dddd25a776
This is a slight trade-off with code size, in places where a "_varg" mp_raise variant is now used. The net savings on trinket_m0 is just 32 bytes. It also means that the translation will include the original English text, and cannot be translated. These are usually names of Python types such as int, set, or dict or special values such as "inf" or "Nan".
555 lines
19 KiB
C
555 lines
19 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* SPDX-FileCopyrightText: Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
#include "py/parsenum.h"
|
|
#include "py/smallint.h"
|
|
#include "py/objint.h"
|
|
#include "py/objstr.h"
|
|
#include "py/runtime.h"
|
|
#include "py/binary.h"
|
|
|
|
#include "supervisor/shared/translate.h"
|
|
|
|
#if MICROPY_PY_BUILTINS_FLOAT
|
|
#include <math.h>
|
|
#endif
|
|
|
|
// This dispatcher function is expected to be independent of the implementation of long int
|
|
STATIC mp_obj_t mp_obj_int_make_new(const mp_obj_type_t *type_in, size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
|
|
(void)type_in;
|
|
mp_arg_check_num(n_args, kw_args, 0, 2, false);
|
|
|
|
switch (n_args) {
|
|
case 0:
|
|
return MP_OBJ_NEW_SMALL_INT(0);
|
|
|
|
case 1:
|
|
if (MP_OBJ_IS_INT(args[0])) {
|
|
// already an int (small or long), just return it
|
|
return args[0];
|
|
} else if (MP_OBJ_IS_STR_OR_BYTES(args[0])) {
|
|
// a string, parse it
|
|
size_t l;
|
|
const char *s = mp_obj_str_get_data(args[0], &l);
|
|
return mp_parse_num_integer(s, l, 0, NULL);
|
|
#if MICROPY_PY_BUILTINS_FLOAT
|
|
} else if (mp_obj_is_float(args[0])) {
|
|
return mp_obj_new_int_from_float(mp_obj_float_get(args[0]));
|
|
#endif
|
|
} else {
|
|
// try to convert to small int (eg from bool)
|
|
return MP_OBJ_NEW_SMALL_INT(mp_obj_get_int(args[0]));
|
|
}
|
|
|
|
case 2:
|
|
default: {
|
|
// should be a string, parse it
|
|
// TODO proper error checking of argument types
|
|
size_t l;
|
|
const char *s = mp_obj_str_get_data(args[0], &l);
|
|
return mp_parse_num_integer(s, l, mp_obj_get_int(args[1]), NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if MICROPY_PY_BUILTINS_FLOAT
|
|
|
|
typedef enum {
|
|
MP_FP_CLASS_FIT_SMALLINT,
|
|
MP_FP_CLASS_FIT_LONGINT,
|
|
MP_FP_CLASS_OVERFLOW
|
|
} mp_fp_as_int_class_t;
|
|
|
|
STATIC mp_fp_as_int_class_t mp_classify_fp_as_int(mp_float_t val) {
|
|
union {
|
|
mp_float_t f;
|
|
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
|
|
uint32_t i;
|
|
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
|
|
uint32_t i[2];
|
|
#endif
|
|
} u = {val};
|
|
|
|
uint32_t e;
|
|
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
|
|
e = u.i;
|
|
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
|
|
e = u.i[MP_ENDIANNESS_LITTLE];
|
|
#endif
|
|
#define MP_FLOAT_SIGN_SHIFT_I32 ((MP_FLOAT_FRAC_BITS + MP_FLOAT_EXP_BITS) % 32)
|
|
#define MP_FLOAT_EXP_SHIFT_I32 (MP_FLOAT_FRAC_BITS % 32)
|
|
|
|
if (e & (1U << MP_FLOAT_SIGN_SHIFT_I32)) {
|
|
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
|
|
e |= u.i[MP_ENDIANNESS_BIG] != 0;
|
|
#endif
|
|
if ((e & ~(1 << MP_FLOAT_SIGN_SHIFT_I32)) == 0) {
|
|
// handle case of -0 (when sign is set but rest of bits are zero)
|
|
e = 0;
|
|
} else {
|
|
e += ((1 << MP_FLOAT_EXP_BITS) - 1) << MP_FLOAT_EXP_SHIFT_I32;
|
|
}
|
|
} else {
|
|
e &= ~((1 << MP_FLOAT_EXP_SHIFT_I32) - 1);
|
|
}
|
|
// 8 * sizeof(uintptr_t) counts the number of bits for a small int
|
|
