circuitpython/ports/renesas-ra/ra/ra_adc.c
mbedNoobNinja fae96b17a7 renesas-ra: Add support for RA6M5, and add machine PWM, DAC, SDCard.
This commit adds support for a new processor RA6M5.  It also adds the
following classes to the machine module: PWM, DAC, SDCard.

Signed-off-by: mbedNoobNinja <novoltage@gmail.com>
2023-06-27 12:30:25 +10:00

614 lines
16 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2021 Renesas Electronics Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include "hal_data.h"
#include "ra_config.h"
#include "ra_gpio.h"
#include "ra_utils.h"
#include "ra_adc.h"
static R_ADC0_Type *adc_reg = R_ADC0;
#if defined(RA4M1) | defined(RA4W1)
static R_TSN_Type *tsn_reg = (R_TSN_Type *)0x407ec000;
#endif
#if defined(RA6M1) | defined(RA6M2) | defined(RA6M3) | defined(RA6M5)
static R_TSN_CTRL_Type *tsn_ctrl_reg = R_TSN_CTRL;
static R_TSN_CAL_Type *tsn_cal_reg = R_TSN_CAL;
#endif
static uint8_t resolution = RA_ADC_DEF_RESOLUTION;
typedef struct adc_pin_to_ch {
uint32_t pin;
uint8_t ch;
} adc_pin_to_ch_t;
static const adc_pin_to_ch_t pin_to_ch[] = {
#if defined(RA4M1)
{ P000, AN000 },
{ P001, AN001 },
{ P002, AN002 },
{ P003, AN003 },
{ P004, AN004 },
{ P005, AN011 },
{ P006, AN012 },
{ P007, AN013 },
{ P008, AN014 },
{ P010, AN005 },
{ P011, AN006 },
{ P012, AN007 },
{ P013, AN008 },
{ P014, AN009 },
{ P015, AN010 },
{ P100, AN022 },
{ P101, AN021 },
{ P102, AN020 },
{ P103, AN019 },
{ P500, AN016 },
{ P501, AN017 },
{ P502, AN018 },
{ P503, AN023 },
{ P504, AN024 },
{ P505, AN025 },
#elif defined(RA4W1)
{ P004, AN004 },
{ P010, AN005 },
{ P011, AN006 },
{ P014, AN009 },
{ P015, AN010 },
{ P102, AN020 },
{ P103, AN019 },
{ P501, AN017 },
#elif defined(RA6M2)
{ P000, AN000 },
{ P001, AN001 },
{ P002, AN002 },
{ P003, AN007 },
{ P004, AN100 },
{ P005, AN101 },
{ P006, AN102 },
{ P007, AN107 },
{ P008, AN003 },
{ P009, AN004 },
{ P014, AN005 },
{ P014, AN105 },
{ P015, AN006 },
{ P015, AN106 },
{ P500, AN016 },
{ P501, AN116 },
{ P502, AN017 },
{ P503, AN117 },
{ P504, AN018 },
{ P505, AN118 },
{ P506, AN019 },
{ P509, AN020 },
#elif defined(RA6M3)
{ P000, AN000 },
{ P001, AN001 },
{ P002, AN002 },
{ P003, AN007 },
{ P004, AN100 },
{ P005, AN101 },
{ P006, AN102 },
{ P007, AN107 },
{ P008, AN003 },
{ P009, AN004 },
{ P010, AN103 },
{ P014, AN005 },
{ P014, AN105 },
{ P015, AN006 },
{ P015, AN106 },
{ P500, AN016 },
{ P501, AN116 },
{ P502, AN017 },
{ P503, AN117 },
{ P504, AN018 },
{ P505, AN118 },
{ P506, AN019 },
{ P507, AN119 },
{ P508, AN020 },
#elif defined(RA6M5)
{ P000, AN000 },
{ P001, AN001 },
{ P002, AN002 },
{ P003, AN003 },
{ P004, AN004 },
{ P005, AN005 },
{ P006, AN006 },
{ P007, AN007 },
{ P008, AN008 },
{ P009, AN009 },
{ P010, AN010 },
{ P014, AN012 },
{ P015, AN013 },
{ P000, AN100 },
{ P001, AN101 },
{ P002, AN002 },
{ P500, AN116 },
{ P501, AN117 },
{ P502, AN118 },
{ P503, AN119 },
{ P504, AN120 },
{ P505, AN121 },
{ P506, AN122 },
{ P507, AN123 },
{ P508, AN124 },
{ P800, AN125 },
{ P801, AN126 },
{ P802, AN127 },
{ P803, AN128 },
#elif defined(RA6M1)
{ P000, AN000 },
{ P001, AN001 },
{ P002, AN002 },
{ P003, AN007 },
{ P004, AN100 },
{ P005, AN101 },
{ P006, AN102 },
{ P007, AN107 },
{ P008, AN003 },
{ P014, AN005 },
{ P014, AN105 },
{ P015, AN006 },
{ P015, AN106 },
{ P500, AN016 },
{ P501, AN116 },
{ P502, AN017 },
{ P503, AN117 },
{ P504, AN018 },
{ P508, AN020 },
#else
#error "CMSIS MCU Series is not specified."
