circuitpython/cc3200/mods/pybtimer.c
Daniel Campora ea5061e409 cc3200: Improve callback API.
Rename "wakes" param to "wake_from" and make "value" an object
instead of an integer.
2015-08-16 20:17:52 +02:00

883 lines
35 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2015 Daniel Campora
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "py/mpconfig.h"
#include MICROPY_HAL_H
#include "py/obj.h"
#include "py/nlr.h"
#include "py/runtime.h"
#include "py/gc.h"
#include "inc/hw_types.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_timer.h"
#include "rom_map.h"
#include "interrupt.h"
#include "prcm.h"
#include "timer.h"
#include "pybtimer.h"
#include "pybsleep.h"
#include "mpcallback.h"
#include "mpexception.h"
/// \moduleref pyb
/// \class Timer - generate periodic events, count events, and create PWM signals.
///
/// Each timer consists of a counter that counts up at a certain rate. The rate
/// at which it counts is the peripheral clock frequency (in Hz) divided by the
/// timer prescaler. When the counter reaches the timer period it triggers an
/// event, and the counter resets back to zero. By using the callback method,
/// the timer event can call a Python function.
///
/// Example usage to toggle an LED at a fixed frequency:
///
/// tim = pyb.Timer(4) # create a timer object using timer 4
/// tim.init(mode=Timer.PERIODIC) # initialize it in periodic mode
/// tim_ch = tim.channel(Timer.A, freq=2) # configure channel A at a frequency of 2Hz
/// tim_ch.callback(handler=lambda t:led.toggle()) # toggle a LED on every cycle of the timer
///
/// Further examples:
///
/// tim1 = pyb.Timer(2, mode=Timer.EVENT_COUNT) # initialize it capture mode
/// tim2 = pyb.Timer(1, mode=Timer.PWM) # initialize it in PWM mode
/// tim_ch = tim1.channel(Timer.A, freq=1, polarity=Timer.POSITIVE) # start the event counter with a frequency of 1Hz and triggered by positive edges
/// tim_ch = tim2.channel(Timer.B, freq=10000, duty_cycle=50) # start the PWM on channel B with a 50% duty cycle
/// tim_ch.time() # get the current time in usec (can also be set)
/// tim_ch.freq(20) # set the frequency (can also get)
/// tim_ch.duty_cycle(30) # set the duty cycle to 30% (can also get)
/// tim_ch.duty_cycle(30, Timer.NEGATIVE) # set the duty cycle to 30% and change the polarity to negative
/// tim_ch.event_count() # get the number of captured events
/// tim_ch.event_time() # get the the time of the last captured event
/// tim_ch.period(2000000) # change the period to 2 seconds
///
/******************************************************************************
DECLARE PRIVATE CONSTANTS
******************************************************************************/
#define PYBTIMER_NUM_TIMERS (4)
#define PYBTIMER_POLARITY_POS (0x01)
#define PYBTIMER_POLARITY_NEG (0x02)
#define PYBTIMER_SRC_FREQ_HZ HAL_FCPU_HZ
/******************************************************************************
DEFINE PRIVATE TYPES
******************************************************************************/
typedef struct _pyb_timer_obj_t {
mp_obj_base_t base;
uint32_t timer;
uint32_t config;
uint16_t intflags;
uint8_t peripheral;
uint8_t id;
} pyb_timer_obj_t;
typedef struct _pyb_timer_channel_obj_t {
mp_obj_base_t base;
struct _pyb_timer_obj_t *timer;
uint32_t frequency;
uint32_t period;
uint16_t channel;
uint8_t polarity;
uint8_t duty_cycle;
} pyb_timer_channel_obj_t;
/******************************************************************************
DEFINE PRIVATE DATA
******************************************************************************/
STATIC const mp_cb_methods_t pyb_timer_channel_cb_methods;
STATIC pyb_timer_obj_t pyb_timer_obj[PYBTIMER_NUM_TIMERS] = {{.timer = TIMERA0_BASE, .peripheral = PRCM_TIMERA0},
