circuitpython/ports/mimxrt10xx/common-hal/pwmio/PWMOut.c

392 lines
14 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
* SPDX-FileCopyrightText: Copyright (c) 2016 Damien P. George
* Copyright (c) 2019 Artur Pacholec
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include "py/runtime.h"
#include "common-hal/pwmio/PWMOut.h"
#include "shared-bindings/pwmio/PWMOut.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "sdk/drivers/pwm/fsl_pwm.h"
#include "periph.h"
static PWM_Type *const _flexpwms[] = PWM_BASE_PTRS;
// 4 bits for each submodule in each FlexPWM.
static uint16_t _pwm_never_reset[MP_ARRAY_SIZE(_flexpwms)];
// Bitmask of whether state machines are use for variable frequency.
static uint8_t _pwm_variable_frequency[MP_ARRAY_SIZE(_flexpwms)];
// Configured frequency for each submodule.
static uint32_t _pwm_sm_frequencies[MP_ARRAY_SIZE(_flexpwms)][FSL_FEATURE_PWM_SUBMODULE_COUNT];
// Channels use is tracked using the OUTEN register.
// The SDK gives use clocks per submodule but they all share the same value! So, ignore the
// submodule and only turn off the clock when no other submodules are in use.
static const clock_ip_name_t _flexpwm_clocks[][FSL_FEATURE_PWM_SUBMODULE_COUNT] = PWM_CLOCKS;
static void config_periph_pin(const mcu_pwm_obj_t *periph) {
IOMUXC_SetPinMux(
periph->pin->mux_reg, periph->mux_mode,
periph->input_reg, periph->input_idx,
periph->pin->cfg_reg,
0);
IOMUXC_SetPinConfig(0, 0, 0, 0,
periph->pin->cfg_reg,
IOMUXC_SW_PAD_CTL_PAD_HYS(0)
| IOMUXC_SW_PAD_CTL_PAD_PUS(1)
| IOMUXC_SW_PAD_CTL_PAD_PUE(1)
| IOMUXC_SW_PAD_CTL_PAD_PKE(1)
| IOMUXC_SW_PAD_CTL_PAD_ODE(0)
| IOMUXC_SW_PAD_CTL_PAD_SPEED(1)
| IOMUXC_SW_PAD_CTL_PAD_DSE(6)
| IOMUXC_SW_PAD_CTL_PAD_SRE(0));
}
static uint16_t _outen_mask(pwm_submodule_t submodule, pwm_channels_t channel) {
uint16_t outen_mask = 0;
uint8_t sm_mask = 1 << submodule;
switch (channel) {
case kPWM_PwmX:
outen_mask |= PWM_OUTEN_PWMX_EN(sm_mask);
break;
case kPWM_PwmA:
outen_mask |= PWM_OUTEN_PWMA_EN(sm_mask);
break;
case kPWM_PwmB:
outen_mask |= PWM_OUTEN_PWMB_EN(sm_mask);
break;
}
return outen_mask;
}
void common_hal_pwmio_pwmout_never_reset(pwmio_pwmout_obj_t *self) {
common_hal_never_reset_pin(self->pin);
_pwm_never_reset[self->flexpwm_index] |= (1 << (self->pwm->submodule * 4 + self->pwm->channel));
}
STATIC void _maybe_disable_clock(uint8_t instance) {
if ((_flexpwms[instance]->MCTRL & PWM_MCTRL_RUN_MASK) == 0) {
CLOCK_DisableClock(_flexpwm_clocks[instance][0]);
}
}
void reset_all_flexpwm(void) {
for (size_t i = 1; i < MP_ARRAY_SIZE(_pwm_never_reset); i++) {
PWM_Type *flexpwm = _flexpwms[i];
for (size_t submodule = 0; submodule < FSL_FEATURE_PWM_SUBMODULE_COUNT; submodule++) {
uint8_t sm_mask = 1 << submodule;
for (size_t channel = 0; channel < 3; channel++) {
uint16_t channel_mask = 0x1 << (submodule * 4 + channel);
if ((_pwm_never_reset[i] & channel_mask) != 0) {
continue;
}
// Turn off the channel.