// TODO provide a way to configure this properly
|
|
if (e <= ((8 * sizeof(uintptr_t) + MP_FLOAT_EXP_BIAS - 3) << MP_FLOAT_EXP_SHIFT_I32)) {
|
|
return MP_FP_CLASS_FIT_SMALLINT;
|
|
}
|
|
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
|
|
if (e <= (((sizeof(long long) * BITS_PER_BYTE) + MP_FLOAT_EXP_BIAS - 2) << MP_FLOAT_EXP_SHIFT_I32)) {
|
|
return MP_FP_CLASS_FIT_LONGINT;
|
|
}
|
|
#endif
|
|
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ
|
|
return MP_FP_CLASS_FIT_LONGINT;
|
|
#else
|
|
return MP_FP_CLASS_OVERFLOW;
|
|
#endif
|
|
}
|
|
#undef MP_FLOAT_SIGN_SHIFT_I32
|
|
#undef MP_FLOAT_EXP_SHIFT_I32
|
|
|
|
mp_obj_t mp_obj_new_int_from_float(mp_float_t val) {
|
|
int cl = fpclassify(val);
|
|
if (cl == FP_INFINITE) {
|
|
mp_raise_OverflowError_varg(translate("can't convert %s to %s"), "inf", "int");
|
|
} else if (cl == FP_NAN) {
|
|
mp_raise_ValueError_varg(translate("can't convert %s to %s"), "NaN", "int");
|
|
} else {
|
|
mp_fp_as_int_class_t icl = mp_classify_fp_as_int(val);
|
|
if (icl == MP_FP_CLASS_FIT_SMALLINT) {
|
|
return MP_OBJ_NEW_SMALL_INT((mp_int_t)val);
|
|
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ
|
|
} else {
|
|
mp_obj_int_t *o = mp_obj_int_new_mpz();
|
|
mpz_set_from_float(&o->mpz, val);
|
|
return MP_OBJ_FROM_PTR(o);
|
|
}
|
|
#else
|
|
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
|
|
} else if (icl == MP_FP_CLASS_FIT_LONGINT) {
|
|
return mp_obj_new_int_from_ll((long long)val);
|
|
#endif
|
|
} else {
|
|
mp_raise_ValueError(translate("float too big"));
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
|
|
typedef mp_longint_impl_t fmt_int_t;
|
|
typedef unsigned long long fmt_uint_t;
|
|
#else
|
|
typedef mp_int_t fmt_int_t;
|
|
typedef mp_uint_t fmt_uint_t;
|
|
#endif
|
|
|
|
void mp_obj_int_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
|
|
(void)kind;
|
|
// The size of this buffer is rather arbitrary. If it's not large
|
|
// enough, a dynamic one will be allocated.
|
|
char stack_buf[sizeof(fmt_int_t) * 4];
|
|
char *buf = stack_buf;
|
|
size_t buf_size = sizeof(stack_buf);
|
|
size_t fmt_size;
|
|
|
|
char *str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, self_in, 10, NULL, '\0', '\0');
|
|
mp_print_str(print, str);
|
|
|
|
if (buf != stack_buf) {
|
|
m_del(char, buf, buf_size);
|
|
}
|
|
}
|
|
|
|
STATIC const uint8_t log_base2_floor[] = {
|
|
0, 1, 1, 2,
|
|
2, 2, 2, 3,
|
|
3, 3, 3, 3,
|
|
3, 3, 3, 4,
|
|
/* if needed, these are the values for higher bases
|
|
4, 4, 4, 4,
|
|
4, 4, 4, 4,
|
|
4, 4, 4, 4,
|
|
4, 4, 4, 5
|
|
*/
|
|
};
|
|
|
|
size_t mp_int_format_size(size_t num_bits, int base, const char *prefix, char comma) {
|
|
assert(2 <= base && base <= 16);
|
|
size_t num_digits = num_bits / log_base2_floor[base - 1] + 1;
|
|
size_t num_commas = comma ? num_digits / 3 : 0;
|
|
size_t prefix_len = prefix ? strlen(prefix) : 0;
|
|
return num_digits + num_commas + prefix_len + 2; // +1 for sign, +1 for null byte
|
|
}
|
|
|
|
// This routine expects you to pass in a buffer and size (in *buf and *buf_size).
|
|
// If, for some reason, this buffer is too small, then it will allocate a
|
|
// buffer and return the allocated buffer and size in *buf and *buf_size. It
|
|
// is the callers responsibility to free this allocated buffer.
|
|
//
|
|
// The resulting formatted string will be returned from this function and the
|
|
// formatted size will be in *fmt_size.