#endif
};
#define ADC_PIN_TO_CH_SIZE (sizeof(pin_to_ch) / sizeof(adc_pin_to_ch_t))
#define ADC_CH_MAX (32)
#define ADC_UNIT0_SCAN_MAX (28)
static uint16_t adc_values[ADC_CH_MAX];
bool ra_adc_pin_to_ch(uint32_t pin, uint8_t *ch) {
uint32_t i;
*ch = (uint8_t)ADC_NON;
for (i = 0; i < ADC_PIN_TO_CH_SIZE; i++) {
if (pin == pin_to_ch[i].pin) {
*ch = pin_to_ch[i].ch;
break;
}
}
if (*ch == (uint8_t)ADC_NON) {
return false;
} else {
return true;
}
}
bool ra_adc_ch_to_pin(uint8_t ch, uint32_t *pin) {
uint32_t i;
*pin = (uint32_t)PIN_END;
for (i = 0; i < ADC_PIN_TO_CH_SIZE; i++) {
if (ch == pin_to_ch[i].ch) {
*pin = pin_to_ch[i].pin;
break;
}
}
if (*pin == (uint32_t)PIN_END) {
return false;
} else {
return true;
}
}
uint8_t ra_adc_get_channel(uint32_t pin) {
bool flag;
uint8_t ch;
flag = ra_adc_pin_to_ch(pin, &ch);
if (!flag) {
ch = 0;
}
return ch;
}
static void ra_adc0_module_start(void) {
ra_mstpcrd_start(R_MSTP_MSTPCRD_MSTPD16_Msk);
}
static void ra_adc0_module_stop(void) {
ra_mstpcrd_stop(R_MSTP_MSTPCRD_MSTPD16_Msk);
}
#if defined(RA6M1) | defined(RA6M2) | defined(RA6M3) | defined(RA6M5)
static void ra_adc1_module_start(void) {
ra_mstpcrd_start(R_MSTP_MSTPCRD_MSTPD15_Msk);
}
static void ra_adc1_module_stop(void) {
ra_mstpcrd_stop(R_MSTP_MSTPCRD_MSTPD15_Msk);
}
#endif
// For RA4M1 and RA4W1, there is no TSN configuration
#if defined(RA6M1) | defined(RA6M2) | defined(RA6M3) | defined(RA6M5)
static void ra_tsn_module_start(void) {
ra_mstpcrd_start(R_MSTP_MSTPCRD_MSTPD22_Msk);
}
static void ra_tsn_module_stop(void) {
ra_mstpcrd_stop(R_MSTP_MSTPCRD_MSTPD22_Msk);
}
#endif
void ra_adc_set_pin(uint32_t pin, bool adc_enable) {
uint32_t port = GPIO_PORT(pin);
uint32_t bit = GPIO_BIT(pin);
uint32_t pfs = _PXXPFS(port, bit);
pwpr_unprotect();
if (adc_enable) {
pfs &= ~PMR_MASK; /* GPIO */
pfs &= ~PDR_MASK; /* input */
pfs |= ASEL_MASK; /* set adc bit */
} else {
pfs |= PMR_MASK; /* GPIO */
pfs &= ~PDR_MASK; /* input */
pfs &= ~ASEL_MASK; /* clear adc bit */
}
_PXXPFS(port, bit) = pfs;
pwpr_protect();
}
void ra_adc_enable(uint32_t pin) {
ra_adc_set_pin(pin, true);
}
void ra_adc_disable(uint32_t pin) {
ra_adc_set_pin(pin, false);
}
__attribute__((naked)) static void min_delay(__attribute__((unused)) uint32_t loop_cnt) {
__asm volatile (
"sw_delay_loop: \n"
#if defined(__ICCARM__) || defined(__ARMCC_VERSION)
" subs r0, #1 \n" ///< 1 cycle
#elif defined(__GNUC__)
" sub r0, r0, #1 \n" ///< 1 cycle
#endif
" cmp r0, #0 \n" ///< 1 cycle
