Damien George 28390340e5 tests: Make rge-sm.py use less memory (integration step increased).
In addition to memory allocation failure, other problem was that 10**17
was overflowing.  Now passes.
2014-04-04 11:15:54 +00:00

115 lines
4.1 KiB
Python

# evolve the RGEs of the standard model from electroweak scale up
# by dpgeorge
import math
class RungeKutta(object):
def __init__(self, functions, initConditions, t0, dh, save=True):
self.Trajectory, self.save = [[t0] + initConditions], save
self.functions = [lambda *args: 1.0] + list(functions)
self.N, self.dh = len(self.functions), dh
self.coeff = [1.0/6.0, 2.0/6.0, 2.0/6.0, 1.0/6.0]
self.InArgCoeff = [0.0, 0.5, 0.5, 1.0]
def iterate(self):
step = self.Trajectory[-1][:]
istep, iac = step[:], self.InArgCoeff
k, ktmp = self.N * [0.0], self.N * [0.0]
for ic, c in enumerate(self.coeff):
for if_, f in enumerate(self.functions):
arguments = [ (x + k[i]*iac[ic]) for i, x in enumerate(istep)]
try:
feval = f(*arguments)
except OverflowError:
return False
if abs(feval) > 1e2: # stop integrating
return False
ktmp[if_] = self.dh * feval
k = ktmp[:]
step = [s + c*k[ik] for ik,s in enumerate(step)]
if self.save:
self.Trajectory += [step]
else:
self.Trajectory = [step]
return True
def solve(self, finishtime):
while self.Trajectory[-1][0] < finishtime:
if not self.iterate():
break
def solveNSteps(self, nSteps):
for i in range(nSteps):
if not self.iterate():
break
def series(self):
return zip(*self.Trajectory)
# 1-loop RGES for the main parameters of the SM
# couplings are: g1, g2, g3 of U(1), SU(2), SU(3); yt (top Yukawa), lambda (Higgs quartic)
# see arxiv.org/abs/0812.4950, eqs 10-15
sysSM = (
lambda *a: 41.0 / 96.0 / math.pi**2 * a[1]**3, # g1
lambda *a: -19.0 / 96.0 / math.pi**2 * a[2]**3, # g2
lambda *a: -42.0 / 96.0 / math.pi**2 * a[3]**3, # g3
lambda *a: 1.0 / 16.0 / math.pi**2 * (9.0 / 2.0 * a[4]**3 - 8.0 * a[3]**2 * a[4] - 9.0 / 4.0 * a[2]**2 * a[4] - 17.0 / 12.0 * a[1]**2 * a[4]), # yt
lambda *a: 1.0 / 16.0 / math.pi**2 * (24.0 * a[5]**2 + 12.0 * a[4]**2 * a[5] - 9.0 * a[5] * (a[2]**2 + 1.0 / 3.0 * a[1]**2) - 6.0 * a[4]**4 + 9.0 / 8.0 * a[2]**4 + 3.0 / 8.0 * a[1]**4 + 3.0 / 4.0 * a[2]**2 * a[1]**2), # lambda
)
def drange(start, stop, step):
r = start
while r < stop:
yield r
r += step
def phaseDiagram(system, trajStart, trajPlot, h=0.1, tend=1.0, range=1.0):
tstart = 0.0
for i in drange(0, range, 0.1 * range):
for j in drange(0, range, 0.1 * range):
rk = RungeKutta(system, trajStart(i, j), tstart, h)
rk.solve(tend)
# draw the line
for tr in rk.Trajectory:
x, y = trajPlot(tr)
print(x, y)
print()
# draw the arrow
continue
l = (len(rk.Trajectory) - 1) / 3
if l > 0 and 2 * l < len(rk.Trajectory):
p1 = rk.Trajectory[l]
p2 = rk.Trajectory[2 * l]
x1, y1 = trajPlot(p1)
x2, y2 = trajPlot(p2)
dx = -0.5 * (y2 - y1) # orthogonal to line
dy = 0.5 * (x2 - x1) # orthogonal to line
#l = math.sqrt(dx*dx + dy*dy)
#if abs(l) > 1e-3:
# l = 0.1 / l
# dx *= l
# dy *= l
print(x1 + dx, y1 + dy)
print(x2, y2)
print(x1 - dx, y1 - dy)
print()
def singleTraj(system, trajStart, h=0.02, tend=1.0):
tstart = 0.0
# compute the trajectory
rk = RungeKutta(system, trajStart, tstart, h)
rk.solve(tend)
# print out trajectory
for i in range(len(rk.Trajectory)):
tr = rk.Trajectory[i]
print(' '.join(["{:.5f}".format(t) for t in tr]))
#phaseDiagram(sysSM, (lambda i, j: [0.354, 0.654, 1.278, 0.8 + 0.2 * i, 0.1 + 0.1 * j]), (lambda a: (a[4], a[5])), h=0.1, tend=math.log(10**17))
# initial conditions at M_Z
singleTraj(sysSM, [0.354, 0.654, 1.278, 0.983, 0.131], h=0.5, tend=math.log(10**17)) # true values