0ba68f8a1d
Initially some of these were found building the unix coverage variant on MacOS because that build uses clang and has -Wdouble-promotion enabled, and clang performs more vigorous promotion checks than gcc. Additionally the codebase has been compiled with clang and msvc (the latter with warning level 3), and with MICROPY_FLOAT_IMPL_FLOAT to find the rest of the conversions. Fixes are implemented either as explicit casts, or by using the correct type, or by using one of the utility functions to handle floating point casting; these have been moved from nativeglue.c to the public API.
361 lines
12 KiB
C
361 lines
12 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "py/runtime.h"
|
|
#include "py/parsenumbase.h"
|
|
#include "py/parsenum.h"
|
|
#include "py/smallint.h"
|
|
|
|
#if MICROPY_PY_BUILTINS_FLOAT
|
|
#include <math.h>
|
|
#endif
|
|
|
|
STATIC NORETURN void raise_exc(mp_obj_t exc, mp_lexer_t *lex) {
|
|
// if lex!=NULL then the parser called us and we need to convert the
|
|
// exception's type from ValueError to SyntaxError and add traceback info
|
|
if (lex != NULL) {
|
|
((mp_obj_base_t *)MP_OBJ_TO_PTR(exc))->type = &mp_type_SyntaxError;
|
|
mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTRnull);
|
|
}
|
|
nlr_raise(exc);
|
|
}
|
|
|
|
mp_obj_t mp_parse_num_integer(const char *restrict str_, size_t len, int base, mp_lexer_t *lex) {
|
|
const byte *restrict str = (const byte *)str_;
|
|
const byte *restrict top = str + len;
|
|
bool neg = false;
|
|
mp_obj_t ret_val;
|
|
|
|
// check radix base
|
|
if ((base != 0 && base < 2) || base > 36) {
|
|
// this won't be reached if lex!=NULL
|
|
mp_raise_ValueError(MP_ERROR_TEXT("int() arg 2 must be >= 2 and <= 36"));
|
|
}
|
|
|
|
// skip leading space
|
|
for (; str < top && unichar_isspace(*str); str++) {
|
|
}
|
|
|
|
// parse optional sign
|
|
if (str < top) {
|
|
if (*str == '+') {
|
|
str++;
|
|
} else if (*str == '-') {
|
|
str++;
|
|
neg = true;
|
|
}
|
|
}
|
|
|
|
// parse optional base prefix
|
|
str += mp_parse_num_base((const char *)str, top - str, &base);
|
|
|
|
// string should be an integer number
|
|
mp_int_t int_val = 0;
|
|
const byte *restrict str_val_start = str;
|
|
for (; str < top; str++) {
|
|
// get next digit as a value
|
|
mp_uint_t dig = *str;
|
|
if ('0' <= dig && dig <= '9') {
|
|
dig -= '0';
|
|
} else if (dig == '_') {
|
|
continue;
|
|
} else {
|
|
dig |= 0x20; // make digit lower-case
|
|
if ('a' <= dig && dig <= 'z') {
|
|
dig -= 'a' - 10;
|
|
} else {
|
|
// unknown character
|
|
break;
|
|
}
|
|
}
|
|
if (dig >= (mp_uint_t)base) {
|
|
break;
|
|
}
|
|
|
|
// add next digi and check for overflow
|
|
if (mp_small_int_mul_overflow(int_val, base)) {
|
|
goto overflow;
|
|
}
|
|
int_val = int_val * base + dig;
|
|
if (!MP_SMALL_INT_FITS(int_val)) {
|
|
goto overflow;
|
|
}
|
|
}
|
|
|
|
// negate value if needed
|
|
if (neg) {
|
|
int_val = -int_val;
|
|
}
|
|
|
|
// create the small int
|
|
ret_val = MP_OBJ_NEW_SMALL_INT(int_val);
|
|
|
|
have_ret_val:
|
|
// check we parsed something
|
|
if (str == str_val_start) {
|
|
goto value_error;
|
|
}
|
|
|
|
// skip trailing space
|
|
for (; str < top && unichar_isspace(*str); str++) {
|
|
}
|
|
|
|
// check we reached the end of the string
|
|
if (str != top) {
|
|
goto value_error;
|
|
}
|
|
|
|
// return the object
|
|
return ret_val;
|
|
|
|
overflow:
|
|
// reparse using long int
|
|
{
|
|
const char *s2 = (const char *)str_val_start;
|
|