flexpwm->OUTEN &= ~_outen_mask(submodule, channel);
}
uint16_t submodule_mask = 0xf << (submodule * 4);
if ((_pwm_never_reset[i] & submodule_mask) != 0) {
// Leave the submodule on since a channel is marked for never_reset.
continue;
}
flexpwm->MCTRL &= ~(sm_mask << PWM_MCTRL_RUN_SHIFT);
_pwm_variable_frequency[i] &= ~sm_mask;
_pwm_sm_frequencies[i][submodule] = 0;
}
_maybe_disable_clock(i);
}
}
#define PWM_SRC_CLK_FREQ CLOCK_GetFreq(kCLOCK_IpgClk)
static int calculate_pulse_count(uint32_t frequency, uint8_t *prescaler) {
if (frequency > PWM_SRC_CLK_FREQ / 2) {
return 0;
}
for (int shift = 0; shift < 8; shift++) {
int pulse_count = PWM_SRC_CLK_FREQ / (1 << shift) / frequency;
if (pulse_count >= 65535) {
continue;
}
*prescaler = shift;
return pulse_count;
}
return 0;
}
pwmout_result_t common_hal_pwmio_pwmout_construct(pwmio_pwmout_obj_t *self,
const mcu_pin_obj_t *pin,
uint16_t duty,
uint32_t frequency,
bool variable_frequency) {
self->pin = pin;
self->variable_frequency = variable_frequency;
for (uint32_t i = 0; i < MP_ARRAY_SIZE(mcu_pwm_list); ++i) {
if (mcu_pwm_list[i].pin != pin) {
continue;
}
self->pwm = &mcu_pwm_list[i];
break;
}
if (self->pwm == NULL) {
return PWMOUT_INVALID_PIN;
}
PWM_Type *flexpwm = self->pwm->pwm;
pwm_submodule_t submodule = self->pwm->submodule;
uint16_t sm_mask = 1 << submodule;
pwm_channels_t channel = self->pwm->channel;
uint8_t flexpwm_index = 1;
for (; flexpwm_index < MP_ARRAY_SIZE(_flexpwms); flexpwm_index++) {
if (_flexpwms[flexpwm_index] == flexpwm) {
break;
}
}
self->flexpwm_index = flexpwm_index;
uint16_t outen_mask = _outen_mask(submodule, channel);
self->pulse_count = calculate_pulse_count(frequency, &self->prescaler);
if (self->pulse_count == 0) {
return PWMOUT_INVALID_FREQUENCY;
}
// The submodule is already running
if (((flexpwm->MCTRL >> PWM_MCTRL_RUN_SHIFT) & sm_mask) != 0) {
// Another output has claimed this submodule for variable frequency already.
if ((_pwm_variable_frequency[flexpwm_index] & sm_mask) != 0) {
return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE;
}
// We want variable frequency but another class has already claim a fixed frequency.
if (variable_frequency) {
return PWMOUT_VARIABLE_FREQUENCY_NOT_AVAILABLE;
}
// Another pin is already using this output.
if ((flexpwm->OUTEN & outen_mask) != 0) {
return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE;
}
if (frequency != _pwm_sm_frequencies[flexpwm_index][submodule]) {
return PWMOUT_INVALID_FREQUENCY_ON_PIN;
}
// Submodule is already running at our target frequency and the output
// is free.
