circuitpython/ports/espressif/supervisor/port.c
Jeff Epler 5e26862b2c
Allow use of CONFIG_SPIRAM_USE_CAPS_ALLOC
.. and switch makerfabs tft7 over to it as a test.

We have our existing way of "reserving" PSRAM for esp-idf (we actually
control it all but add back the "reserved" part). However, this does
not work with off the shelf esp_lcd, which only will allocate a
framebuffer in PSRAM if CONFIG_SPIRAM_USE_CAPS_ALLOC (or CONFIG_SPIRAM_USE_ALLOC)
is defined, not if CONFIG_SPIRAM_USE_MEMMAP is.

This new way is possibly compatible with more esp-idf code, but it complicates
CircuitPython's initial startup since nothing until port_heap_init is
permitted to use the CP heap or supervisor allocator. In practice this
seems to be OK today.

Right now this doesn't change the setting across all boards with PSRAM and so
it does not revert esp-idf to its prior state. Instead, what I'm thinking is
that we can do it during or just after the IDF5 update when sdkconfig files
will be getting an overhaul anyway.
2023-09-05 12:43:22 -05:00

582 lines
18 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
* Copyright (c) 2019 Lucian Copeland for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdarg.h>
#include <stdint.h>
#include <sys/time.h>
#include "supervisor/board.h"
#include "supervisor/port.h"
#include "supervisor/filesystem.h"
#include "supervisor/shared/reload.h"
#include "supervisor/serial.h"
#include "py/mpprint.h"
#include "py/runtime.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "bindings/espidf/__init__.h"
#include "bindings/espnow/__init__.h"
#include "bindings/espulp/__init__.h"
#include "common-hal/microcontroller/Pin.h"
#include "common-hal/analogio/AnalogOut.h"
#include "common-hal/busio/I2C.h"
#include "common-hal/busio/SPI.h"
#include "common-hal/busio/UART.h"
#include "common-hal/dualbank/__init__.h"
#include "common-hal/ps2io/Ps2.h"
#include "common-hal/pulseio/PulseIn.h"
#include "common-hal/pwmio/PWMOut.h"
#include "common-hal/watchdog/WatchDogTimer.h"
#include "common-hal/socketpool/Socket.h"
#include "common-hal/wifi/__init__.h"
#include "supervisor/background_callback.h"
#include "supervisor/memory.h"
#include "supervisor/shared/tick.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/microcontroller/RunMode.h"
#include "shared-bindings/rtc/__init__.h"
#include "shared-bindings/socketpool/__init__.h"
#include "shared-module/os/__init__.h"
#include "peripherals/rmt.h"
#include "peripherals/timer.h"
#if CIRCUITPY_COUNTIO || CIRCUITPY_ROTARYIO || CIRCUITPY_FREQUENCYIO
#include "peripherals/pcnt.h"
#endif
#if CIRCUITPY_TOUCHIO_USE_NATIVE
#include "peripherals/touch.h"
#endif
#if CIRCUITPY_AUDIOBUSIO
#include "common-hal/audiobusio/__init__.h"
#endif
#if CIRCUITPY_BLEIO
#include "shared-bindings/_bleio/__init__.h"
#endif
#if CIRCUITPY_ESPCAMERA
#include "esp_camera.h"
#endif
#ifndef CONFIG_IDF_TARGET_ESP32
#include "soc/cache_memory.h"
#endif
#include "soc/efuse_reg.h"
#include "soc/rtc_cntl_reg.h"
#include "esp_debug_helpers.h"
#include "bootloader_flash_config.h"
#include "esp_efuse.h"
#include "esp_ipc.h"
#include "esp_rom_efuse.h"
#ifdef CONFIG_IDF_TARGET_ESP32
#include "esp32/rom/efuse.h"
#endif
#include "esp_log.h"
#define TAG "port"
uint32_t *heap;
uint32_t heap_size;
STATIC esp_timer_handle_t _tick_timer;
STATIC esp_timer_handle_t _sleep_timer;
TaskHandle_t circuitpython_task = NULL;
extern void esp_restart(void) NORETURN;
STATIC void tick_on_cp_core(void *arg) {
supervisor_tick();
// CircuitPython's VM is run in a separate FreeRTOS task from timer callbacks. So, we have to
// notify the main task every time in case it's waiting for us.
xTaskNotifyGive(circuitpython_task);
}
// This function may happen on the PRO core when CP is on the APP core. So, make
// sure we run on the CP core.