{.timer = TIMERA1_BASE, .peripheral = PRCM_TIMERA1},
{.timer = TIMERA2_BASE, .peripheral = PRCM_TIMERA2},
{.timer = TIMERA3_BASE, .peripheral = PRCM_TIMERA3}};
STATIC const mp_obj_type_t pyb_timer_channel_type;
/******************************************************************************
DECLARE PRIVATE FUNCTIONS
******************************************************************************/
STATIC mp_obj_t pyb_timer_channel_callback (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args);
STATIC void timer_disable (pyb_timer_obj_t *tim);
STATIC void TIMER0AIntHandler(void);
STATIC void TIMER0BIntHandler(void);
STATIC void TIMER1AIntHandler(void);
STATIC void TIMER1BIntHandler(void);
STATIC void TIMER2AIntHandler(void);
STATIC void TIMER2BIntHandler(void);
STATIC void TIMER3AIntHandler(void);
STATIC void TIMER3BIntHandler(void);
/******************************************************************************
DEFINE PUBLIC FUNCTIONS
******************************************************************************/
void timer_init0 (void) {
mp_obj_list_init(&MP_STATE_PORT(pyb_timer_channel_obj_list), 0);
}
void timer_disable_all (void) {
pyb_timer_obj_t timer = {
.timer = TIMERA0_BASE,
.intflags = TIMER_CAPB_EVENT | TIMER_CAPB_MATCH |
TIMER_TIMB_TIMEOUT | TIMER_CAPA_EVENT |
TIMER_CAPA_MATCH | TIMER_TIMA_TIMEOUT,
.peripheral = PRCM_TIMERA0
};
for (uint32_t i = 0; i < PYBTIMER_NUM_TIMERS; i++) {
// in case it's not clocked
MAP_PRCMPeripheralClkEnable(timer.peripheral, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
timer_disable(&timer);
// timer base offset according to hw_memmap.h
timer.timer += 0x1000;
// peripheral offset according to prcm.h
timer.peripheral++;
}
}
void pyb_timer_channel_callback_enable (mp_obj_t self_in) {
pyb_timer_channel_obj_t *self = self_in;
MAP_TimerIntClear(self->timer->timer, self->timer->intflags & self->channel);
MAP_TimerIntEnable(self->timer->timer, self->timer->intflags & self->channel);
}
void pyb_timer_channel_callback_disable (mp_obj_t self_in) {
pyb_timer_channel_obj_t *self = self_in;
MAP_TimerIntDisable(self->timer->timer, self->timer->intflags & self->channel);
}
pyb_timer_channel_obj_t *pyb_timer_channel_find (uint32_t timer, uint16_t channel_n) {
for (mp_uint_t i = 0; i < MP_STATE_PORT(pyb_timer_channel_obj_list).len; i++) {
pyb_timer_channel_obj_t *ch = ((pyb_timer_channel_obj_t *)(MP_STATE_PORT(pyb_timer_channel_obj_list).items[i]));
// any 32-bit timer must be matched by any of its 16-bit versions
if (ch->timer->timer == timer && ((ch->channel & TIMER_A) == channel_n || (ch->channel & TIMER_B) == channel_n)) {
return ch;
}
}
return MP_OBJ_NULL;
}
void pyb_timer_channel_remove (pyb_timer_channel_obj_t *ch) {
pyb_timer_channel_obj_t *channel;
if ((channel = pyb_timer_channel_find(ch->timer->timer, ch->channel))) {
mp_obj_list_remove(&MP_STATE_PORT(pyb_timer_channel_obj_list), channel);
}
}
void pyb_timer_channel_add (pyb_timer_channel_obj_t *ch) {
// remove it in case it already exists
pyb_timer_channel_remove(ch);
mp_obj_list_append(&MP_STATE_PORT(pyb_timer_channel_obj_list), ch);
}
STATIC void timer_disable (pyb_timer_obj_t *tim) {
// disable all timers and it's interrupts
MAP_TimerDisable(tim->timer, TIMER_A | TIMER_B);
MAP_TimerIntDisable(tim->timer, tim->intflags);
MAP_TimerIntClear(tim->timer, tim->intflags);
MAP_PRCMPeripheralClkDisable(tim->peripheral, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
memset(&pyb_timer_obj[tim->id], 0, sizeof(pyb_timer_obj_t));
}
// computes prescaler period and match value so timer triggers at freq-Hz
STATIC uint32_t compute_prescaler_period_and_match_value(pyb_timer_channel_obj_t *ch, uint32_t *period_out, uint32_t *match_out) {