} else {
pwm_config_t pwmConfig;
/*
* pwmConfig.enableDebugMode = false;
* pwmConfig.enableWait = false;
* pwmConfig.reloadSelect = kPWM_LocalReload;
* pwmConfig.faultFilterCount = 0;
* pwmConfig.faultFilterPeriod = 0;
* pwmConfig.clockSource = kPWM_BusClock;
* pwmConfig.prescale = kPWM_Prescale_Divide_1;
* pwmConfig.initializationControl = kPWM_Initialize_LocalSync;
* pwmConfig.forceTrigger = kPWM_Force_Local;
* pwmConfig.reloadFrequency = kPWM_LoadEveryOportunity;
* pwmConfig.reloadLogic = kPWM_ReloadImmediate;
* pwmConfig.pairOperation = kPWM_Independent;
*/
PWM_GetDefaultConfig(&pwmConfig);
pwmConfig.reloadLogic = kPWM_ReloadPwmFullCycle;
pwmConfig.enableWait = true;
pwmConfig.enableDebugMode = true;
pwmConfig.prescale = self->prescaler;
if (PWM_Init(flexpwm, submodule, &pwmConfig) != kStatus_Success) {
return PWMOUT_INITIALIZATION_ERROR;
}
// Disable all fault inputs
flexpwm->SM[submodule].DISMAP[0] = 0;
PWM_SetPwmLdok(flexpwm, sm_mask, false);
flexpwm->SM[submodule].CTRL = PWM_CTRL_FULL_MASK | PWM_CTRL_PRSC(self->prescaler);
flexpwm->SM[submodule].CTRL2 = PWM_CTRL2_INDEP_MASK | PWM_CTRL2_WAITEN_MASK | PWM_CTRL2_DBGEN_MASK;
// Set the reload value to zero so we're in unsigned mode.
flexpwm->SM[submodule].INIT = 0;
// Set the top/reload value.
flexpwm->SM[submodule].VAL1 = self->pulse_count;
// Clear the other channels.
flexpwm->SM[submodule].VAL0 = 0;
flexpwm->SM[submodule].VAL2 = 0;
flexpwm->SM[submodule].VAL3 = 0;
flexpwm->SM[submodule].VAL4 = 0;
flexpwm->SM[submodule].VAL5 = 0;
PWM_SetPwmLdok(flexpwm, sm_mask, true);
PWM_StartTimer(flexpwm, sm_mask);
_pwm_sm_frequencies[flexpwm_index][submodule] = frequency;
if (variable_frequency) {
_pwm_variable_frequency[flexpwm_index] = sm_mask;
}
}
common_hal_pwmio_pwmout_set_duty_cycle(self, duty);
flexpwm->OUTEN |= outen_mask;
// Configure the IOMUX once we know everything else is working.
config_periph_pin(self->pwm);
return PWMOUT_OK;
}
bool common_hal_pwmio_pwmout_deinited(pwmio_pwmout_obj_t *self) {
return self->pin == NULL;
}
void common_hal_pwmio_pwmout_deinit(pwmio_pwmout_obj_t *self) {
if (common_hal_pwmio_pwmout_deinited(self)) {
return;
}
_pwm_never_reset[self->flexpwm_index] &= ~(1 << (self->pwm->submodule * 4 + self->pwm->channel));
PWM_Type *flexpwm = self->pwm->pwm;
pwm_submodule_t submodule = self->pwm->submodule;
uint16_t sm_mask = 1 << submodule;
// Reset the pin before we turn it off.
common_hal_reset_pin(self->pin);
self->pin = NULL;
// Always disable the output.
flexpwm->OUTEN &= ~_outen_mask(submodule, self->pwm->channel);
uint16_t all_sm_channels = _outen_mask(submodule, kPWM_PwmX) | _outen_mask(submodule, kPWM_PwmA) | _outen_mask(submodule, kPWM_PwmB);
// Turn off the submodule if it doesn't have any outputs active.
if ((flexpwm->OUTEN & all_sm_channels) == 0) {
// Deinit ourselves because the SDK turns off the clock to the whole FlexPWM on deinit.
flexpwm->MCTRL &= ~(sm_mask << PWM_MCTRL_RUN_SHIFT);
_pwm_variable_frequency[self->flexpwm_index] &= ~sm_mask;
_pwm_sm_frequencies[self->flexpwm_index][submodule] = 0;
}
_maybe_disable_clock(self->flexpwm_index);
}
void common_hal_pwmio_pwmout_set_duty_cycle(pwmio_pwmout_obj_t *self, uint16_t duty) {
// we do not use PWM_UpdatePwmDutycycle because ...
