _rule_stack_t {
|
|
size_t src_line : 8 * sizeof(size_t) - 8; // maximum bits storing source line number
|
|
size_t rule_id : 8; // this must be large enough to fit largest rule number
|
|
size_t arg_i; // this dictates the maximum nodes in a "list" of things
|
|
} rule_stack_t;
|
|
|
|
typedef struct _mp_parse_chunk_t {
|
|
size_t alloc;
|
|
union {
|
|
size_t used;
|
|
struct _mp_parse_chunk_t *next;
|
|
} union_;
|
|
byte data[];
|
|
} mp_parse_chunk_t;
|
|
|
|
typedef enum {
|
|
PARSE_ERROR_NONE = 0,
|
|
PARSE_ERROR_MEMORY,
|
|
PARSE_ERROR_CONST,
|
|
} parse_error_t;
|
|
|
|
typedef struct _parser_t {
|
|
parse_error_t parse_error;
|
|
|
|
size_t rule_stack_alloc;
|
|
size_t rule_stack_top;
|
|
rule_stack_t *rule_stack;
|
|
|
|
size_t result_stack_alloc;
|
|
size_t result_stack_top;
|
|
mp_parse_node_t *result_stack;
|
|
|
|
mp_lexer_t *lexer;
|
|
|
|
mp_parse_tree_t tree;
|
|
mp_parse_chunk_t *cur_chunk;
|
|
|
|
#if MICROPY_COMP_CONST
|
|
mp_map_t consts;
|
|
#endif
|
|
} parser_t;
|
|
|
|
STATIC void *parser_alloc(parser_t *parser, size_t num_bytes) {
|
|
// use a custom memory allocator to store parse nodes sequentially in large chunks
|
|
|
|
mp_parse_chunk_t *chunk = parser->cur_chunk;
|
|
|
|
if (chunk != NULL && chunk->union_.used + num_bytes > chunk->alloc) {
|
|
// not enough room at end of previously allocated chunk so try to grow
|
|
mp_parse_chunk_t *new_data = (mp_parse_chunk_t*)m_renew_maybe(byte, chunk,
|
|
sizeof(mp_parse_chunk_t) + chunk->alloc,
|
|
sizeof(mp_parse_chunk_t) + chunk->alloc + num_bytes, false);
|
|
if (new_data == NULL) {
|
|
// could not grow existing memory; shrink it to fit previous
|
|
(void)m_renew(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc,
|
|
sizeof(mp_parse_chunk_t) + chunk->union_.used);
|
|
chunk->alloc = chunk->union_.used;
|
|
chunk->union_.next = parser->tree.chunk;
|
|
parser->tree.chunk = chunk;
|
|
chunk = NULL;
|
|
} else {
|
|
// could grow existing memory
|
|
chunk->alloc += num_bytes;
|
|
}
|
|
}
|
|
|
|
if (chunk == NULL) {
|
|
// no previous chunk, allocate a new chunk
|
|
size_t alloc = MICROPY_ALLOC_PARSE_CHUNK_INIT;
|
|
if (alloc < num_bytes) {
|
|
alloc = num_bytes;
|
|
}
|
|
chunk = (mp_parse_chunk_t*)m_new(byte, sizeof(mp_parse_chunk_t) + alloc);
|
|
chunk->alloc = alloc;
|
|
chunk->union_.used = 0;
|
|
parser->cur_chunk = chunk;
|
|
}
|
|
|
|
byte *ret = chunk->data + chunk->union_.used;
|
|
chunk->union_.used += num_bytes;
|
|
return ret;
|
|
}
|
|
|
|
STATIC void push_rule(parser_t *parser, size_t src_line, const rule_t *rule, size_t arg_i) {
|
|
if (parser->parse_error) {
|
|
return;
|
|
}
|
|
if (parser->rule_stack_top >= parser->rule_stack_alloc) {
|
|
rule_stack_t *rs = m_renew_maybe(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc, parser->rule_stack_alloc + MICROPY_ALLOC_PARSE_RULE_INC, true);
|
|
if (rs == NULL) {
|
|
parser->parse_error = PARSE_ERROR_MEMORY;
|
|
return;
|
|
}
|
|
parser->rule_stack = rs;
|
|
parser->rule_stack_alloc += MICROPY_ALLOC_PARSE_RULE_INC;
|
|
}
|
|
rule_stack_t *rs = &parser->rule_stack[parser->rule_stack_top++];
|
|
rs->src_line = src_line;
|
|
rs->rule_id = rule->rule_id;
|
|
rs->arg_i = arg_i;
|
|
}
|
|
|
|
STATIC void push_rule_from_arg(parser_t *parser, size_t arg) {
|
|
assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE);
|
|
size_t rule_id = arg & RULE_ARG_ARG_MASK;
|
|
assert(rule_id < RULE_maximum_number_of);
|
|
push_rule(parser, parser->lexer->tok_line, rules[rule_id], 0);
|
|
}
|
|
|
|
STATIC void pop_rule(parser_t *parser, const rule_t **rule, size_t *arg_i, size_t *src_line) {
|
|
assert(!parser->parse_error);
|
|
parser->rule_stack_top -= 1;
|
|
*rule = rules[parser->rule_stack[parser->rule_stack_top].rule_id];
|
|
*arg_i = parser->rule_stack[parser->rule_stack_top].arg_i;
|
|
*src_line = parser->rule_stack[parser->rule_stack_top].src_line;
|
|
}
|
|
|
|
mp_parse_node_t mp_parse_node_new_leaf(size_t kind, mp_int_t arg) {
|
|
if (kind == MP_PARSE_NODE_SMALL_INT) {
|
|
return (mp_parse_node_t)(kind | (arg << 1));
|
|
}
|
|
return (mp_parse_node_t)(kind | (arg << 4));
|
|
}
|
|
|
|
int mp_parse_node_extract_list(mp_parse_node_t *pn, size_t pn_kind, mp_parse_node_t **nodes) {