uint32_t maxcount = (ch->channel == (TIMER_A | TIMER_B)) ? 0xFFFFFFFF : 0xFFFF;
uint32_t prescaler;
uint32_t period_c = (ch->frequency > 0) ? PYBTIMER_SRC_FREQ_HZ / ch->frequency : ((PYBTIMER_SRC_FREQ_HZ / 1000000) * ch->period);
period_c = MAX(1, period_c) - 1;
if (period_c == 0) {
goto error;
}
prescaler = period_c >> 16;
*period_out = period_c;
if (prescaler > 0xFF && maxcount == 0xFFFF) {
goto error;
}
// check limit values for the duty cycle
if (ch->duty_cycle == 0) {
*match_out = period_c - 1;
}
else {
*match_out = period_c - ((period_c * ch->duty_cycle) / 100);
}
if ((ch->timer->config & 0x0F) == TIMER_CFG_A_PWM && (*match_out > 0xFFFF)) {
goto error;
}
return prescaler;
error:
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
STATIC void timer_init (pyb_timer_obj_t *tim) {
MAP_PRCMPeripheralClkEnable(tim->peripheral, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
MAP_PRCMPeripheralReset(tim->peripheral);
MAP_TimerConfigure(tim->timer, tim->config);
}
STATIC void timer_channel_init (pyb_timer_channel_obj_t *ch) {
// calculate the period, the prescaler and the match value
uint32_t period_c;
uint32_t match;
uint32_t prescaler = compute_prescaler_period_and_match_value(ch, &period_c, &match);
// set the prescaler
MAP_TimerPrescaleSet(ch->timer->timer, ch->channel, (prescaler < 0xFF) ? prescaler : 0);
// set the load value
MAP_TimerLoadSet(ch->timer->timer, ch->channel, period_c);
// configure the pwm if we are in such mode
if ((ch->timer->config & 0x0F) == TIMER_CFG_A_PWM) {
// invert the timer output if required
MAP_TimerControlLevel(ch->timer->timer, ch->channel, (ch->polarity == PYBTIMER_POLARITY_NEG) ? true : false);
// set the match value (which is simply the duty cycle translated to ticks)
MAP_TimerMatchSet(ch->timer->timer, ch->channel, match);
}
// configure the event edge type if we are in such mode
else if ((ch->timer->config & 0x0F) == TIMER_CFG_A_CAP_COUNT || (ch->timer->config & 0x0F) == TIMER_CFG_A_CAP_TIME) {
uint32_t polarity = TIMER_EVENT_BOTH_EDGES;
if (ch->polarity == PYBTIMER_POLARITY_POS) {
polarity = TIMER_EVENT_POS_EDGE;
}
else if (ch->polarity == PYBTIMER_POLARITY_NEG) {
polarity = TIMER_EVENT_NEG_EDGE;
}
MAP_TimerControlEvent(ch->timer->timer, ch->channel, polarity);
}
#ifdef DEBUG
// stall the timer when the processor is halted while debugging
MAP_TimerControlStall(ch->timer->timer, ch->channel, true);
#endif
// now enable the timer channel
MAP_TimerEnable(ch->timer->timer, ch->channel);
}
/******************************************************************************/
/* Micro Python bindings */
STATIC void pyb_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_timer_obj_t *tim = self_in;
uint32_t mode = tim->config & 0xFF;
// timer mode
qstr mode_qst = MP_QSTR_PWM;
switch(mode) {
case TIMER_CFG_A_ONE_SHOT:
mode_qst = MP_QSTR_ONE_SHOT;
break;
case TIMER_CFG_A_PERIODIC:
mode_qst = MP_QSTR_PERIODIC;
break;
case TIMER_CFG_A_CAP_COUNT:
mode_qst = MP_QSTR_EDGE_COUNT;
break;
case TIMER_CFG_A_CAP_TIME:
mode_qst = MP_QSTR_EDGE_TIME;
break;
default:
break;
}
mp_printf(print, "<Timer%u, mode=Timer.%q>", (tim->id + 1), mode_qst);
}
/// \method init(mode, *, width)
/// Initialise the timer. Initialisation must give the desired mode
/// and an optional timer width
///
/// tim.init(mode=Timer.ONE_SHOT, width=32) # one shot mode
/// tim.init(mode=Timer.PERIODIC) # configure in free running periodic mode
/// split into two 16-bit independent timers
///
/// Keyword arguments:
///
/// - `width` - specifies the width of the timer. Default is 32 bit mode. When in 16 bit mode
/// the timer is splitted into 2 independent channels.