STATIC void tick_timer_cb(void *arg) {
#if defined(CONFIG_FREERTOS_UNICORE) && CONFIG_FREERTOS_UNICORE
tick_on_cp_core(arg);
#else
// This only blocks until the start of the function. That's ok since the PRO
// core shouldn't care what we do.
esp_ipc_call(CONFIG_ESP_MAIN_TASK_AFFINITY, tick_on_cp_core, NULL);
#endif
}
void sleep_timer_cb(void *arg);
// The ESP-IDF determines these pins at runtime so we do too. This code is based on:
// https://github.com/espressif/esp-idf/blob/6d85d53ceec30c818a92c2fff8f5437d21c4720f/components/esp_hw_support/port/esp32/spiram_psram.c#L810
// IO-pins for PSRAM.
// WARNING: PSRAM shares all but the CS and CLK pins with the flash, so these defines
// hardcode the flash pins as well, making this code incompatible with either a setup
// that has the flash on non-standard pins or ESP32s with built-in flash.
#define PSRAM_SPIQ_SD0_IO 7
#define PSRAM_SPID_SD1_IO 8
#define PSRAM_SPIWP_SD3_IO 10
#define PSRAM_SPIHD_SD2_IO 9
#define FLASH_HSPI_CLK_IO 14
#define FLASH_HSPI_CS_IO 15
#define PSRAM_HSPI_SPIQ_SD0_IO 12
#define PSRAM_HSPI_SPID_SD1_IO 13
#define PSRAM_HSPI_SPIWP_SD3_IO 2
#define PSRAM_HSPI_SPIHD_SD2_IO 4
#ifdef CONFIG_SPIRAM
// PSRAM clock and cs IO should be configured based on hardware design.
// For ESP32-WROVER or ESP32-WROVER-B module, the clock IO is IO17, the cs IO is IO16,
// they are the default value for these two configs.
#define D0WD_PSRAM_CLK_IO CONFIG_D0WD_PSRAM_CLK_IO // Default value is 17
#define D0WD_PSRAM_CS_IO CONFIG_D0WD_PSRAM_CS_IO // Default value is 16
#define D2WD_PSRAM_CLK_IO CONFIG_D2WD_PSRAM_CLK_IO // Default value is 9
#define D2WD_PSRAM_CS_IO CONFIG_D2WD_PSRAM_CS_IO // Default value is 10
// There is no reason to change the pin of an embedded psram.
// So define the number of pin directly, instead of configurable.
#define D0WDR2_V3_PSRAM_CLK_IO 6
#define D0WDR2_V3_PSRAM_CS_IO 16
// For ESP32-PICO chip, the psram share clock with flash. The flash clock pin is fixed, which is IO6.
#define PICO_PSRAM_CLK_IO 6
#define PICO_PSRAM_CS_IO CONFIG_PICO_PSRAM_CS_IO // Default value is 10
#define PICO_V3_02_PSRAM_CLK_IO 10
#define PICO_V3_02_PSRAM_CS_IO 9
#endif // CONFIG_SPIRAM
static void _never_reset_spi_ram_flash(void) {
#if defined(CONFIG_IDF_TARGET_ESP32)
#if defined(CONFIG_SPIRAM)
uint32_t pkg_ver = esp_efuse_get_pkg_ver();
if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5) {
never_reset_pin_number(D2WD_PSRAM_CLK_IO);
never_reset_pin_number(D2WD_PSRAM_CS_IO);
} else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4 && esp_efuse_get_chip_ver() >= 3) {
// This chip is ESP32-PICO-V3 and doesn't have PSRAM.