|
|
if (MP_PARSE_NODE_IS_NULL(*pn)) {
|
|
*nodes = NULL;
|
|
return 0;
|
|
} else if (MP_PARSE_NODE_IS_LEAF(*pn)) {
|
|
*nodes = pn;
|
|
return 1;
|
|
} else {
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)(*pn);
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns) != pn_kind) {
|
|
*nodes = pn;
|
|
return 1;
|
|
} else {
|
|
*nodes = pns->nodes;
|
|
return MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if MICROPY_DEBUG_PRINTERS
|
|
void mp_parse_node_print(mp_parse_node_t pn, size_t indent) {
|
|
if (MP_PARSE_NODE_IS_STRUCT(pn)) {
|
|
printf("[% 4d] ", (int)((mp_parse_node_struct_t*)pn)->source_line);
|
|
} else {
|
|
printf(" ");
|
|
}
|
|
for (size_t i = 0; i < indent; i++) {
|
|
printf(" ");
|
|
}
|
|
if (MP_PARSE_NODE_IS_NULL(pn)) {
|
|
printf("NULL\n");
|
|
} else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
|
|
mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
|
|
printf("int(" INT_FMT ")\n", arg);
|
|
} else if (MP_PARSE_NODE_IS_LEAF(pn)) {
|
|
uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn);
|
|
switch (MP_PARSE_NODE_LEAF_KIND(pn)) {
|
|
case MP_PARSE_NODE_ID: printf("id(%s)\n", qstr_str(arg)); break;
|
|
case MP_PARSE_NODE_STRING: printf("str(%s)\n", qstr_str(arg)); break;
|
|
case MP_PARSE_NODE_BYTES: printf("bytes(%s)\n", qstr_str(arg)); break;
|
|
case MP_PARSE_NODE_TOKEN: printf("tok(%u)\n", (uint)arg); break;
|
|
default: assert(0);
|
|
}
|
|
} else {
|
|
// node must be a mp_parse_node_struct_t
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_string) {
|
|
printf("literal str(%.*s)\n", (int)pns->nodes[1], (char*)pns->nodes[0]);
|
|
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_bytes) {
|
|
printf("literal bytes(%.*s)\n", (int)pns->nodes[1], (char*)pns->nodes[0]);
|
|
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_const_object) {
|
|
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
|
|
printf("literal const(%016llx)\n", (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32));
|
|
#else
|
|
printf("literal const(%p)\n", (mp_obj_t)pns->nodes[0]);
|
|
#endif
|
|
} else {
|
|
size_t n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
|
|
#ifdef USE_RULE_NAME
|
|
printf("%s(%u) (n=%u)\n", rules[MP_PARSE_NODE_STRUCT_KIND(pns)]->rule_name, (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n);
|
|
#else
|
|
printf("rule(%u) (n=%u)\n", (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n);
|
|
#endif
|
|
for (size_t i = 0; i < n; i++) {
|
|
mp_parse_node_print(pns->nodes[i], indent + 2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // MICROPY_DEBUG_PRINTERS
|
|
|
|
/*
|
|
STATIC void result_stack_show(parser_t *parser) {
|
|
printf("result stack, most recent first\n");
|
|
for (ssize_t i = parser->result_stack_top - 1; i >= 0; i--) {
|
|
mp_parse_node_print(parser->result_stack[i], 0);
|
|
}
|
|
}
|
|
*/
|
|
|
|
STATIC mp_parse_node_t pop_result(parser_t *parser) {
|
|
if (parser->parse_error) {
|
|
return MP_PARSE_NODE_NULL;
|
|
}
|
|
assert(parser->result_stack_top > 0);
|
|
return parser->result_stack[--parser->result_stack_top];
|
|
}
|
|
|
|
STATIC mp_parse_node_t peek_result(parser_t *parser, size_t pos) {
|
|
if (parser->parse_error) {
|
|
return MP_PARSE_NODE_NULL;
|
|
}
|
|
assert(parser->result_stack_top > pos);
|
|
return parser->result_stack[parser->result_stack_top - 1 - pos];
|
|
}
|
|
|
|
STATIC void push_result_node(parser_t *parser, mp_parse_node_t pn) {
|
|
if (parser->parse_error) {
|
|
return;
|
|
}
|
|
if (parser->result_stack_top >= parser->result_stack_alloc) {
|
|
mp_parse_node_t *stack = m_renew_maybe(mp_parse_node_t, parser->result_stack, parser->result_stack_alloc, parser->result_stack_alloc + MICROPY_ALLOC_PARSE_RESULT_INC, true);
|
|
if (stack == NULL) {
|
|
parser->parse_error = PARSE_ERROR_MEMORY;
|
|
return;
|
|
}
|
|
parser->result_stack = stack;
|
|
parser->result_stack_alloc += MICROPY_ALLOC_PARSE_RESULT_INC;
|
|
}
|
|
parser->result_stack[parser->result_stack_top++] = pn;
|
|
}
|
|
|
|
STATIC mp_parse_node_t make_node_string_bytes(parser_t *parser, size_t src_line, size_t rule_kind, const char *str, size_t len) {
|
|
mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_parse_node_t) * 2);
|
|
if (pn == NULL) {
|
|
parser->parse_error = PARSE_ERROR_MEMORY;
|
|
return MP_PARSE_NODE_NULL;
|
|
}
|
|
pn->source_line = src_line;
|
|
pn->kind_num_nodes = rule_kind | (2 << 8);
|
|
char *p = m_new(char, len);
|
|
memcpy(p, str, len);
|
|
pn->nodes[0] = (uintptr_t)p;
|
|
pn->nodes[1] = len;
|
|
return (mp_parse_node_t)pn;
|
|
}
|
|
|
|
STATIC mp_parse_node_t make_node_const_object(parser_t *parser, size_t src_line, mp_obj_t obj) {
|
|
mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_obj_t));
|
|
if (pn == NULL) {
|
|
parser->parse_error = PARSE_ERROR_MEMORY;
|
|
return MP_PARSE_NODE_NULL;
|
|
}
|
|
pn->source_line = src_line;
|
|
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
|
|
// nodes are 32-bit pointers, but need to store 64-bit object
|
|
pn->kind_num_nodes = RULE_const_object | (2 << 8);
|
|
pn->nodes[0] = (uint64_t)obj;
|
|
pn->nodes[1] = (uint64_t)obj >> 32;
|
|
#else
|
|
pn->kind_num_nodes = RULE_const_object | (1 << 8);
|
|
pn->nodes[0] = (uintptr_t)obj;
|
|
#endif
|
|
return (mp_parse_node_t)pn;
|
|
}
|
|
|
|
STATIC void push_result_token(parser_t *parser) {
|
|
mp_parse_node_t pn;
|
|
mp_lexer_t *lex = parser->lexer;
|
|
if (lex->tok_kind == MP_TOKEN_NAME) {
|
|
qstr id = qstr_from_strn(lex->vstr.buf, lex->vstr.len);
|
|
#if MICROPY_COMP_CONST
|
|
// lookup identifier in table of dynamic constants
|
|
mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP);
|
|
if (elem != NULL) {
|
|
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, MP_OBJ_SMALL_INT_VALUE(elem->value));
|
|
} else
|
|
#endif
|
|
{
|
|
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id);
|
|
}
|
|
} else if (lex->tok_kind == MP_TOKEN_INTEGER) {
|
|
mp_obj_t o = mp_parse_num_integer(lex->vstr.buf, lex->vstr.len, 0, lex);
|
|
if (MP_OBJ_IS_SMALL_INT(o)) {
|
|
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, MP_OBJ_SMALL_INT_VALUE(o));
|
|
} else {
|
|
pn = make_node_const_object(parser, lex->tok_line, o);
|
|
}
|
|
} else if (lex->tok_kind == MP_TOKEN_FLOAT_OR_IMAG) {
|
|
mp_obj_t o = mp_parse_num_decimal(lex->vstr.buf, lex->vstr.len, true, false, lex);
|
|
pn = make_node_const_object(parser, lex->tok_line, o);
|
|
} else if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) {
|
|
// Don't automatically intern all strings/bytes. doc strings (which are usually large)
|
|
// will be discarded by the compiler, and so we shouldn't intern them.
|
|
qstr qst = MP_QSTR_NULL;
|
|
if (lex->vstr.len <= MICROPY_ALLOC_PARSE_INTERN_STRING_LEN) {
|
|
// intern short strings
|
|
qst = qstr_from_strn(lex->vstr.buf, lex->vstr.len);
|
|
} else {
|
|
// check if this string is already interned
|
|
qst = qstr_find_strn(lex->vstr.buf, lex->vstr.len);
|
|
}
|
|
if (qst != MP_QSTR_NULL) {
|
|
// qstr exists, make a leaf node
|
|
pn = mp_parse_node_new_leaf(lex->tok_kind == MP_TOKEN_STRING ? MP_PARSE_NODE_STRING : MP_PARSE_NODE_BYTES, qst);
|
|
} else {
|
|
// not interned, make a node holding a pointer to the string/bytes data
|
|
pn = make_node_string_bytes(parser, lex->tok_line, lex->tok_kind == MP_TOKEN_STRING ? RULE_string : RULE_bytes, lex->vstr.buf, lex->vstr.len);
|
|
}
|
|
} else {
|
|
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, lex->tok_kind);
|
|
}
|
|
push_result_node(parser, pn);
|
|
}
|
|
|
|
#if MICROPY_COMP_MODULE_CONST
|
|
STATIC const mp_rom_map_elem_t mp_constants_table[] = {
|
|
#if MICROPY_PY_UCTYPES
|
|
{ MP_ROM_QSTR(MP_QSTR_uctypes), MP_ROM_PTR(&mp_module_uctypes) },
|
|
#endif
|
|
// Extra constants as defined by a port
|
|
MICROPY_PORT_CONSTANTS
|
|
};
|
|
STATIC MP_DEFINE_CONST_MAP(mp_constants_map, mp_constants_table);
|
|
#endif
|
|
|
|
#if MICROPY_COMP_CONST_FOLDING
|
|
STATIC bool fold_constants(parser_t *parser, const rule_t *rule, size_t num_args) {
|
|
// this code does folding of arbitrary integer expressions, eg 1 + 2 * 3 + 4
|
|
// it does not do partial folding, eg 1 + 2 + x -> 3 + x
|
|
|
|
mp_int_t arg0;
|
|
if (rule->rule_id == RULE_expr
|
|
|| rule->rule_id == RULE_xor_expr
|
|
|| rule->rule_id == RULE_and_expr) {
|
|
// folding for binary ops: | ^ &
|
|
mp_parse_node_t pn = peek_result(parser, num_args - 1);