///
STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *tim, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, },
{ MP_QSTR_width, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 16} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// check the mode
uint32_t _mode = args[0].u_int;
if (_mode != TIMER_CFG_A_ONE_SHOT && _mode != TIMER_CFG_A_PERIODIC && _mode != TIMER_CFG_A_CAP_COUNT &&
_mode != TIMER_CFG_A_CAP_TIME && _mode != TIMER_CFG_A_PWM) {
goto error;
}
// check the width
if (args[1].u_int != 16 && args[1].u_int != 32) {
goto error;
}
bool is16bit = (args[1].u_int == 16);
if (!is16bit && (_mode != TIMER_CFG_A_ONE_SHOT && _mode != TIMER_CFG_A_PERIODIC)) {
// 32-bit mode is only available when in free running modes
goto error;
}
tim->config = is16bit ? ((_mode | (_mode << 8)) | TIMER_CFG_SPLIT_PAIR) : _mode;
timer_init(tim);
// register it with the sleep module
pybsleep_add ((const mp_obj_t)tim, (WakeUpCB_t)timer_init);
return mp_const_none;
error:
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
/// \classmethod \constructor(id, ...)
/// Construct a new timer object of the given id. If additional
/// arguments are given, then the timer is initialised by `init(...)`.
/// `id` can be 1 to 4
STATIC mp_obj_t pyb_timer_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// create a new Timer object
int32_t timer_idx = mp_obj_get_int(args[0]) - 1;
if (timer_idx < 0 || timer_idx > (PYBTIMER_NUM_TIMERS - 1)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_resource_not_avaliable));
}
pyb_timer_obj_t *tim = &pyb_timer_obj[timer_idx];
tim->base.type = &pyb_timer_type;
tim->id = timer_idx;
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args);
}
return (mp_obj_t)tim;
}
// \method init()
/// initializes the timer
STATIC mp_obj_t pyb_timer_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);
// \method deinit()
/// disables the timer
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
pyb_timer_obj_t *self = self_in;
timer_disable(self);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);
/// \method channel(channel, *, freq, period, polarity, duty_cycle)
/// Initialise the timer channel. Initialization requires at least a frequency param. With no
/// extra params given besides the channel id, the channel is returned with the previous configuration
/// os 'None', if it hasn't been initialized before.
///
/// tim1.channel(Timer.A, freq=1000) # set channel A frequency to 1KHz
/// tim2.channel(Timer.AB, freq=10) # both channels (because it's a 32 bit timer) combined to create a 10Hz timer
///
/// when initialiazing the channel of a 32-bit timer, channel ID MUST be = Timer.AB
///
/// Keyword arguments:
///
/// - `freq` - specifies the frequency in Hz.
/// - `period` - specifies the period in microseconds.
/// - `polarity` - in PWM specifies the polarity of the pulse. In capture mode specifies the edge to capture.
/// in order to capture on both negative and positive edges, make it = Timer.POSITIVE | Timer.NEGATIVE.