ret_val = mp_obj_new_int_from_str_len(&s2, top - str_val_start, neg, base);
|
|
str = (const byte *)s2;
|
|
goto have_ret_val;
|
|
}
|
|
|
|
value_error:
|
|
{
|
|
#if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE
|
|
mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_ValueError,
|
|
MP_ERROR_TEXT("invalid syntax for integer"));
|
|
raise_exc(exc, lex);
|
|
#elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL
|
|
mp_obj_t exc = mp_obj_new_exception_msg_varg(&mp_type_ValueError,
|
|
MP_ERROR_TEXT("invalid syntax for integer with base %d"), base);
|
|
raise_exc(exc, lex);
|
|
#else
|
|
vstr_t vstr;
|
|
mp_print_t print;
|
|
vstr_init_print(&vstr, 50, &print);
|
|
mp_printf(&print, "invalid syntax for integer with base %d: ", base);
|
|
mp_str_print_quoted(&print, str_val_start, top - str_val_start, true);
|
|
mp_obj_t exc = mp_obj_new_exception_arg1(&mp_type_ValueError,
|
|
mp_obj_new_str_from_vstr(&mp_type_str, &vstr));
|
|
raise_exc(exc, lex);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
typedef enum {
|
|
PARSE_DEC_IN_INTG,
|
|
PARSE_DEC_IN_FRAC,
|
|
PARSE_DEC_IN_EXP,
|
|
} parse_dec_in_t;
|
|
|
|
mp_obj_t mp_parse_num_decimal(const char *str, size_t len, bool allow_imag, bool force_complex, mp_lexer_t *lex) {
|
|
#if MICROPY_PY_BUILTINS_FLOAT
|
|
|
|
// DEC_VAL_MAX only needs to be rough and is used to retain precision while not overflowing
|
|
// SMALL_NORMAL_VAL is the smallest power of 10 that is still a normal float
|
|
// EXACT_POWER_OF_10 is the largest value of x so that 10^x can be stored exactly in a float
|
|
// Note: EXACT_POWER_OF_10 is at least floor(log_5(2^mantissa_length)). Indeed, 10^n = 2^n * 5^n
|
|
// so we only have to store the 5^n part in the mantissa (the 2^n part will go into the float's
|
|
// exponent).
|
|
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
|
|
#define DEC_VAL_MAX 1e20F
|
|
#define SMALL_NORMAL_VAL (1e-37F)
|
|
#define SMALL_NORMAL_EXP (-37)
|
|
#define EXACT_POWER_OF_10 (9)
|
|
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
|
|
#define DEC_VAL_MAX 1e200
|
|
#define SMALL_NORMAL_VAL (1e-307)
|
|
#define SMALL_NORMAL_EXP (-307)
|
|
#define EXACT_POWER_OF_10 (22)
|
|
#endif
|
|
|
|
const char *top = str + len;
|
|
mp_float_t dec_val = 0;
|
|
bool dec_neg = false;
|
|
bool imag = false;
|
|
|
|
// skip leading space
|
|
for (; str < top && unichar_isspace(*str); str++) {
|
|
}
|
|
|
|
// parse optional sign
|
|
if (str < top) {
|
|
if (*str == '+') {
|
|
str++;
|
|
} else if (*str == '-') {
|
|
str++;
|
|
dec_neg = true;
|
|
}
|
|
}
|
|
|
|
const char *str_val_start = str;
|
|
|
|
// determine what the string is
|
|
if (str < top && (str[0] | 0x20) == 'i') {
|
|
// string starts with 'i', should be 'inf' or 'infinity' (case insensitive)
|
|
if (str + 2 < top && (str[1] | 0x20) == 'n' && (str[2] | 0x20) == 'f') {
|
|
// inf
|
|
str += 3;
|
|
dec_val = (mp_float_t)INFINITY;
|
|
if (str + 4 < top && (str[0] | 0x20) == 'i' && (str[1] | 0x20) == 'n' && (str[2] | 0x20) == 'i' && (str[3] | 0x20) == 't' && (str[4] | 0x20) == 'y') {
|
|
// infinity
|
|
str += 5;
|
|
}
|
|
}
|
|
} else if (str < top && (str[0] | 0x20) == 'n') {
|
|
// string starts with 'n', should be 'nan' (case insensitive)
|
|
if (str + 2 < top && (str[1] | 0x20) == 'a' && (str[2] | 0x20) == 'n') {
|
|
// NaN
|
|
str += 3;
|
|
dec_val = MICROPY_FLOAT_C_FUN(nan)("");
|
|
}
|
|
} else {
|
|
// string should be a decimal number
|
|
parse_dec_in_t in = PARSE_DEC_IN_INTG;