} else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4)) {
never_reset_pin_number(PICO_PSRAM_CLK_IO);
never_reset_pin_number(PICO_PSRAM_CS_IO);
} else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOV302) {
never_reset_pin_number(PICO_V3_02_PSRAM_CLK_IO);
never_reset_pin_number(PICO_V3_02_PSRAM_CS_IO);
} else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ6) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ5)) {
never_reset_pin_number(D0WD_PSRAM_CLK_IO);
never_reset_pin_number(D0WD_PSRAM_CS_IO);
} else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDR2V3) {
never_reset_pin_number(D0WDR2_V3_PSRAM_CLK_IO);
never_reset_pin_number(D0WDR2_V3_PSRAM_CS_IO);
}
#endif // CONFIG_SPIRAM
const uint32_t spiconfig = esp_rom_efuse_get_flash_gpio_info();
if (spiconfig == ESP_ROM_EFUSE_FLASH_DEFAULT_SPI) {
never_reset_pin_number(SPI_IOMUX_PIN_NUM_CLK);
never_reset_pin_number(SPI_IOMUX_PIN_NUM_CS);
never_reset_pin_number(PSRAM_SPIQ_SD0_IO);
never_reset_pin_number(PSRAM_SPID_SD1_IO);
never_reset_pin_number(PSRAM_SPIWP_SD3_IO);
never_reset_pin_number(PSRAM_SPIHD_SD2_IO);
} else if (spiconfig == ESP_ROM_EFUSE_FLASH_DEFAULT_HSPI) {
never_reset_pin_number(FLASH_HSPI_CLK_IO);
never_reset_pin_number(FLASH_HSPI_CS_IO);
never_reset_pin_number(PSRAM_HSPI_SPIQ_SD0_IO);
never_reset_pin_number(PSRAM_HSPI_SPID_SD1_IO);
never_reset_pin_number(PSRAM_HSPI_SPIWP_SD3_IO);
never_reset_pin_number(PSRAM_HSPI_SPIHD_SD2_IO);
} else {
never_reset_pin_number(EFUSE_SPICONFIG_RET_SPICLK(spiconfig));
never_reset_pin_number(EFUSE_SPICONFIG_RET_SPICS0(spiconfig));
never_reset_pin_number(EFUSE_SPICONFIG_RET_SPIQ(spiconfig));
never_reset_pin_number(EFUSE_SPICONFIG_RET_SPID(spiconfig));
never_reset_pin_number(EFUSE_SPICONFIG_RET_SPIHD(spiconfig));
never_reset_pin_number(bootloader_flash_get_wp_pin());
}
#endif // CONFIG_IDF_TARGET_ESP32
}
safe_mode_t port_init(void) {
esp_timer_create_args_t args;
args.callback = &tick_timer_cb;
args.arg = NULL;
args.dispatch_method = ESP_TIMER_TASK;
args.name = "CircuitPython Tick";
esp_timer_create(&args, &_tick_timer);
args.callback = &sleep_timer_cb;
args.arg = NULL;
args.dispatch_method = ESP_TIMER_TASK;
args.name = "CircuitPython Sleep";
esp_timer_create(&args, &_sleep_timer);
circuitpython_task = xTaskGetCurrentTaskHandle();
#if !defined(DEBUG)
#define DEBUG (0)
#endif
// Send the ROM output out of the UART. This includes early logs.
#if DEBUG
ets_install_uart_printf();
#endif
heap = NULL;
heap_size = 0;
#define pin_GPIOn(n) pin_GPIO##n
#define pin_GPIOn_EXPAND(x) pin_GPIOn(x)
#ifdef CONFIG_CONSOLE_UART_TX_GPIO
common_hal_never_reset_pin(&pin_GPIOn_EXPAND(CONFIG_CONSOLE_UART_TX_GPIO));
#endif
#ifdef CONFIG_CONSOLE_UART_RX_GPIO
common_hal_never_reset_pin(&pin_GPIOn_EXPAND(CONFIG_CONSOLE_UART_RX_GPIO));
#endif
#if DEBUG
// debug UART
#ifdef CONFIG_IDF_TARGET_ESP32C3
common_hal_never_reset_pin(&pin_GPIO20);
common_hal_never_reset_pin(&pin_GPIO21);
#elif defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3)
common_hal_never_reset_pin(&pin_GPIO43);
common_hal_never_reset_pin(&pin_GPIO44);
#endif
#endif
#ifndef ENABLE_JTAG
#define ENABLE_JTAG (defined(DEBUG) && DEBUG)
#endif
#if ENABLE_JTAG
// JTAG
#ifdef CONFIG_IDF_TARGET_ESP32C3
common_hal_never_reset_pin(&pin_GPIO4);
common_hal_never_reset_pin(&pin_GPIO5);
common_hal_never_reset_pin(&pin_GPIO6);
common_hal_never_reset_pin(&pin_GPIO7);
#elif defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3)
common_hal_never_reset_pin(&pin_GPIO39);
common_hal_never_reset_pin(&pin_GPIO40);
common_hal_never_reset_pin(&pin_GPIO41);
common_hal_never_reset_pin(&pin_GPIO42);
#endif
#endif
_never_reset_spi_ram_flash();
esp_reset_reason_t reason = esp_reset_reason();
switch (reason) {
case ESP_RST_BROWNOUT:
return SAFE_MODE_BROWNOUT;
case ESP_RST_PANIC:
return SAFE_MODE_HARD_FAULT;
case ESP_RST_INT_WDT:
// The interrupt watchdog is used internally to make sure that latency sensitive
// interrupt code isn't blocked. User watchdog resets come through ESP_RST_WDT.