|
|
char *mp_obj_int_formatted(char **buf, size_t *buf_size, size_t *fmt_size, mp_const_obj_t self_in,
|
|
int base, const char *prefix, char base_char, char comma) {
|
|
fmt_int_t num;
|
|
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE
|
|
// Only have small ints; get the integer value to format.
|
|
num = MP_OBJ_SMALL_INT_VALUE(self_in);
|
|
#else
|
|
if (MP_OBJ_IS_SMALL_INT(self_in)) {
|
|
// A small int; get the integer value to format.
|
|
num = MP_OBJ_SMALL_INT_VALUE(self_in);
|
|
} else {
|
|
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_int));
|
|
// Not a small int.
|
|
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
|
|
const mp_obj_int_t *self = self_in;
|
|
// Get the value to format; mp_obj_get_int truncates to mp_int_t.
|
|
num = self->val;
|
|
#else
|
|
// Delegate to the implementation for the long int.
|
|
return mp_obj_int_formatted_impl(buf, buf_size, fmt_size, self_in, base, prefix, base_char, comma);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
char sign = '\0';
|
|
if (num < 0) {
|
|
num = -num;
|
|
sign = '-';
|
|
}
|
|
|
|
size_t needed_size = mp_int_format_size(sizeof(fmt_int_t) * 8, base, prefix, comma);
|
|
if (needed_size > *buf_size) {
|
|
*buf = m_new(char, needed_size);
|
|
*buf_size = needed_size;
|
|
}
|
|
char *str = *buf;
|
|
|
|
char *b = str + needed_size;
|
|
*(--b) = '\0';
|
|
char *last_comma = b;
|
|
|
|
if (num == 0) {
|
|
*(--b) = '0';
|
|
} else {
|
|
do {
|
|
// The cast to fmt_uint_t is because num is positive and we want unsigned arithmetic
|
|
int c = (fmt_uint_t)num % base;
|
|
num = (fmt_uint_t)num / base;
|
|
if (c >= 10) {
|
|
c += base_char - 10;
|
|
} else {
|
|
c += '0';
|
|
}
|
|
*(--b) = c;
|
|
if (comma && num != 0 && b > str && (last_comma - b) == 3) {
|
|
*(--b) = comma;
|
|
last_comma = b;
|
|
}
|
|
}
|
|
while (b > str && num != 0);
|
|
}
|
|
if (prefix) {
|
|
size_t prefix_len = strlen(prefix);
|
|
char *p = b - prefix_len;
|
|
if (p > str) {
|
|
b = p;
|
|
while (*prefix) {
|
|
*p++ = *prefix++;
|
|
}
|
|
}
|
|
}
|
|
if (sign && b > str) {
|
|
*(--b) = sign;
|
|
}
|
|
*fmt_size = *buf + needed_size - b - 1;
|
|
|
|
return b;
|
|
}
|
|
|
|
#if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
|
|
|
|
void mp_obj_int_buffer_overflow_check(mp_obj_t self_in, size_t nbytes, bool is_signed)
|
|
{
|
|
if (is_signed) {
|
|
// self must be < 2**(bits - 1)
|
|
mp_obj_t edge = mp_binary_op(MP_BINARY_OP_INPLACE_LSHIFT,
|
|
mp_obj_new_int(1),
|
|
mp_obj_new_int(nbytes * 8 - 1));
|
|
|
|
if (mp_binary_op(MP_BINARY_OP_LESS, self_in, edge) == mp_const_true) {
|
|
// and >= -2**(bits - 1)
|
|
edge = mp_unary_op(MP_UNARY_OP_NEGATIVE, edge);
|
|
if (mp_binary_op(MP_BINARY_OP_MORE_EQUAL, self_in, edge) == mp_const_true) {
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
// self must be >= 0
|
|
if (mp_obj_int_sign(self_in) >= 0) {
|
|
// and < 2**(bits)
|
|
mp_obj_t edge = mp_binary_op(MP_BINARY_OP_INPLACE_LSHIFT,
|
|
mp_obj_new_int(1),
|
|
mp_obj_new_int(nbytes * 8));
|
|
|
|
if (mp_binary_op(MP_BINARY_OP_LESS, self_in, edge) == mp_const_true) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
mp_raise_OverflowError_varg(translate("value must fit in %d byte(s)"), nbytes);
|
|
}
|
|
|
|
#endif // MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
|
|
|
|
void mp_small_int_buffer_overflow_check(mp_int_t val, size_t nbytes, bool is_signed) {
|
|
// Fast path for zero.
|
|
if (val == 0) {
|
|
return;
|
|
}
|
|
|
|
// Trying to store negative values in unsigned bytes falls through to failure.