/// - `duty_cycle` - sets the duty cycle value
///
STATIC mp_obj_t pyb_timer_channel(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = PYBTIMER_POLARITY_POS} },
{ MP_QSTR_duty_cycle, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
};
pyb_timer_obj_t *tim = pos_args[0];
mp_int_t channel_n = mp_obj_get_int(pos_args[1]);
// verify that the timer has been already initialized
if (!tim->config) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_request_not_possible));
}
if (channel_n != TIMER_A && channel_n != TIMER_B && channel_n != (TIMER_A | TIMER_B)) {
// invalid channel
goto error;
}
if (channel_n == (TIMER_A | TIMER_B) && (tim->config & TIMER_CFG_SPLIT_PAIR)) {
// 32-bit channel selected when the timer is in 16-bit mode
goto error;
}
// if only the channel number is given return the previously
// allocated channel (or None if no previous channel)
if (n_args == 2 && kw_args->used == 0) {
pyb_timer_channel_obj_t *ch;
if ((ch = pyb_timer_channel_find(tim->timer, channel_n))) {
return ch;
}
return mp_const_none;
}
// parse the arguments
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// throw an exception if both frequency and period are given
if (args[0].u_int != 0 && args[1].u_int != 0) {
goto error;
}
// check that at least one of them has a valid value
if (args[0].u_int <= 0 && args[1].u_int <= 0) {
goto error;
}
// check that the polarity is not 'both' in pwm mode
if ((tim->config & TIMER_A) == TIMER_CFG_A_PWM && args[2].u_int == (PYBTIMER_POLARITY_POS | PYBTIMER_POLARITY_NEG)) {
goto error;
}
// allocate a new timer channel
pyb_timer_channel_obj_t *ch = m_new_obj(pyb_timer_channel_obj_t);
ch->base.type = &pyb_timer_channel_type;
ch->timer = tim;
ch->channel = channel_n;
// get the frequency the polarity and the duty cycle
ch->frequency = args[0].u_int;
ch->period = args[1].u_int;
ch->polarity = args[2].u_int;
ch->duty_cycle = MIN(100, MAX(0, args[3].u_int));
timer_channel_init(ch);
// register it with the sleep module
pybsleep_add ((const mp_obj_t)ch, (WakeUpCB_t)timer_channel_init);
// add the timer to the list
pyb_timer_channel_add(ch);
return ch;
error:
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 2, pyb_timer_channel);
STATIC const mp_map_elem_t pyb_timer_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_timer_init_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_timer_deinit_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_channel), (mp_obj_t)&pyb_timer_channel_obj },
// class constants
{ MP_OBJ_NEW_QSTR(MP_QSTR_A), MP_OBJ_NEW_SMALL_INT(TIMER_A) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_B), MP_OBJ_NEW_SMALL_INT(TIMER_B) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ONE_SHOT), MP_OBJ_NEW_SMALL_INT(TIMER_CFG_A_ONE_SHOT) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PERIODIC), MP_OBJ_NEW_SMALL_INT(TIMER_CFG_A_PERIODIC) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_EDGE_COUNT), MP_OBJ_NEW_SMALL_INT(TIMER_CFG_A_CAP_COUNT) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_EDGE_TIME), MP_OBJ_NEW_SMALL_INT(TIMER_CFG_A_CAP_TIME) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PWM), MP_OBJ_NEW_SMALL_INT(TIMER_CFG_A_PWM) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_POSITIVE), MP_OBJ_NEW_SMALL_INT(PYBTIMER_POLARITY_POS) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_NEGATIVE), MP_OBJ_NEW_SMALL_INT(PYBTIMER_POLARITY_NEG) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table);
const mp_obj_type_t pyb_timer_type = {
{ &mp_type_type },
.name = MP_QSTR_Timer,
.print = pyb_timer_print,
.make_new = pyb_timer_make_new,
.locals_dict = (mp_obj_t)&pyb_timer_locals_dict,
};
STATIC const mp_cb_methods_t pyb_timer_channel_cb_methods = {
.init = pyb_timer_channel_callback,