|
|
if (!MP_PARSE_NODE_IS_SMALL_INT(pn)) {
|
|
return false;
|
|
}
|
|
arg0 = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
|
|
for (ssize_t i = num_args - 2; i >= 0; --i) {
|
|
pn = peek_result(parser, i);
|
|
if (!MP_PARSE_NODE_IS_SMALL_INT(pn)) {
|
|
return false;
|
|
}
|
|
mp_int_t arg1 = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
|
|
if (rule->rule_id == RULE_expr) {
|
|
// int | int
|
|
arg0 |= arg1;
|
|
} else if (rule->rule_id == RULE_xor_expr) {
|
|
// int ^ int
|
|
arg0 ^= arg1;
|
|
} else if (rule->rule_id == RULE_and_expr) {
|
|
// int & int
|
|
arg0 &= arg1;
|
|
}
|
|
}
|
|
} else if (rule->rule_id == RULE_shift_expr
|
|
|| rule->rule_id == RULE_arith_expr
|
|
|| rule->rule_id == RULE_term) {
|
|
// folding for binary ops: << >> + - * / % //
|
|
mp_parse_node_t pn = peek_result(parser, num_args - 1);
|
|
if (!MP_PARSE_NODE_IS_SMALL_INT(pn)) {
|
|
return false;
|
|
}
|
|
arg0 = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
|
|
for (ssize_t i = num_args - 2; i >= 1; i -= 2) {
|
|
pn = peek_result(parser, i - 1);
|
|
if (!MP_PARSE_NODE_IS_SMALL_INT(pn)) {
|
|
return false;
|
|
}
|
|
mp_int_t arg1 = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
|
|
mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, i));
|
|
if (tok == MP_TOKEN_OP_DBL_LESS) {
|
|
// int << int
|
|
if (arg1 >= (mp_int_t)BITS_PER_WORD
|
|
|| arg0 > (MP_SMALL_INT_MAX >> arg1)
|
|
|| arg0 < (MP_SMALL_INT_MIN >> arg1)) {
|
|
return false;
|
|
}
|
|
arg0 <<= arg1;
|
|
} else if (tok == MP_TOKEN_OP_DBL_MORE) {
|
|
// int >> int
|
|
if (arg1 >= (mp_int_t)BITS_PER_WORD) {
|
|
// Shifting to big amounts is underfined behavior
|
|
// in C and is CPU-dependent; propagate sign bit.
|
|
arg1 = BITS_PER_WORD - 1;
|
|
}
|
|
arg0 >>= arg1;
|
|
} else if (tok == MP_TOKEN_OP_PLUS) {
|
|
// int + int
|
|
arg0 += arg1;
|
|
} else if (tok == MP_TOKEN_OP_MINUS) {
|
|
// int - int
|
|
arg0 -= arg1;
|
|
} else if (tok == MP_TOKEN_OP_STAR) {
|
|
// int * int
|
|
if (mp_small_int_mul_overflow(arg0, arg1)) {
|
|
return false;
|
|
}
|
|
arg0 *= arg1;
|
|
} else if (tok == MP_TOKEN_OP_SLASH) {
|
|
// int / int
|
|
return false;
|
|
} else if (tok == MP_TOKEN_OP_PERCENT) {
|
|
// int % int
|
|
if (arg1 == 0) {
|
|
return false;
|
|
}
|
|
arg0 = mp_small_int_modulo(arg0, arg1);
|
|
} else {
|
|
assert(tok == MP_TOKEN_OP_DBL_SLASH); // should be
|
|
// int // int
|
|
if (arg1 == 0) {
|
|
return false;
|
|
}
|
|
arg0 = mp_small_int_floor_divide(arg0, arg1);
|
|
}
|
|
if (!MP_SMALL_INT_FITS(arg0)) {
|
|
return false;
|
|
}
|
|
}
|
|
} else if (rule->rule_id == RULE_factor_2) {
|
|
// folding for unary ops: + - ~
|
|
mp_parse_node_t pn = peek_result(parser, 0);
|
|
if (!MP_PARSE_NODE_IS_SMALL_INT(pn)) {
|
|
return false;
|
|
}
|
|
arg0 = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
|
|
mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, 1));
|
|
if (tok == MP_TOKEN_OP_PLUS) {
|
|
// +int
|
|
} else if (tok == MP_TOKEN_OP_MINUS) {
|
|
// -int
|
|
arg0 = -arg0;
|
|
if (!MP_SMALL_INT_FITS(arg0)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
assert(tok == MP_TOKEN_OP_TILDE); // should be
|
|
// ~int
|
|
arg0 = ~arg0;
|
|
}
|
|
|
|
#if MICROPY_COMP_CONST
|
|
} else if (rule->rule_id == RULE_expr_stmt) {
|
|
mp_parse_node_t pn1 = peek_result(parser, 0);
|
|
if (!MP_PARSE_NODE_IS_NULL(pn1)
|
|
&& !(MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_augassign)
|
|
|| MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_assign_list))) {
|
|
// this node is of the form <x> = <y>
|
|
mp_parse_node_t pn0 = peek_result(parser, 1);
|
|
if (MP_PARSE_NODE_IS_ID(pn0)
|
|
&& MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_power)
|
|
&& MP_PARSE_NODE_IS_ID(((mp_parse_node_struct_t*)pn1)->nodes[0])
|
|
&& MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t*)pn1)->nodes[0]) == MP_QSTR_const
|
|
&& MP_PARSE_NODE_IS_STRUCT_KIND(((mp_parse_node_struct_t*)pn1)->nodes[1], RULE_trailer_paren)
|
|
&& MP_PARSE_NODE_IS_NULL(((mp_parse_node_struct_t*)pn1)->nodes[2])
|
|
) {
|
|
// code to assign dynamic constants: id = const(value)
|
|
|
|
// get the id
|
|
qstr id = MP_PARSE_NODE_LEAF_ARG(pn0);