|
|
if (is_signed || val >= 0) {
|
|
|
|
if (nbytes >= sizeof(val)) {
|
|
// All non-negative N bit signed integers fit in an unsigned N bit integer.
|
|
// This case prevents shifting too far below.
|
|
return;
|
|
}
|
|
|
|
if (is_signed) {
|
|
mp_int_t edge = ((mp_int_t)1 << (nbytes * 8 - 1));
|
|
if (-edge <= val && val < edge) {
|
|
return;
|
|
}
|
|
// Out of range, fall through to failure.
|
|
} else {
|
|
// Unsigned. We already know val >= 0.
|
|
mp_int_t edge = ((mp_int_t)1 << (nbytes * 8));
|
|
if (val < edge) {
|
|
return;
|
|
}
|
|
}
|
|
// Fall through to failure.
|
|
}
|
|
|
|
mp_raise_OverflowError_varg(translate("value must fit in %d byte(s)"), nbytes);
|
|
}
|
|
|
|
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE
|
|
|
|
int mp_obj_int_sign(mp_obj_t self_in) {
|
|
mp_int_t val = mp_obj_get_int(self_in);
|
|
if (val < 0) {
|
|
return -1;
|
|
} else if (val > 0) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// This is called for operations on SMALL_INT that are not handled by mp_unary_op
|
|
mp_obj_t mp_obj_int_unary_op(mp_unary_op_t op, mp_obj_t o_in) {
|
|
return MP_OBJ_NULL; // op not supported
|
|
}
|
|
|
|
// This is called for operations on SMALL_INT that are not handled by mp_binary_op
|
|
mp_obj_t mp_obj_int_binary_op(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
|
|
return mp_obj_int_binary_op_extra_cases(op, lhs_in, rhs_in);
|
|
}
|
|
|
|
// This is called only with strings whose value doesn't fit in SMALL_INT
|
|
mp_obj_t mp_obj_new_int_from_str_len(const char **str, size_t len, bool neg, unsigned int base) {
|
|
mp_raise_msg(&mp_type_OverflowError, translate("long int not supported in this build"));
|
|
return mp_const_none;
|
|
}
|
|
|
|
// This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
|
|
mp_obj_t mp_obj_new_int_from_ll(long long val) {
|
|
mp_raise_msg(&mp_type_OverflowError, translate("small int overflow"));
|
|
return mp_const_none;
|
|
}
|
|
|
|
// This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
|
|
mp_obj_t mp_obj_new_int_from_ull(unsigned long long val) {
|
|
mp_raise_msg(&mp_type_OverflowError, translate("small int overflow"));
|
|
return mp_const_none;
|
|
}
|
|
|
|
mp_obj_t mp_obj_new_int_from_uint(mp_uint_t value) {
|
|
// SMALL_INT accepts only signed numbers, so make sure the input
|
|
// value fits completely in the small-int positive range.
|
|
if ((value & ~MP_SMALL_INT_POSITIVE_MASK) == 0) {
|
|
return MP_OBJ_NEW_SMALL_INT(value);
|
|
}
|
|
mp_raise_msg(&mp_type_OverflowError, translate("small int overflow"));
|
|
return mp_const_none;
|
|
}
|
|
|
|
mp_obj_t mp_obj_new_int(mp_int_t value) {
|
|
if (MP_SMALL_INT_FITS(value)) {
|
|
return MP_OBJ_NEW_SMALL_INT(value);
|
|
}
|
|
mp_raise_msg(&mp_type_OverflowError, translate("small int overflow"));
|
|
return mp_const_none;
|
|
}
|
|
|
|
mp_int_t mp_obj_int_get_truncated(mp_const_obj_t self_in) {
|
|
return MP_OBJ_SMALL_INT_VALUE(self_in);
|
|
}
|
|
|
|
mp_int_t mp_obj_int_get_checked(mp_const_obj_t self_in) {
|
|
return MP_OBJ_SMALL_INT_VALUE(self_in);
|
|
}
|
|
|
|
#endif // MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE
|
|
|
|
// This dispatcher function is expected to be independent of the implementation of long int
|
|
// It handles the extra cases for integer-like arithmetic
|
|
mp_obj_t mp_obj_int_binary_op_extra_cases(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
|
|
if (rhs_in == mp_const_false) {
|
|
// false acts as 0
|
|
return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(0));
|
|
} else if (rhs_in == mp_const_true) {
|
|
// true acts as 0
|
|
return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(1));
|
|