/* CM0 and CM23 have a different instruction set */
#if defined(__CORE_CM0PLUS_H_GENERIC) || defined(__CORE_CM23_H_GENERIC)
" bne sw_delay_loop \n" ///< 2 cycles
#else
" bne.n sw_delay_loop \n" ///< 2 cycles
#endif
" bx lr \n"); ///< 2 cycles
}
static void udelay(uint32_t us) {
while (us-- > 0) {
min_delay(PCLK / 1000000 / 4);
}
}
void ra_adc_set_resolution(uint8_t res) {
uint16_t adcer;
uint16_t adprc;
#if defined(RA4M1) | defined(RA4W1)
if ((res == 14) | (res == 12)) {
if (res == 14) {
adprc = 0x0006;
} else {
adprc = 0x0000;
}
adcer = adc_reg->ADCER;
adcer &= (uint16_t) ~0x0006;
adcer |= (uint16_t)adprc;
adc_reg->ADCER;
resolution = res;
}
#else
if ((res == 12) | (res == 10) | (res == 8)) {
if (res == 12) {
adprc = 0x0000;
} else if (res == 10) {
adprc = 0x0002;
} else {
adprc = 0x0004;
}
adcer = adc_reg->ADCER;
adcer &= (uint16_t) ~0x0006;
adcer |= (uint16_t)adprc;
adc_reg->ADCER;
resolution = res;
}
#endif
}
uint8_t ra_adc_get_resolution(void) {
uint8_t res = 0;
uint16_t adcer;
adcer = adc_reg->ADCER;
adcer &= 0x0006;
#if defined(RA4M1) | defined(RA4W1)
if (adcer == 0x0006) {
res = 14;
} else if (adcer == 0x0000) {
res = 12;
}
#else
if (adcer == 0x0000) {
res = 12;
} else if (adcer == 0x0002) {
res = 10;
} else if (adcer == 0x0004) {
res = 8;
}
#endif
return res;
}
// assumption
// AVCC0 is used. Neither VREFH0 nor internal reference voltage is not used.
uint16_t ra_adc_read_ch(uint8_t ch) {
uint16_t value16 = 0;
if ((ch == ADC_TEMP) | (ch == ADC_REF)) {
#if defined(RA6M1) | defined(RA6M2) | defined(RA6M3) | defined(RA6M5)
if (ch == ADC_TEMP) {
adc_reg->ADEXICR_b.TSSA = 1;
tsn_ctrl_reg->TSCR_b.TSEN = 1;
while (!tsn_ctrl_reg->TSCR_b.TSEN) {
;
}
tsn_ctrl_reg->TSCR_b.TSOE = 1;
while (!tsn_ctrl_reg->TSCR_b.TSOE) {
;
}
udelay(300);
} else if (ch == ADC_REF) {
adc_reg->ADEXICR_b.OCSA = 1;
udelay(300);
}
#endif
adc_reg->ADANSA[0] = 0;
adc_reg->ADANSA[1] = 0;
} else if (ch < 16) {
adc_reg->ADANSA[0] |= (uint16_t)(1 << ch);
} else {
adc_reg->ADANSA[1] |= (uint16_t)(1 << (ch - 16));
}
adc_reg->ADCSR_b.ADCS = 0; /* single scan mode */
adc_reg->ADCSR_b.ADST = 1; /* start a/d conversion */
while (adc_reg->ADCSR_b.ADST) {
; /* ADC in progress*/
}
if (ch == ADC_TEMP) {
value16 = (uint16_t)adc_reg->ADTSDR;
} else if (ch == ADC_REF) {
value16 = (uint16_t)adc_reg->ADOCDR;
} else {
value16 = (uint16_t)adc_reg->ADDR[ch];
}
#if defined(RA6M1) | defined(RA6M2) | defined(RA6M3) | defined(RA6M5)
if (ch == ADC_TEMP) {