.enable = pyb_timer_channel_callback_enable,
.disable = pyb_timer_channel_callback_disable,
};
STATIC void TIMERGenericIntHandler(uint32_t timer, uint16_t channel) {
pyb_timer_channel_obj_t *self;
uint32_t status;
if ((self = pyb_timer_channel_find(timer, channel))) {
status = MAP_TimerIntStatus(self->timer->timer, true) & self->channel;
MAP_TimerIntClear(self->timer->timer, status);
mp_obj_t _callback = mpcallback_find(self);
mpcallback_handler(_callback);
}
}
STATIC void TIMER0AIntHandler(void) {
TIMERGenericIntHandler(TIMERA0_BASE, TIMER_A);
}
STATIC void TIMER0BIntHandler(void) {
TIMERGenericIntHandler(TIMERA0_BASE, TIMER_B);
}
STATIC void TIMER1AIntHandler(void) {
TIMERGenericIntHandler(TIMERA1_BASE, TIMER_A);
}
STATIC void TIMER1BIntHandler(void) {
TIMERGenericIntHandler(TIMERA1_BASE, TIMER_B);
}
STATIC void TIMER2AIntHandler(void) {
TIMERGenericIntHandler(TIMERA2_BASE, TIMER_A);
}
STATIC void TIMER2BIntHandler(void) {
TIMERGenericIntHandler(TIMERA2_BASE, TIMER_B);
}
STATIC void TIMER3AIntHandler(void) {
TIMERGenericIntHandler(TIMERA3_BASE, TIMER_A);
}
STATIC void TIMER3BIntHandler(void) {
TIMERGenericIntHandler(TIMERA3_BASE, TIMER_B);
}
STATIC void pyb_timer_channel_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_timer_channel_obj_t *ch = self_in;
char *ch_id = "AB";
// timer channel
if (ch->channel == TIMER_A) {
ch_id = "A";
}
else if (ch->channel == TIMER_B) {
ch_id = "B";
}
mp_printf(print, "<%q %s, timer=%u, %q=%u", MP_QSTR_TimerChannel,
ch_id, (ch->timer->id + 1), MP_QSTR_freq, ch->frequency);
uint32_t mode = ch->timer->config & 0xFF;
if (mode == TIMER_CFG_A_CAP_COUNT || mode == TIMER_CFG_A_CAP_TIME || mode == TIMER_CFG_A_PWM) {
mp_printf(print, ", %q=Timer.", MP_QSTR_polarity);
switch (ch->polarity) {
case PYBTIMER_POLARITY_POS:
mp_printf(print, "POSITIVE");
break;
case PYBTIMER_POLARITY_NEG:
mp_printf(print, "NEGATIVE");
break;
default:
mp_printf(print, "BOTH");
break;
}
if (mode == TIMER_CFG_A_PWM) {
mp_printf(print, ", %q=%u", MP_QSTR_duty_cycle, ch->duty_cycle);
}
}
mp_printf(print, ">");
}
/// \method freq([value])
/// get or set the frequency of the timer channel
STATIC mp_obj_t pyb_timer_channel_freq(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *ch = args[0];
if (n_args == 1) {
// get
return mp_obj_new_int(ch->frequency);
} else {
// set
int32_t _frequency = mp_obj_get_int(args[1]);
if (_frequency <= 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
ch->frequency = _frequency;
ch->period = 1000000 / _frequency;
timer_channel_init(ch);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_freq_obj, 1, 2, pyb_timer_channel_freq);
/// \method period([value])
/// get or set the period of the timer channel in microseconds
STATIC mp_obj_t pyb_timer_channel_period(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *ch = args[0];
if (n_args == 1) {
// get
return mp_obj_new_int(ch->period);
} else {
// set
int32_t _period = mp_obj_get_int(args[1]);
if (_period <= 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
ch->period = _period;
ch->frequency = 1000000 / _period;
timer_channel_init(ch);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_period_obj, 1, 2, pyb_timer_channel_period);
/// \method time([value])
/// get or set the value of the timer channel in microseconds
STATIC mp_obj_t pyb_timer_channel_time(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *ch = args[0];
uint32_t value;
// calculate the period, the prescaler and the match value
uint32_t period_c;
uint32_t match;
(void)compute_prescaler_period_and_match_value(ch, &period_c, &match);
if (n_args == 1) {
// get
value = (ch->channel == TIMER_B) ? HWREG(ch->timer->timer + TIMER_O_TBV) : HWREG(ch->timer->timer + TIMER_O_TAV);