|
|
|
|
// get the value
|
|
mp_parse_node_t pn_value = ((mp_parse_node_struct_t*)((mp_parse_node_struct_t*)pn1)->nodes[1])->nodes[0];
|
|
if (!MP_PARSE_NODE_IS_SMALL_INT(pn_value)) {
|
|
parser->parse_error = PARSE_ERROR_CONST;
|
|
return false;
|
|
}
|
|
mp_int_t value = MP_PARSE_NODE_LEAF_SMALL_INT(pn_value);
|
|
|
|
// store the value in the table of dynamic constants
|
|
mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
|
|
assert(elem->value == MP_OBJ_NULL);
|
|
elem->value = MP_OBJ_NEW_SMALL_INT(value);
|
|
|
|
// replace const(value) with value
|
|
pop_result(parser);
|
|
push_result_node(parser, pn_value);
|
|
|
|
// finished folding this assignment, but we still want it to be part of the tree
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
#endif
|
|
|
|
#if MICROPY_COMP_MODULE_CONST
|
|
} else if (rule->rule_id == RULE_power) {
|
|
mp_parse_node_t pn0 = peek_result(parser, 2);
|
|
mp_parse_node_t pn1 = peek_result(parser, 1);
|
|
mp_parse_node_t pn2 = peek_result(parser, 0);
|
|
if (!(MP_PARSE_NODE_IS_ID(pn0)
|
|
&& MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_trailer_period)
|
|
&& MP_PARSE_NODE_IS_NULL(pn2))) {
|
|
return false;
|
|
}
|
|
// id1.id2
|
|
// look it up in constant table, see if it can be replaced with an integer
|
|
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pn1;
|
|
assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
|
|
qstr q_base = MP_PARSE_NODE_LEAF_ARG(pn0);
|
|
qstr q_attr = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]);
|
|
mp_map_elem_t *elem = mp_map_lookup((mp_map_t*)&mp_constants_map, MP_OBJ_NEW_QSTR(q_base), MP_MAP_LOOKUP);
|
|
if (elem == NULL) {
|
|
return false;
|
|
}
|
|
mp_obj_t dest[2];
|
|
mp_load_method_maybe(elem->value, q_attr, dest);
|
|
if (!(MP_OBJ_IS_SMALL_INT(dest[0]) && dest[1] == MP_OBJ_NULL)) {
|
|
return false;
|
|
}
|
|
arg0 = MP_OBJ_SMALL_INT_VALUE(dest[0]);
|
|
#endif
|
|
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// success folding this rule
|
|
|
|
for (size_t i = num_args; i > 0; i--) {
|
|
pop_result(parser);
|
|
}
|
|
push_result_node(parser, mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg0));
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
STATIC void push_result_rule(parser_t *parser, size_t src_line, const rule_t *rule, size_t num_args) {
|
|
#if MICROPY_COMP_CONST_FOLDING
|
|
if (fold_constants(parser, rule, num_args)) {
|
|
// we folded this rule so return straight away
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_parse_node_t) * num_args);
|
|
if (pn == NULL) {
|
|
parser->parse_error = PARSE_ERROR_MEMORY;
|
|
return;
|
|
}
|
|
pn->source_line = src_line;
|
|
pn->kind_num_nodes = (rule->rule_id & 0xff) | (num_args << 8);
|
|
for (size_t i = num_args; i > 0; i--) {
|
|
pn->nodes[i - 1] = pop_result(parser);
|
|
}
|
|
push_result_node(parser, (mp_parse_node_t)pn);
|
|
}
|
|
|
|
mp_parse_tree_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) {
|
|
|
|
// initialise parser and allocate memory for its stacks
|
|
|
|
parser_t parser;
|
|
|
|
parser.parse_error = PARSE_ERROR_NONE;
|
|
|
|
parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT;
|
|
parser.rule_stack_top = 0;
|
|
parser.rule_stack = m_new_maybe(rule_stack_t, parser.rule_stack_alloc);
|
|
|
|
parser.result_stack_alloc = MICROPY_ALLOC_PARSE_RESULT_INIT;
|
|
parser.result_stack_top = 0;
|
|
parser.result_stack = m_new_maybe(mp_parse_node_t, parser.result_stack_alloc);
|
|
|
|
parser.lexer = lex;
|
|
|
|
parser.tree.chunk = NULL;
|
|
parser.cur_chunk = NULL;
|
|
|
|
#if MICROPY_COMP_CONST
|
|
mp_map_init(&parser.consts, 0);
|
|
#endif
|
|
|
|
// check if we could allocate the stacks
|
|
if (parser.rule_stack == NULL || parser.result_stack == NULL) {
|
|
goto memory_error;
|
|
}
|
|
|
|
// work out the top-level rule to use, and push it on the stack
|
|
size_t top_level_rule;
|
|
switch (input_kind) {
|
|
case MP_PARSE_SINGLE_INPUT: top_level_rule = RULE_single_input; break;
|
|
case MP_PARSE_EVAL_INPUT: top_level_rule = RULE_eval_input; break;
|
|
default: top_level_rule = RULE_file_input;
|
|
}
|
|
push_rule(&parser, lex->tok_line, rules[top_level_rule], 0);
|
|
|
|
// parse!