tsn_ctrl_reg->TSCR_b.TSOE = 0;
while (tsn_ctrl_reg->TSCR_b.TSOE) {
;
}
tsn_ctrl_reg->TSCR_b.TSEN = 0;
while (tsn_ctrl_reg->TSCR_b.TSEN) {
;
}
} else if (ch == ADC_REF) {
adc_reg->ADEXICR_b.OCSA = 0;
}
#endif
return value16;
}
uint16_t ra_adc_read(uint32_t pin) {
uint8_t ch = ra_adc_get_channel(pin);
if (ch == ADC_NON) {
return 0;
}
return ra_adc_read_ch(ch);
}
int16_t ra_adc_read_itemp(void) {
int16_t temp = 0;
int16_t vmax = (int16_t)(1 << resolution);
#if defined(RA4M1) | defined(RA4W1)
uint16_t cal125 = ((uint16_t)tsn_reg->TSCDRH << 8) + (uint16_t)tsn_reg->TSCDRL;
uint16_t val = ra_adc_read_ch(ADC_TEMP);
int16_t v125 = (int16_t)(33 * cal125 / vmax / 10);
int16_t vtemp = (int16_t)(33 * val / vmax / 10);
temp = (int16_t)(125 + ((vtemp - v125) * 1000000 / (int16_t)BSP_FEATURE_ADC_TSN_SLOPE));
#elif defined(RA6M1) | defined(RA6M2) | defined(RA6M3) | defined(RA6M5)
uint16_t cal127 = (uint16_t)tsn_cal_reg->TSCDR;
uint16_t val = ra_adc_read_ch(ADC_TEMP);
int16_t v127 = (int16_t)(33 * cal127 / vmax / 10);
int16_t vtemp = (int16_t)(33 * val / vmax / 10);
temp = (int16_t)(127 + ((vtemp - v127) * 1000000 / (int16_t)BSP_FEATURE_ADC_TSN_SLOPE));
#else
#error "CMSIS MCU Series is not specified."
#endif
return temp;
}
float ra_adc_read_ftemp(void) {
float temp;
float vmax = (float)(1 << resolution);
#if defined(RA4M1) | defined(RA4W1)
uint16_t cal125 = ((uint16_t)tsn_reg->TSCDRH << 8) + (uint16_t)tsn_reg->TSCDRL;
uint16_t val = ra_adc_read_ch(ADC_TEMP);
float v125 = (float)(3.3f * (float)cal125 / vmax);
float vtemp = (float)(3.3f * (float)val / vmax);
temp = (float)(125.0f + ((vtemp - v125) * 1000000.0f / (float)BSP_FEATURE_ADC_TSN_SLOPE));
#endif
#if defined(RA6M1) | defined(RA6M2) | defined(RA6M3) | defined(RA6M5)
uint16_t cal127 = (uint16_t)tsn_cal_reg->TSCDR;
uint16_t val = ra_adc_read_ch(ADC_TEMP);
float v127 = (float)(3.3f * (float)cal127 / vmax);
float vtemp = (float)(3.3f * (float)val / vmax);
temp = (float)(127.0f + ((vtemp - v127) * 1000000.0f / (float)BSP_FEATURE_ADC_TSN_SLOPE));
#endif
return temp;
}
float ra_adc_read_fref(void) {
uint16_t val = ra_adc_read_ch(ADC_REF);
float vmax = (float)(1 << resolution);
float vref = (float)(3.3f * (float)val / vmax);
return vref;
}
uint16_t ra_adc_all_read_ch(uint32_t ch) {
if (ch < ADC_CH_MAX) {
return adc_values[ch];
} else {
return 0;
}
}
void ra_adc_all(__attribute__((unused)) uint32_t resolution, uint32_t mask) {
uint32_t i;
uint32_t pin;
uint32_t bit;