return SAFE_MODE_WATCHDOG;
case ESP_RST_WDT:
default:
break;
}
return SAFE_MODE_NONE;
}
safe_mode_t port_heap_init(safe_mode_t sm) {
mp_int_t reserved = 0;
if (filesystem_present() && common_hal_os_getenv_int("CIRCUITPY_RESERVED_PSRAM", &reserved) == GETENV_OK) {
common_hal_espidf_set_reserved_psram(reserved);
}
#ifdef CONFIG_SPIRAM_USE_MEMMAP
{
intptr_t heap_start = common_hal_espidf_get_psram_start();
intptr_t heap_end = common_hal_espidf_get_psram_end();
size_t spiram_size = heap_end - heap_start;
if (spiram_size > 0) {
heap = (uint32_t *)heap_start;
heap_size = (heap_end - heap_start) / sizeof(uint32_t);
common_hal_espidf_reserve_psram();
} else {
ESP_LOGE(TAG, "CONFIG_SPIRAM_USE_MMAP enabled but no spiram heap available");
}
}
#elif CONFIG_SPIRAM_USE_CAPS_ALLOC
{
intptr_t psram_start = common_hal_espidf_get_psram_start();
intptr_t psram_end = common_hal_espidf_get_psram_end();
size_t psram_amount = psram_end - psram_start;
size_t biggest_block = heap_caps_get_largest_free_block(MALLOC_CAP_SPIRAM);
size_t try_alloc = MIN(biggest_block, psram_amount - common_hal_espidf_get_reserved_psram());
heap = heap_caps_malloc(try_alloc, MALLOC_CAP_SPIRAM);
if (heap) {
heap_size = try_alloc;
} else {
ESP_LOGE(TAG, "CONFIG_SPIRAM_USE_CAPS_ALLOC but no spiram heap available");
}
}
#endif
if (heap == NULL) {
size_t heap_total = heap_caps_get_total_size(MALLOC_CAP_8BIT);
heap_size = MIN(heap_caps_get_largest_free_block(MALLOC_CAP_8BIT), heap_total / 2);
heap = malloc(heap_size);
heap_size = heap_size / sizeof(uint32_t);
}
if (heap == NULL) {
heap_size = 0;
return SAFE_MODE_NO_HEAP;
}
return sm;
}
void reset_port(void) {
// TODO deinit for esp32-camera
#if CIRCUITPY_ESPCAMERA
esp_camera_deinit();
#endif
reset_all_pins();
#if CIRCUITPY_ANALOGIO
analogout_reset();
#endif
#if CIRCUITPY_AUDIOBUSIO
i2s_reset();
#endif
#if CIRCUITPY_BUSIO
i2c_reset();
spi_reset();
uart_reset();
#endif
#if CIRCUITPY_COUNTIO || CIRCUITPY_ROTARYIO || CIRCUITPY_FREQUENCYIO
peripherals_pcnt_reset();
#endif
#if CIRCUITPY_DUALBANK
dualbank_reset();
#endif
#if CIRCUITPY_ESPNOW
espnow_reset();
#endif
#if CIRCUITPY_ESPULP
espulp_reset();
#endif
#if CIRCUITPY_FREQUENCYIO
peripherals_timer_reset();
#endif
#if CIRCUITPY_PS2IO
ps2_reset();
#endif
#if CIRCUITPY_PULSEIO
peripherals_rmt_reset();
pulsein_reset();
#endif
#if CIRCUITPY_PWMIO
pwmout_reset();
#endif
#if CIRCUITPY_RTC
rtc_reset();
#endif
#if CIRCUITPY_SOCKETPOOL
socketpool_user_reset();
#endif
#if CIRCUITPY_TOUCHIO_USE_NATIVE
peripherals_touch_reset();
#endif
#if CIRCUITPY_WATCHDOG
watchdog_reset();
#endif
// Yield so the idle task can run and do any IDF cleanup needed.