// return the current timer value in microseconds
// substract value to period since we are always operating in count-down mode
uint32_t time_t = (1000 * (period_c - value)) / period_c;
return mp_obj_new_int((time_t * 1000) / ch->frequency);
}
else {
// set
value = (mp_obj_get_int(args[1]) * ((ch->frequency * period_c) / 1000)) / 1000;
if ((value > 0xFFFF) && (ch->timer->config & TIMER_CFG_SPLIT_PAIR)) {
// this exceeds the maximum value of a 16-bit timer
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
// write period minus value since we are always operating in count-down mode
TimerValueSet (ch->timer->timer, ch->channel, (period_c - value));
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_time_obj, 1, 2, pyb_timer_channel_time);
/// \method event_count()
/// get the number of events triggered by the configured edge
STATIC mp_obj_t pyb_timer_channel_event_count(mp_obj_t self_in) {
pyb_timer_channel_obj_t *ch = self_in;
return mp_obj_new_int(MAP_TimerValueGet(ch->timer->timer, ch->channel == (TIMER_A | TIMER_B) ? TIMER_A : ch->channel));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_channel_event_count_obj, pyb_timer_channel_event_count);
/// \method event_time()
/// get the time at which the last event was triggered
STATIC mp_obj_t pyb_timer_channel_event_time(mp_obj_t self_in) {
pyb_timer_channel_obj_t *ch = self_in;
// calculate the period, the prescaler and the match value
uint32_t period_c;
uint32_t match;
(void)compute_prescaler_period_and_match_value(ch, &period_c, &match);
uint32_t value = MAP_TimerValueGet(ch->timer->timer, ch->channel == (TIMER_A | TIMER_B) ? TIMER_A : ch->channel);
// substract value to period since we are always operating in count-down mode
uint32_t time_t = (1000 * (period_c - value)) / period_c;
return mp_obj_new_int((time_t * 1000) / ch->frequency);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_channel_event_time_obj, pyb_timer_channel_event_time);
/// \method duty_cycle()
/// get or set the duty cycle when in PWM mode
STATIC mp_obj_t pyb_timer_channel_duty_cycle(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *ch = args[0];
if (n_args == 1) {
// get
return mp_obj_new_int(ch->duty_cycle);
}
else {
// duty cycle must be converted from percentage to ticks
// calculate the period, the prescaler and the match value
uint32_t period_c;
uint32_t match;
ch->duty_cycle = MIN(100, MAX(0, mp_obj_get_int(args[1])));
compute_prescaler_period_and_match_value(ch, &period_c, &match);
if (n_args == 3) {
// set the new polarity if requested
ch->polarity = mp_obj_get_int(args[2]);
MAP_TimerControlLevel(ch->timer->timer, ch->channel, (ch->polarity == PYBTIMER_POLARITY_NEG) ? true : false);
}
MAP_TimerMatchSet(ch->timer->timer, ch->channel, match);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_duty_cycle_obj, 1, 3, pyb_timer_channel_duty_cycle);
/// \method callback(handler, priority, value)
/// create a callback object associated with the timer channel
STATIC mp_obj_t pyb_timer_channel_callback (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
mp_arg_val_t args[mpcallback_INIT_NUM_ARGS];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, mpcallback_INIT_NUM_ARGS, mpcallback_init_args, args);
pyb_timer_channel_obj_t *ch = pos_args[0];
mp_obj_t _callback = mpcallback_find(ch);
if (kw_args->used > 0) {
// convert the priority to the correct value
uint priority = mpcallback_translate_priority (args[2].u_int);
// validate the power mode
uint pwrmode = args[4].u_int;
if (pwrmode != PYB_PWR_MODE_ACTIVE) {
goto invalid_args;
}
uint32_t _config = (ch->channel == TIMER_B) ? ((ch->timer->config & TIMER_B) >> 8) : (ch->timer->config & TIMER_A);
uint32_t c_value = mp_obj_get_int(args[3].u_obj);