uint16_t value16 = 0;
bool badc = ((mask & 0x1fffffff) != 0);
bool btemp = ((mask & (1 << ADC_TEMP)) != 0);
bool bref = ((mask & (1 << ADC_REF)) != 0);
for (i = 0; i < ADC_CH_MAX; i++) {
adc_values[i] = 0;
}
if (badc) {
bit = 1;
adc_reg->ADANSA[0] = 0;
adc_reg->ADANSA[1] = 0;
for (i = 0; i < ADC_UNIT0_SCAN_MAX; i++) {
if (mask & bit) {
if (ra_adc_ch_to_pin((uint8_t)i, &pin)) {
ra_adc_enable(pin);
if (i < 16) {
adc_reg->ADANSA[0] |= (uint16_t)(1 << i);
} else {
adc_reg->ADANSA[1] |= (uint16_t)(1 << (i - 16));
}
}
}
bit <<= 1;
}
adc_reg->ADCSR_b.ADCS = 0; /* single scan mode */
adc_reg->ADCSR_b.ADST = 1; /* start a/d conversion */
while (adc_reg->ADCSR_b.ADST) {
; /* ADC in progress*/
}
bit = 1;
for (i = 0; i < ADC_UNIT0_SCAN_MAX; i++) {
if (mask & bit) {
value16 = (uint16_t)adc_reg->ADDR[i];
adc_values[i] = value16;
}
bit <<= 1;
}
}
if (btemp) {
adc_reg->ADANSA[0] = 0;
adc_reg->ADANSA[1] = 0;
adc_reg->ADEXICR_b.TSSA = 1;
#if defined(RA6M1) | defined(RA6M2) | defined(RA6M3) | defined(RA6M5)
tsn_ctrl_reg->TSCR_b.TSEN = 1;
while (!tsn_ctrl_reg->TSCR_b.TSEN) {
;
}
tsn_ctrl_reg->TSCR_b.TSOE = 1;
while (!tsn_ctrl_reg->TSCR_b.TSOE) {
;
}
udelay(30);
#endif
adc_reg->ADCSR_b.ADCS = 0; /* single scan mode */
adc_reg->ADCSR_b.ADST = 1; /* start a/d conversion */
while (adc_reg->ADCSR_b.ADST) {
; /* ADC in progress*/
}
value16 = (uint16_t)adc_reg->ADTSDR;
adc_values[ADC_TEMP] = value16;
#if defined(RA6M1) | defined(RA6M2) | defined(RA6M3) | defined(RA6M5)
tsn_ctrl_reg->TSCR_b.TSOE = 0;
while (tsn_ctrl_reg->TSCR_b.TSOE) {
;
}
tsn_ctrl_reg->TSCR_b.TSEN = 0;
while (tsn_ctrl_reg->TSCR_b.TSEN) {
;
}
#endif
}
if (bref) {
adc_reg->ADANSA[0] = 0;
adc_reg->ADANSA[1] = 0;
adc_reg->ADEXICR_b.OCSA = 1;
udelay(30);
adc_reg->ADCSR_b.ADCS = 0; /* single scan mode */
adc_reg->ADCSR_b.ADST = 1; /* start a/d conversion */
while (adc_reg->ADCSR_b.ADST) {
; /* ADC in progress*/
}
value16 = (uint16_t)adc_reg->ADOCDR;
adc_values[ADC_REF] = value16;
}
}
bool ra_adc_init(void) {
ra_adc0_module_start();
#if defined(RA6M1) | defined(RA6M2) | defined(RA6M3) | defined(RA6M5)
ra_adc1_module_start();
ra_tsn_module_start();
#endif
resolution = RA_ADC_DEF_RESOLUTION;
ra_adc_set_resolution(resolution);
return true;
}
bool ra_adc_deinit(void) {
ra_adc0_module_stop();
#if defined(RA6M1) | defined(RA6M2) | defined(RA6M3) | defined(RA6M5)
ra_adc1_module_stop();
ra_tsn_module_stop();
#endif
return true;
}
__WEAK void adc_scan_end_isr(void) {
// dummy
}