|
|
|
|
size_t n, i; // state for the current rule
|
|
size_t rule_src_line; // source line for the first token matched by the current rule
|
|
bool backtrack = false;
|
|
const rule_t *rule = NULL;
|
|
|
|
for (;;) {
|
|
next_rule:
|
|
if (parser.rule_stack_top == 0 || parser.parse_error) {
|
|
break;
|
|
}
|
|
|
|
pop_rule(&parser, &rule, &i, &rule_src_line);
|
|
n = rule->act & RULE_ACT_ARG_MASK;
|
|
|
|
/*
|
|
// debugging
|
|
printf("depth=%d ", parser.rule_stack_top);
|
|
for (int j = 0; j < parser.rule_stack_top; ++j) {
|
|
printf(" ");
|
|
}
|
|
printf("%s n=%d i=%d bt=%d\n", rule->rule_name, n, i, backtrack);
|
|
*/
|
|
|
|
switch (rule->act & RULE_ACT_KIND_MASK) {
|
|
case RULE_ACT_OR:
|
|
if (i > 0 && !backtrack) {
|
|
goto next_rule;
|
|
} else {
|
|
backtrack = false;
|
|
}
|
|
for (; i < n; ++i) {
|
|
uint16_t kind = rule->arg[i] & RULE_ARG_KIND_MASK;
|
|
if (kind == RULE_ARG_TOK) {
|
|
if (lex->tok_kind == (rule->arg[i] & RULE_ARG_ARG_MASK)) {
|
|
push_result_token(&parser);
|
|
mp_lexer_to_next(lex);
|
|
goto next_rule;
|
|
}
|
|
} else {
|
|
assert(kind == RULE_ARG_RULE);
|
|
if (i + 1 < n) {
|
|
push_rule(&parser, rule_src_line, rule, i + 1); // save this or-rule
|
|
}
|
|
push_rule_from_arg(&parser, rule->arg[i]); // push child of or-rule
|
|
goto next_rule;
|
|
}
|
|
}
|
|
backtrack = true;
|
|
break;
|
|
|
|
case RULE_ACT_AND: {
|
|
|
|
// failed, backtrack if we can, else syntax error
|
|
if (backtrack) {
|
|
assert(i > 0);
|
|
if ((rule->arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) {
|
|
// an optional rule that failed, so continue with next arg
|
|
push_result_node(&parser, MP_PARSE_NODE_NULL);
|
|
backtrack = false;
|
|
} else {
|
|
// a mandatory rule that failed, so propagate backtrack
|
|
if (i > 1) {
|
|
// already eaten tokens so can't backtrack
|
|
goto syntax_error;
|
|
} else {
|
|
goto next_rule;
|
|
}
|
|
}
|
|
}
|
|
|
|
// progress through the rule
|
|
for (; i < n; ++i) {
|
|
switch (rule->arg[i] & RULE_ARG_KIND_MASK) {
|
|
case RULE_ARG_TOK: {
|
|
// need to match a token
|
|
mp_token_kind_t tok_kind = rule->arg[i] & RULE_ARG_ARG_MASK;
|
|
if (lex->tok_kind == tok_kind) {
|
|
// matched token
|
|
if (tok_kind == MP_TOKEN_NAME) {
|
|
push_result_token(&parser);
|
|
}
|
|
mp_lexer_to_next(lex);
|
|
} else {
|
|
// failed to match token
|
|
if (i > 0) {
|
|
// already eaten tokens so can't backtrack
|
|
goto syntax_error;
|
|
} else {
|
|
// this rule failed, so backtrack
|
|
backtrack = true;
|
|
goto next_rule;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case RULE_ARG_RULE:
|
|
case RULE_ARG_OPT_RULE:
|
|
rule_and_no_other_choice:
|
|
push_rule(&parser, rule_src_line, rule, i + 1); // save this and-rule
|
|
push_rule_from_arg(&parser, rule->arg[i]); // push child of and-rule
|
|
goto next_rule;
|
|
default:
|
|
assert(0);
|
|
goto rule_and_no_other_choice; // to help flow control analysis
|
|
}
|
|
}
|
|
|
|
assert(i == n);
|
|
|
|
// matched the rule, so now build the corresponding parse_node
|
|
|
|
// count number of arguments for the parse_node
|
|
i = 0;
|
|
bool emit_rule = false;
|
|
for (size_t x = 0; x < n; ++x) {
|
|
if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
|
|
mp_token_kind_t tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK;
|
|
if (tok_kind >= MP_TOKEN_NAME) {
|
|
emit_rule = true;
|
|
}
|
|
if (tok_kind == MP_TOKEN_NAME) {
|
|
// only tokens which were names are pushed to stack
|
|
i += 1;
|
|
}
|
|
} else {
|
|
// rules are always pushed
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
#if !MICROPY_ENABLE_DOC_STRING
|
|
// this code discards lonely statements, such as doc strings
|
|
if (input_kind != MP_PARSE_SINGLE_INPUT && rule->rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) {
|
|