// validate and set the value if we are in edge count mode
if (_config == TIMER_CFG_A_CAP_COUNT) {
if (!c_value || c_value > 0xFFFF) {
// zero or exceeds the maximum value of a 16-bit timer
goto invalid_args;
}
MAP_TimerMatchSet(ch->timer->timer, ch->channel, c_value);
}
// disable the callback first
pyb_timer_channel_callback_disable(ch);
uint8_t shift = (ch->channel == TIMER_B) ? 8 : 0;
switch (_config) {
case TIMER_CFG_A_ONE_SHOT:
case TIMER_CFG_A_PERIODIC:
ch->timer->intflags |= TIMER_TIMA_TIMEOUT << shift;
break;
case TIMER_CFG_A_CAP_COUNT:
ch->timer->intflags |= TIMER_CAPA_MATCH << shift;
// set the match value and make 1 the minimum
MAP_TimerMatchSet(ch->timer->timer, ch->channel, MAX(1, c_value));
break;
case TIMER_CFG_A_CAP_TIME:
ch->timer->intflags |= TIMER_CAPA_EVENT << shift;
break;
case TIMER_CFG_A_PWM:
// special case for the PWM match interrupt
ch->timer->intflags |= ((ch->channel & TIMER_A) == TIMER_A) ? TIMER_TIMA_MATCH : TIMER_TIMB_MATCH;
break;
default:
break;
}
// special case for a 32-bit timer
if (ch->channel == (TIMER_A | TIMER_B)) {
ch->timer->intflags |= (ch->timer->intflags << 8);
}
void (*pfnHandler)(void);
uint32_t intregister;
switch (ch->timer->timer) {
case TIMERA0_BASE:
if (ch->channel == TIMER_B) {
pfnHandler = &TIMER0BIntHandler;
intregister = INT_TIMERA0B;
} else {
pfnHandler = &TIMER0AIntHandler;
intregister = INT_TIMERA0A;
}
break;
case TIMERA1_BASE:
if (ch->channel == TIMER_B) {
pfnHandler = &TIMER1BIntHandler;
intregister = INT_TIMERA1B;
} else {
pfnHandler = &TIMER1AIntHandler;
intregister = INT_TIMERA1A;
}
break;
case TIMERA2_BASE:
if (ch->channel == TIMER_B) {
pfnHandler = &TIMER2BIntHandler;
intregister = INT_TIMERA2B;
} else {
pfnHandler = &TIMER2AIntHandler;
intregister = INT_TIMERA2A;
}
break;
default:
if (ch->channel == TIMER_B) {
pfnHandler = &TIMER3BIntHandler;
intregister = INT_TIMERA3B;
} else {
pfnHandler = &TIMER3AIntHandler;
intregister = INT_TIMERA3A;
}
break;
}
// register the interrupt and configure the priority
MAP_IntPrioritySet(intregister, priority);
MAP_TimerIntRegister(ch->timer->timer, ch->channel, pfnHandler);
// create the callback
_callback = mpcallback_new (ch, args[1].u_obj, &pyb_timer_channel_cb_methods, true);
// reload the timer
uint32_t period_c;
uint32_t match;
compute_prescaler_period_and_match_value(ch, &period_c, &match);
MAP_TimerLoadSet(ch->timer->timer, ch->channel, period_c);
// enable the callback before returning
pyb_timer_channel_callback_enable(ch);
} else if (!_callback) {
_callback = mpcallback_new (ch, mp_const_none, &pyb_timer_channel_cb_methods, false);
}
return _callback;
invalid_args:
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_callback_obj, 1, pyb_timer_channel_callback);
STATIC const mp_map_elem_t pyb_timer_channel_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_timer_channel_freq_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_period), (mp_obj_t)&pyb_timer_channel_period_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_time), (mp_obj_t)&pyb_timer_channel_time_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_event_count), (mp_obj_t)&pyb_timer_channel_event_count_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_event_time), (mp_obj_t)&pyb_timer_channel_event_time_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_duty_cycle), (mp_obj_t)&pyb_timer_channel_duty_cycle_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_channel_callback_obj },
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_channel_locals_dict, pyb_timer_channel_locals_dict_table);
STATIC const mp_obj_type_t pyb_timer_channel_type = {
{ &mp_type_type },
.name = MP_QSTR_TimerChannel,
.print = pyb_timer_channel_print,
.locals_dict = (mp_obj_t)&pyb_timer_channel_locals_dict,
};