66edcf5d03
PicoDVI in CP support 640x480 and 800x480 on Feather DVI, Pico and Pico W. 1 and 2 bit grayscale are full resolution. 8 and 16 bit color are half resolution. Memory layout is modified to give the top most 4k of ram to the second core. Its MPU is used to prevent flash access after startup. The port saved word is moved to a watchdog scratch register so that it doesn't get overwritten by other things in RAM. Right align status bar and scroll area. This normally gives a few pixels of padding on the left hand side and improves the odds it is readable in a case. Fixes #7562 Fixes c stack checking. The length was correct but the top was being set to the current stack pointer instead of the correct top. Fixes #7643 This makes Bitmap subscr raise IndexError instead of ValueError when the index arguments are wrong.
470 lines
17 KiB
C
470 lines
17 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2021 Scott Shawcroft for Adafruit Industries
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "audio_dma.h"
|
|
|
|
#include "shared-bindings/audiocore/RawSample.h"
|
|
#include "shared-bindings/audiocore/WaveFile.h"
|
|
#include "shared-bindings/microcontroller/__init__.h"
|
|
#include "bindings/rp2pio/StateMachine.h"
|
|
#include "supervisor/background_callback.h"
|
|
|
|
#include "py/mpstate.h"
|
|
#include "py/runtime.h"
|
|
|
|
#include "src/rp2_common/hardware_irq/include/hardware/irq.h"
|
|
|
|
#if CIRCUITPY_AUDIOCORE
|
|
|
|
void audio_dma_reset(void) {
|
|
for (size_t channel = 0; channel < NUM_DMA_CHANNELS; channel++) {
|
|
if (MP_STATE_PORT(playing_audio)[channel] == NULL) {
|
|
continue;
|
|
}
|
|
|
|
audio_dma_stop(MP_STATE_PORT(playing_audio)[channel]);
|
|
}
|
|
}
|
|
|
|
|
|
STATIC size_t audio_dma_convert_samples(audio_dma_t *dma, uint8_t *input, uint32_t input_length, uint8_t *output, uint32_t output_length) {
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wcast-align"
|
|
|
|
uint32_t output_length_used = input_length / dma->sample_spacing;
|
|
|
|
if (output_length_used > output_length) {
|
|
mp_raise_RuntimeError(translate("Internal audio buffer too small"));
|
|
}
|
|
|
|
uint32_t out_i = 0;
|
|
if (dma->sample_resolution <= 8 && dma->output_resolution > 8) {
|
|
// reading bytes, writing 16-bit words, so output buffer will be bigger.
|
|
|
|
output_length_used = output_length * 2;
|
|
if (output_length_used > output_length) {
|
|
mp_raise_RuntimeError(translate("Internal audio buffer too small"));
|
|
}
|
|
|
|
size_t shift = dma->output_resolution - dma->sample_resolution;
|
|
|
|
for (uint32_t i = 0; i < input_length; i += dma->sample_spacing) {
|
|
if (dma->signed_to_unsigned) {
|
|
((uint16_t *)output)[out_i] = ((uint16_t)((int8_t *)input)[i] + 0x80) << shift;
|
|
} else if (dma->unsigned_to_signed) {
|
|
((int16_t *)output)[out_i] = ((int16_t)((uint8_t *)input)[i] - 0x80) << shift;
|
|
} else {
|
|
((uint16_t *)output)[out_i] = ((uint16_t)((uint8_t *)input)[i]) << shift;
|
|
}
|
|
out_i += 1;
|
|
}
|
|
} else if (dma->sample_resolution <= 8 && dma->output_resolution <= 8) {
|
|
for (uint32_t i = 0; i < input_length; i += dma->sample_spacing) {
|
|
if (dma->signed_to_unsigned) {
|
|
((uint8_t *)output)[out_i] = ((int8_t *)input)[i] + 0x80;
|
|
} else if (dma->unsigned_to_signed) {
|
|
((int8_t *)output)[out_i] = ((uint8_t *)input)[i] - 0x80;
|
|
} else {
|
|
((uint8_t *)output)[out_i] = ((uint8_t *)input)[i];
|
|
}
|
|
out_i += 1;
|
|
}
|
|
} else if (dma->sample_resolution > 8 && dma->output_resolution > 8) {
|
|
size_t shift = 16 - dma->output_resolution;
|
|
for (uint32_t i = 0; i < input_length / 2; i += dma->sample_spacing) {
|
|
if (dma->signed_to_unsigned) {
|
|
((uint16_t *)output)[out_i] = ((int16_t *)input)[i] + 0x8000;
|
|
} else if (dma->unsigned_to_signed) {
|
|
((int16_t *)output)[out_i] = ((uint16_t *)input)[i] - 0x8000;
|
|
} else {
|
|
((uint16_t *)output)[out_i] = ((uint16_t *)input)[i];
|
|
}
|
|
if (dma->output_resolution < 16) {
|
|
if (dma->output_signed) {
|
|
((int16_t *)output)[out_i] = ((int16_t *)output)[out_i] >> shift;
|
|
} else {
|
|
((uint16_t *)output)[out_i] = ((uint16_t *)output)[out_i] >> shift;
|
|
}
|
|
}
|
|
out_i += 1;
|
|
}
|
|
} else {
|
|
// (dma->sample_resolution > 8 && dma->output_resolution <= 8)
|
|
// Not currently used, but might be in the future.