mp_parse_node_t p = peek_result(&parser, 1);
|
|
if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p)) || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_string)) {
|
|
pop_result(&parser); // MP_PARSE_NODE_NULL
|
|
mp_parse_node_t pn = pop_result(&parser); // possibly RULE_string
|
|
if (MP_PARSE_NODE_IS_STRUCT(pn)) {
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_string) {
|
|
m_del(char, (char*)pns->nodes[0], (size_t)pns->nodes[1]);
|
|
}
|
|
}
|
|
push_result_rule(&parser, rule_src_line, rules[RULE_pass_stmt], 0);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// always emit these rules, even if they have only 1 argument
|
|
if (rule->rule_id == RULE_expr_stmt || rule->rule_id == RULE_yield_stmt) {
|
|
emit_rule = true;
|
|
}
|
|
|
|
// if a rule has the RULE_ACT_ALLOW_IDENT bit set then this
|
|
// rule should not be emitted if it has only 1 argument
|
|
// NOTE: can't set this flag for atom_paren because we need it
|
|
// to distinguish, for example, [a,b] from [(a,b)]
|
|
if (rule->act & RULE_ACT_ALLOW_IDENT) {
|
|
emit_rule = false;
|
|
}
|
|
|
|
// always emit these rules, and add an extra blank node at the end (to be used by the compiler to store data)
|
|
if (ADD_BLANK_NODE(rule)) {
|
|
emit_rule = true;
|
|
push_result_node(&parser, MP_PARSE_NODE_NULL);
|
|
i += 1;
|
|
}
|
|
|
|
size_t num_not_nil = 0;
|
|
for (size_t x = 0; x < i; ++x) {
|
|
if (peek_result(&parser, x) != MP_PARSE_NODE_NULL) {
|
|
num_not_nil += 1;
|
|
}
|
|
}
|
|
if (emit_rule || num_not_nil != 1) {
|
|
// need to add rule when num_not_nil==0 for, eg, atom_paren, testlist_comp_3b
|
|
push_result_rule(&parser, rule_src_line, rule, i);
|
|
} else {
|
|
// single result, leave it on stack
|
|
mp_parse_node_t pn = MP_PARSE_NODE_NULL;
|
|
for (size_t x = 0; x < i; ++x) {
|
|
mp_parse_node_t pn2 = pop_result(&parser);
|
|
if (pn2 != MP_PARSE_NODE_NULL) {
|
|
pn = pn2;
|
|
}
|
|
}
|
|
push_result_node(&parser, pn);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case RULE_ACT_LIST: {
|
|
// n=2 is: item item*
|
|
// n=1 is: item (sep item)*
|
|
// n=3 is: item (sep item)* [sep]
|
|
bool had_trailing_sep;
|
|
if (backtrack) {
|
|
list_backtrack:
|
|
had_trailing_sep = false;
|
|
if (n == 2) {
|
|
if (i == 1) {
|
|
// fail on item, first time round; propagate backtrack
|
|
goto next_rule;
|
|
} else {
|
|
// fail on item, in later rounds; finish with this rule
|
|
backtrack = false;
|
|
}
|
|
} else {
|
|
if (i == 1) {
|
|
// fail on item, first time round; propagate backtrack
|
|
goto next_rule;
|
|
} else if ((i & 1) == 1) {
|
|
// fail on item, in later rounds; have eaten tokens so can't backtrack
|
|
if (n == 3) {
|
|
// list allows trailing separator; finish parsing list
|
|
had_trailing_sep = true;
|
|
backtrack = false;
|
|
} else {
|
|
// list doesn't allowing trailing separator; fail
|
|
goto syntax_error;
|
|
}
|
|
} else {
|
|
// fail on separator; finish parsing list
|
|
backtrack = false;
|
|
}
|
|
}
|
|
} else {
|
|
for (;;) {
|
|
size_t arg = rule->arg[i & 1 & n];
|
|
switch (arg & RULE_ARG_KIND_MASK) {
|
|
case RULE_ARG_TOK:
|
|
if (lex->tok_kind == (arg & RULE_ARG_ARG_MASK)) {
|
|
if (i & 1 & n) {
|
|
// separators which are tokens are not pushed to result stack
|
|
} else {
|
|
push_result_token(&parser);
|
|
}
|
|
mp_lexer_to_next(lex);
|
|
// got element of list, so continue parsing list
|
|
i += 1;
|
|
} else {
|
|
// couldn't get element of list
|
|
i += 1;
|
|
backtrack = true;
|
|
goto list_backtrack;
|
|
}
|
|
break;
|
|
case RULE_ARG_RULE:
|
|
rule_list_no_other_choice:
|
|
push_rule(&parser, rule_src_line, rule, i + 1); // save this list-rule
|
|
push_rule_from_arg(&parser, arg); // push child of list-rule
|
|
goto next_rule;
|
|
default:
|
|
assert(0);
|
|
goto rule_list_no_other_choice; // to help flow control analysis