} else if (op == MP_BINARY_OP_MULTIPLY) {
|
|
if (MP_OBJ_IS_STR_OR_BYTES(rhs_in) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_list)) {
|
|
// multiply is commutative for these types, so delegate to them
|
|
return mp_binary_op(op, rhs_in, lhs_in);
|
|
}
|
|
}
|
|
return MP_OBJ_NULL; // op not supported
|
|
}
|
|
|
|
// this is a classmethod
|
|
STATIC mp_obj_t int_from_bytes(size_t n_args, const mp_obj_t *args) {
|
|
// TODO: Support signed param (assumes signed=False at the moment)
|
|
(void)n_args;
|
|
|
|
// get the buffer info
|
|
mp_buffer_info_t bufinfo;
|
|
mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ);
|
|
|
|
const byte* buf = (const byte*)bufinfo.buf;
|
|
int delta = 1;
|
|
if (args[2] == MP_OBJ_NEW_QSTR(MP_QSTR_little)) {
|
|
buf += bufinfo.len - 1;
|
|
delta = -1;
|
|
}
|
|
|
|
mp_uint_t value = 0;
|
|
size_t len = bufinfo.len;
|
|
for (; len--; buf += delta) {
|
|
#if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
|
|
if (value > (MP_SMALL_INT_MAX >> 8)) {
|
|
// Result will overflow a small-int so construct a big-int
|
|
return mp_obj_int_from_bytes_impl(args[2] != MP_OBJ_NEW_QSTR(MP_QSTR_little), bufinfo.len, bufinfo.buf);
|
|
}
|
|
#endif
|
|
value = (value << 8) | *buf;
|
|
}
|
|
return mp_obj_new_int_from_uint(value);
|
|
}
|
|
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_from_bytes_fun_obj, 3, 4, int_from_bytes);
|
|
STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(int_from_bytes_obj, MP_ROM_PTR(&int_from_bytes_fun_obj));
|
|
|
|
STATIC mp_obj_t int_to_bytes(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
enum { ARG_length, ARG_byteorder, ARG_signed };
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_length, MP_ARG_REQUIRED | MP_ARG_INT },
|
|
{ MP_QSTR_byteorder, MP_ARG_REQUIRED | MP_ARG_OBJ },
|
|
{ MP_QSTR_signed, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
|
|
};
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
mp_int_t len = args[ARG_length].u_int;
|
|
if (len < 0) {
|
|
mp_raise_ValueError(NULL);
|
|
}
|
|
|
|
mp_obj_t self = pos_args[0];
|
|
bool big_endian = args[ARG_byteorder].u_obj != MP_OBJ_NEW_QSTR(MP_QSTR_little);
|
|
bool signed_ = args[ARG_signed].u_bool;
|
|
|
|
vstr_t vstr;
|
|
vstr_init_len(&vstr, len);
|
|
byte *data = (byte*)vstr.buf;
|
|
memset(data, 0, len);
|
|
|
|
#if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
|
|
if (!MP_OBJ_IS_SMALL_INT(self)) {
|
|
mp_obj_int_buffer_overflow_check(self, len, signed_);
|
|
mp_obj_int_to_bytes_impl(self, big_endian, len, data);
|
|
} else
|
|
#endif
|
|
{
|
|
mp_int_t val = MP_OBJ_SMALL_INT_VALUE(self);
|
|
// Small int checking is separate, to be fast.
|
|
mp_small_int_buffer_overflow_check(val, len, signed_);
|
|
size_t l = MIN((size_t)len, sizeof(val));
|
|
if (val < 0) {
|
|
// Sign extend negative numbers.
|
|
memset(data, -1, len);
|
|
}
|
|
mp_binary_set_int(l, big_endian, data + (big_endian ? (len - l) : 0), val);
|
|
}
|
|
|
|
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(int_to_bytes_obj, 3, int_to_bytes);
|
|
|
|
STATIC const mp_rom_map_elem_t int_locals_dict_table[] = {
|
|
{ MP_ROM_QSTR(MP_QSTR_from_bytes), MP_ROM_PTR(&int_from_bytes_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_to_bytes), MP_ROM_PTR(&int_to_bytes_obj) },
|
|
};
|
|
|
|
STATIC MP_DEFINE_CONST_DICT(int_locals_dict, int_locals_dict_table);
|
|
|
|
const mp_obj_type_t mp_type_int = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_int,
|
|
.print = mp_obj_int_print,
|
|
.make_new = mp_obj_int_make_new,
|
|
.unary_op = mp_obj_int_unary_op,
|
|
.binary_op = mp_obj_int_binary_op,
|
|
.locals_dict = (mp_obj_dict_t*)&int_locals_dict,
|
|
};
|