|
|
mp_raise_RuntimeError(translate("Audio conversion not implemented"));
|
|
}
|
|
#pragma GCC diagnostic pop
|
|
return output_length_used;
|
|
}
|
|
|
|
// buffer_idx is 0 or 1.
|
|
STATIC void audio_dma_load_next_block(audio_dma_t *dma, size_t buffer_idx) {
|
|
size_t dma_channel = dma->channel[buffer_idx];
|
|
|
|
audioio_get_buffer_result_t get_buffer_result;
|
|
uint8_t *sample_buffer;
|
|
uint32_t sample_buffer_length;
|
|
get_buffer_result = audiosample_get_buffer(dma->sample,
|
|
dma->single_channel_output, dma->audio_channel, &sample_buffer, &sample_buffer_length);
|
|
|
|
if (get_buffer_result == GET_BUFFER_ERROR) {
|
|
audio_dma_stop(dma);
|
|
return;
|
|
}
|
|
|
|
// Convert the sample format resolution and signedness, as necessary.
|
|
// The input sample buffer is what was read from a file, Mixer, or a raw sample buffer.
|
|
// The output buffer is one of the DMA buffers (passed in).
|
|
|
|
size_t output_length_used = audio_dma_convert_samples(
|
|
dma, sample_buffer, sample_buffer_length,
|
|
dma->buffer[buffer_idx], dma->buffer_length[buffer_idx]);
|
|
|
|
dma_channel_set_read_addr(dma_channel, dma->buffer[buffer_idx], false /* trigger */);
|
|
dma_channel_set_trans_count(dma_channel, output_length_used / dma->output_size, false /* trigger */);
|
|
|
|
if (get_buffer_result == GET_BUFFER_DONE) {
|
|
if (dma->loop) {
|
|
audiosample_reset_buffer(dma->sample, dma->single_channel_output, dma->audio_channel);
|
|
} else {
|
|
// Set channel trigger to ourselves so we don't keep going.
|
|
dma_channel_hw_t *c = &dma_hw->ch[dma_channel];
|
|
c->al1_ctrl =
|
|
(c->al1_ctrl & ~DMA_CH0_CTRL_TRIG_CHAIN_TO_BITS) |
|
|
(dma_channel << DMA_CH0_CTRL_TRIG_CHAIN_TO_LSB);
|
|
|
|
if (output_length_used == 0 &&
|
|
!dma_channel_is_busy(dma->channel[0]) &&
|
|
!dma_channel_is_busy(dma->channel[1])) {
|
|
// No data has been read, and both DMA channels have now finished, so it's safe to stop.
|
|
audio_dma_stop(dma);
|
|
dma->playing_in_progress = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Playback should be shutdown before calling this.
|
|
audio_dma_result audio_dma_setup_playback(
|
|
audio_dma_t *dma,
|
|
mp_obj_t sample,
|
|
bool loop,
|
|
bool single_channel_output,
|
|
uint8_t audio_channel,
|
|
bool output_signed,
|
|
uint8_t output_resolution,
|
|
uint32_t output_register_address,
|
|
uint8_t dma_trigger_source) {
|
|
|
|
// Use two DMA channels to play because the DMA can't wrap to itself without the
|
|
// buffer being power of two aligned.
|
|
int dma_channel_0_maybe = dma_claim_unused_channel(false);
|
|
if (dma_channel_0_maybe < 0) {
|
|
return AUDIO_DMA_DMA_BUSY;
|
|
}
|
|
|
|
int dma_channel_1_maybe = dma_claim_unused_channel(false);
|
|
if (dma_channel_1_maybe < 0) {
|
|
dma_channel_unclaim((uint)dma_channel_0_maybe);
|
|
return AUDIO_DMA_DMA_BUSY;
|
|
}
|
|
|
|
dma->channel[0] = (uint8_t)dma_channel_0_maybe;
|
|
dma->channel[1] = (uint8_t)dma_channel_1_maybe;
|
|
|
|
dma->sample = sample;
|
|
dma->loop = loop;
|
|
dma->single_channel_output = single_channel_output;
|
|
dma->audio_channel = audio_channel;
|
|
dma->signed_to_unsigned = false;
|
|
dma->unsigned_to_signed = false;
|
|
dma->output_signed = output_signed;
|
|
dma->sample_spacing = 1;
|
|
dma->output_resolution = output_resolution;
|
|
dma->sample_resolution = audiosample_bits_per_sample(sample);
|
|
dma->output_register_address = output_register_address;
|
|
|
|
audiosample_reset_buffer(sample, single_channel_output, audio_channel);
|
|
|
|
|
|
bool single_buffer; // True if data fits in one single buffer.
|
|
|
|
bool samples_signed;
|
|
uint32_t max_buffer_length;
|
|
audiosample_get_buffer_structure(sample, single_channel_output, &single_buffer, &samples_signed,
|
|
&max_buffer_length, &dma->sample_spacing);
|
|
|
|
// Check to see if we have to scale the resolution up.