|
|
}
|
|
}
|
|
}
|
|
assert(i >= 1);
|
|
|
|
// compute number of elements in list, result in i
|
|
i -= 1;
|
|
if ((n & 1) && (rule->arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
|
|
// don't count separators when they are tokens
|
|
i = (i + 1) / 2;
|
|
}
|
|
|
|
if (i == 1) {
|
|
// list matched single item
|
|
if (had_trailing_sep) {
|
|
// if there was a trailing separator, make a list of a single item
|
|
push_result_rule(&parser, rule_src_line, rule, i);
|
|
} else {
|
|
// just leave single item on stack (ie don't wrap in a list)
|
|
}
|
|
} else {
|
|
push_result_rule(&parser, rule_src_line, rule, i);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
#if MICROPY_COMP_CONST
|
|
mp_map_deinit(&parser.consts);
|
|
#endif
|
|
|
|
// truncate final chunk and link into chain of chunks
|
|
if (parser.cur_chunk != NULL) {
|
|
(void)m_renew(byte, parser.cur_chunk,
|
|
sizeof(mp_parse_chunk_t) + parser.cur_chunk->alloc,
|
|
sizeof(mp_parse_chunk_t) + parser.cur_chunk->union_.used);
|
|
parser.cur_chunk->alloc = parser.cur_chunk->union_.used;
|
|
parser.cur_chunk->union_.next = parser.tree.chunk;
|
|
parser.tree.chunk = parser.cur_chunk;
|
|
}
|
|
|
|
mp_obj_t exc;
|
|
|
|
if (parser.parse_error) {
|
|
#if MICROPY_COMP_CONST
|
|
if (parser.parse_error == PARSE_ERROR_CONST) {
|
|
exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
|
|
"constant must be an integer");
|
|
} else
|
|
#endif
|
|
{
|
|
assert(parser.parse_error == PARSE_ERROR_MEMORY);
|
|
memory_error:
|
|
exc = mp_obj_new_exception_msg(&mp_type_MemoryError,
|
|
"parser could not allocate enough memory");
|
|
}
|
|
parser.tree.root = MP_PARSE_NODE_NULL;
|
|
} else if (
|
|
lex->tok_kind != MP_TOKEN_END // check we are at the end of the token stream
|
|
|| parser.result_stack_top == 0 // check that we got a node (can fail on empty input)
|
|
) {
|
|
syntax_error:
|
|
if (lex->tok_kind == MP_TOKEN_INDENT) {
|
|
exc = mp_obj_new_exception_msg(&mp_type_IndentationError,
|
|
"unexpected indent");
|
|
} else if (lex->tok_kind == MP_TOKEN_DEDENT_MISMATCH) {
|
|
exc = mp_obj_new_exception_msg(&mp_type_IndentationError,
|
|
"unindent does not match any outer indentation level");
|
|
} else {
|
|
exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
|
|
"invalid syntax");
|
|
}
|
|
parser.tree.root = MP_PARSE_NODE_NULL;
|
|
} else {
|
|
// no errors
|
|
|
|
//result_stack_show(parser);
|
|
//printf("rule stack alloc: %d\n", parser.rule_stack_alloc);
|
|
//printf("result stack alloc: %d\n", parser.result_stack_alloc);
|
|
//printf("number of parse nodes allocated: %d\n", num_parse_nodes_allocated);
|
|
|
|
// get the root parse node that we created
|
|
assert(parser.result_stack_top == 1);
|
|
exc = MP_OBJ_NULL;
|
|
parser.tree.root = parser.result_stack[0];
|
|
}
|
|
|
|
// free the memory that we don't need anymore
|
|
m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc);
|
|
m_del(mp_parse_node_t, parser.result_stack, parser.result_stack_alloc);
|
|
// we also free the lexer on behalf of the caller (see below)
|
|
|
|
if (exc != MP_OBJ_NULL) {
|
|
// had an error so raise the exception
|
|
// add traceback to give info about file name and location
|
|
// we don't have a 'block' name, so just pass the NULL qstr to indicate this
|
|
mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTR_NULL);
|
|
mp_lexer_free(lex);
|
|
nlr_raise(exc);
|
|
} else {
|
|
mp_lexer_free(lex);
|
|
return parser.tree;
|
|
}
|
|
}
|
|
|
|
void mp_parse_tree_clear(mp_parse_tree_t *tree) {
|
|
mp_parse_chunk_t *chunk = tree->chunk;
|
|
while (chunk != NULL) {
|
|
mp_parse_chunk_t *next = chunk->union_.next;
|
|
m_del(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc);
|
|
chunk = next;
|
|
}
|
|
}
|
|
|
|
#endif // MICROPY_ENABLE_COMPILER
|