|
|
bool exp_neg = false;
|
|
int exp_val = 0;
|
|
int exp_extra = 0;
|
|
while (str < top) {
|
|
unsigned int dig = *str++;
|
|
if ('0' <= dig && dig <= '9') {
|
|
dig -= '0';
|
|
if (in == PARSE_DEC_IN_EXP) {
|
|
// don't overflow exp_val when adding next digit, instead just truncate
|
|
// it and the resulting float will still be correct, either inf or 0.0
|
|
// (use INT_MAX/2 to allow adding exp_extra at the end without overflow)
|
|
if (exp_val < (INT_MAX / 2 - 9) / 10) {
|
|
exp_val = 10 * exp_val + dig;
|
|
}
|
|
} else {
|
|
if (dec_val < DEC_VAL_MAX) {
|
|
// dec_val won't overflow so keep accumulating
|
|
dec_val = 10 * dec_val + dig;
|
|
if (in == PARSE_DEC_IN_FRAC) {
|
|
--exp_extra;
|
|
}
|
|
} else {
|
|
// dec_val might overflow and we anyway can't represent more digits
|
|
// of precision, so ignore the digit and just adjust the exponent
|
|
if (in == PARSE_DEC_IN_INTG) {
|
|
++exp_extra;
|
|
}
|
|
}
|
|
}
|
|
} else if (in == PARSE_DEC_IN_INTG && dig == '.') {
|
|
in = PARSE_DEC_IN_FRAC;
|
|
} else if (in != PARSE_DEC_IN_EXP && ((dig | 0x20) == 'e')) {
|
|
in = PARSE_DEC_IN_EXP;
|
|
if (str < top) {
|
|
if (str[0] == '+') {
|
|
str++;
|
|
} else if (str[0] == '-') {
|
|
str++;
|
|
exp_neg = true;
|
|
}
|
|
}
|
|
if (str == top) {
|
|
goto value_error;
|
|
}
|
|
} else if (allow_imag && (dig | 0x20) == 'j') {
|
|
imag = true;
|
|
break;
|
|
} else if (dig == '_') {
|
|
continue;
|
|
} else {
|
|
// unknown character
|
|
str--;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// work out the exponent
|
|
if (exp_neg) {
|
|
exp_val = -exp_val;
|
|
}
|
|
|
|
// apply the exponent, making sure it's not a subnormal value
|
|
exp_val += exp_extra;
|
|
if (exp_val < SMALL_NORMAL_EXP) {
|
|
exp_val -= SMALL_NORMAL_EXP;
|
|
dec_val *= SMALL_NORMAL_VAL;
|
|
}
|
|
|
|
// At this point, we need to multiply the mantissa by its base 10 exponent. If possible,
|
|
// we would rather manipulate numbers that have an exact representation in IEEE754. It
|
|
// turns out small positive powers of 10 do, whereas small negative powers of 10 don't.
|
|
// So in that case, we'll yield a division of exact values rather than a multiplication
|
|
// of slightly erroneous values.
|
|
if (exp_val < 0 && exp_val >= -EXACT_POWER_OF_10) {
|
|
dec_val /= MICROPY_FLOAT_C_FUN(pow)(10, -exp_val);
|
|
} else {
|
|
dec_val *= MICROPY_FLOAT_C_FUN(pow)(10, exp_val);
|
|
}
|
|
}
|
|
|
|
// negate value if needed
|
|
if (dec_neg) {
|
|
dec_val = -dec_val;
|
|
}
|
|
|
|
// check we parsed something
|
|
if (str == str_val_start) {
|
|
goto value_error;
|
|
}
|
|
|
|
// skip trailing space
|
|
for (; str < top && unichar_isspace(*str); str++) {
|
|
}
|
|
|
|
// check we reached the end of the string
|
|
if (str != top) {
|
|
goto value_error;
|
|
}
|
|
|
|
// return the object
|
|
#if MICROPY_PY_BUILTINS_COMPLEX
|
|
if (imag) {
|
|
return mp_obj_new_complex(0, dec_val);
|
|
} else if (force_complex) {
|
|
return mp_obj_new_complex(dec_val, 0);
|
|
}
|
|
#else
|
|
if (imag || force_complex) {
|
|
raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("complex values not supported")), lex);
|
|
}
|
|
#endif
|
|
else {
|
|
return mp_obj_new_float(dec_val);
|
|
}
|
|
|
|
value_error:
|
|
raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("invalid syntax for number")), lex);
|
|
|
|
#else
|
|
raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("decimal numbers not supported")), lex);
|
|
#endif
|
|
}
|