port_yield();
}
void reset_to_bootloader(void) {
common_hal_mcu_on_next_reset(RUNMODE_BOOTLOADER);
esp_restart();
}
void reset_cpu(void) {
#ifndef CONFIG_IDF_TARGET_ESP32C3
esp_backtrace_print(100);
#endif
esp_restart();
}
uint32_t *port_heap_get_bottom(void) {
return heap;
}
uint32_t *port_heap_get_top(void) {
return heap + heap_size;
}
uint32_t *port_stack_get_limit(void) {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-align"
return (uint32_t *)pxTaskGetStackStart(NULL);
#pragma GCC diagnostic pop
}
uint32_t *port_stack_get_top(void) {
// The sizeof-arithmetic is so that the pointer arithmetic is done on units
// of uint32_t instead of units of StackType_t. StackType_t is an alias
// for a byte sized type.
//
// The main stack is bigger than CONFIG_ESP_MAIN_TASK_STACK_SIZE -- an
// "extra" size is added to it (TASK_EXTRA_STACK_SIZE). This total size is
// available as ESP_TASK_MAIN_STACK. Presumably TASK_EXTRA_STACK_SIZE is
// additional stack that can be used by the esp-idf runtime. But what's
// important for us is that some very outermost stack frames, such as
// pyexec_friendly_repl, could lie inside the "extra" area and be invisible
// to the garbage collector.
return port_stack_get_limit() + ESP_TASK_MAIN_STACK / (sizeof(uint32_t) / sizeof(StackType_t));
}
bool port_has_fixed_stack(void) {
return true;
}
// Place the word to save just after our BSS section that gets blanked.
void port_set_saved_word(uint32_t value) {
REG_WRITE(RTC_CNTL_STORE0_REG, value);
}
uint32_t port_get_saved_word(void) {
return REG_READ(RTC_CNTL_STORE0_REG);
}
uint64_t port_get_raw_ticks(uint8_t *subticks) {
// Convert microseconds to subticks of 1/32768 seconds
// 32768/1000000 = 64/15625 in lowest terms
// this arithmetic overflows after 570 years
int64_t all_subticks = esp_timer_get_time() * 512 / 15625;
if (subticks != NULL) {
*subticks = all_subticks % 32;
}
return all_subticks / 32;
}
// Enable 1/1024 second tick.
void port_enable_tick(void) {
esp_timer_start_periodic(_tick_timer, 1000000 / 1024);
}
// Disable 1/1024 second tick.
void port_disable_tick(void) {
esp_timer_stop(_tick_timer);
}
void port_wake_main_task() {
xTaskNotifyGive(circuitpython_task);
}
void port_wake_main_task_from_isr() {
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
vTaskNotifyGiveFromISR(circuitpython_task, &xHigherPriorityTaskWoken);
if (xHigherPriorityTaskWoken == pdTRUE) {
portYIELD_FROM_ISR();
}
}
void port_yield() {
vTaskDelay(4);
}
void sleep_timer_cb(void *arg) {
port_wake_main_task();
}
void port_interrupt_after_ticks(uint32_t ticks) {
uint64_t timeout_us = ticks * 1000000ull / 1024;
if (esp_timer_start_once(_sleep_timer, timeout_us) != ESP_OK) {
esp_timer_stop(_sleep_timer);
esp_timer_start_once(_sleep_timer, timeout_us);
}
}
// On the ESP we use FreeRTOS notifications instead of interrupts so this is a
// bit of a misnomer.
void port_idle_until_interrupt(void) {
if (!background_callback_pending() && !autoreload_pending()) {
xTaskNotifyWait(0x01, 0x01, NULL, portMAX_DELAY);
}
}
void port_post_boot_py(bool heap_valid) {
if (!heap_valid && filesystem_present()) {
}
}
#if CIRCUITPY_CONSOLE_UART
static int vprintf_adapter(const char *fmt, va_list ap) {
return mp_vprintf(&mp_plat_print, fmt, ap);
}
void port_serial_early_init(void) {
esp_log_set_vprintf(vprintf_adapter);
}
#endif
// Wrap main in app_main that the IDF expects.
extern void main(void);
extern void app_main(void);
void app_main(void) {
main();
}