// * it works in integer percents
// * it can't set the "X" duty cycle
// As mentioned in the setting up of the frequency code
// A - Uses VAL2 to turn on (0) and VAL3=duty to turn off
// B - Uses VAL4 to turn on (0) and VAL5 to turn off
// X - As mentioned above VAL1 turns off, but it's set to the timing for frequency. so
// VAL0 turns on, so we set it to VAL1 - duty
self->duty_cycle = duty;
PWM_Type *base = self->pwm->pwm;
uint8_t sm_mask = 1 << self->pwm->submodule;
uint16_t duty_scaled;
if (duty == 65535) {
// X channels can't do a full 100% duty cycle.
if (self->pwm->channel == kPWM_PwmX) {
mp_raise_ValueError_varg(MP_ERROR_TEXT("Invalid %q"), MP_QSTR_duty_cycle);
}
duty_scaled = self->pulse_count + 1;
} else {
duty_scaled = ((uint32_t)duty * self->pulse_count) / 65535;
}
PWM_SetPwmLdok(self->pwm->pwm, sm_mask, false);
switch (self->pwm->channel) {
case kPWM_PwmX:
// PWM X Signals always having a falling edge at the reload value. (Otherwise we'd
// change the PWM frequency.) So, we adjust the rising edge to get the correct duty
// cycle.
base->SM[self->pwm->submodule].VAL0 = self->pulse_count - duty_scaled;
break;
case kPWM_PwmA:
// The other two channels always have their rising edge at 0 and vary their falling
// edge.
base->SM[self->pwm->submodule].VAL3 = duty_scaled;
break;
case kPWM_PwmB:
base->SM[self->pwm->submodule].VAL5 = duty_scaled;
}
PWM_SetPwmLdok(self->pwm->pwm, sm_mask, true);
}
uint16_t common_hal_pwmio_pwmout_get_duty_cycle(pwmio_pwmout_obj_t *self) {
return self->duty_cycle;
}
void common_hal_pwmio_pwmout_set_frequency(pwmio_pwmout_obj_t *self,
uint32_t frequency) {
int pulse_count = calculate_pulse_count(frequency, &self->prescaler);
if (pulse_count == 0) {
mp_arg_error_invalid(MP_QSTR_frequency);
}
self->pulse_count = pulse_count;
// a small glitch can occur when adjusting the prescaler, from the setting
// of CTRL just below to the setting of the Ldok register in
// set_duty_cycle.
// Clear LDOK so that we can update the values.
PWM_SetPwmLdok(self->pwm->pwm, 1 << self->pwm->submodule, false);
uint32_t reg = self->pwm->pwm->SM[self->pwm->submodule].CTRL;
reg &= ~(PWM_CTRL_PRSC_MASK);
reg |= PWM_CTRL_PRSC(self->prescaler);
self->pwm->pwm->SM[self->pwm->submodule].CTRL = reg;
self->pwm->pwm->SM[self->pwm->submodule].VAL1 = self->pulse_count;
// we need to recalculate the duty cycle. As a side effect of this
common_hal_pwmio_pwmout_set_duty_cycle(self, self->duty_cycle);
}
uint32_t common_hal_pwmio_pwmout_get_frequency(pwmio_pwmout_obj_t *self) {
return PWM_SRC_CLK_FREQ / self->pulse_count / (1 << self->prescaler);
}
bool common_hal_pwmio_pwmout_get_variable_frequency(pwmio_pwmout_obj_t *self) {
return self->variable_frequency;
}
const mcu_pin_obj_t *common_hal_pwmio_pwmout_get_pin(pwmio_pwmout_obj_t *self) {
return self->pin;
}