|
|
if (dma->sample_resolution <= 8 && dma->output_resolution > 8) {
|
|
max_buffer_length *= 2;
|
|
}
|
|
if (output_signed != samples_signed ||
|
|
dma->sample_spacing > 1 ||
|
|
(dma->sample_resolution != dma->output_resolution)) {
|
|
max_buffer_length /= dma->sample_spacing;
|
|
}
|
|
|
|
dma->buffer[0] = (uint8_t *)m_realloc(dma->buffer[0], max_buffer_length);
|
|
dma->buffer_length[0] = max_buffer_length;
|
|
if (dma->buffer[0] == NULL) {
|
|
return AUDIO_DMA_MEMORY_ERROR;
|
|
}
|
|
|
|
if (!single_buffer) {
|
|
dma->buffer[1] = (uint8_t *)m_realloc(dma->buffer[1], max_buffer_length);
|
|
dma->buffer_length[1] = max_buffer_length;
|
|
if (dma->buffer[1] == NULL) {
|
|
return AUDIO_DMA_MEMORY_ERROR;
|
|
}
|
|
}
|
|
|
|
dma->signed_to_unsigned = !output_signed && samples_signed;
|
|
dma->unsigned_to_signed = output_signed && !samples_signed;
|
|
|
|
if (output_resolution > 8) {
|
|
dma->output_size = 2;
|
|
} else {
|
|
dma->output_size = 1;
|
|
}
|
|
// Transfer both channels at once.
|
|
if (!single_channel_output && audiosample_channel_count(sample) == 2) {
|
|
dma->output_size *= 2;
|
|
}
|
|
enum dma_channel_transfer_size dma_size = DMA_SIZE_8;
|
|
if (dma->output_size == 2) {
|
|
dma_size = DMA_SIZE_16;
|
|
} else if (dma->output_size == 4) {
|
|
dma_size = DMA_SIZE_32;
|
|
}
|
|
|
|
for (size_t i = 0; i < 2; i++) {
|
|
dma_channel_config c = dma_channel_get_default_config(dma->channel[i]);
|
|
channel_config_set_transfer_data_size(&c, dma_size);
|
|
channel_config_set_dreq(&c, dma_trigger_source);
|
|
channel_config_set_read_increment(&c, true);
|
|
channel_config_set_write_increment(&c, false);
|
|
|
|
// Chain to the other channel by default.
|
|
channel_config_set_chain_to(&c, dma->channel[(i + 1) % 2]);
|
|
dma_channel_set_config(dma->channel[i], &c, false /* trigger */);
|
|
|
|
dma_channel_set_write_addr(dma->channel[i], (void *)output_register_address, false /* trigger */);
|
|
}
|
|
|
|
// We keep the audio_dma_t for internal use and the sample as a root pointer because it
|
|
// contains the audiodma structure.
|
|
MP_STATE_PORT(playing_audio)[dma->channel[0]] = dma;
|
|
MP_STATE_PORT(playing_audio)[dma->channel[1]] = dma;
|
|
|
|
// Load the first two blocks up front.
|
|
audio_dma_load_next_block(dma, 0);
|
|
if (!single_buffer) {
|
|
audio_dma_load_next_block(dma, 1);
|
|
}
|
|
|
|
// Special case the DMA for a single buffer. It's commonly used for a single wave length of sound
|
|
// and may be short. Therefore, we use DMA chaining to loop quickly without involving interrupts.
|
|
// On the RP2040 we chain by having a second DMA writing to the config registers of the first.
|
|
// Read and write addresses change with DMA so we need to reset the read address back to the
|
|
// start of the sample.
|
|
if (single_buffer) {
|
|
dma_channel_config c = dma_channel_get_default_config(dma->channel[1]);
|
|
channel_config_set_transfer_data_size(&c, DMA_SIZE_32);
|
|
channel_config_set_dreq(&c, 0x3f); // dma as fast as possible
|
|
channel_config_set_read_increment(&c, false);
|
|
channel_config_set_write_increment(&c, false);
|
|
channel_config_set_chain_to(&c, dma->channel[1]); // Chain to ourselves so we stop.
|
|
dma_channel_configure(dma->channel[1], &c,
|
|
&dma_hw->ch[dma->channel[0]].al3_read_addr_trig, // write address
|
|
&dma->buffer[0], // read address
|
|
1, // transaction count
|
|
false); // trigger
|
|
} else {
|
|
// Enable our DMA channels on DMA_IRQ_0 to the CPU. This will wake us up when
|
|
// we're WFI.
|
|
dma_hw->inte0 |= (1 << dma->channel[0]) | (1 << dma->channel[1]);
|
|
irq_set_mask_enabled(1 << DMA_IRQ_0, true);
|
|
}
|
|
|
|
dma->playing_in_progress = true;
|
|
dma_channel_start(dma->channel[0]);
|
|
|
|
return AUDIO_DMA_OK;
|
|
}
|
|
|
|
void audio_dma_stop(audio_dma_t *dma) {
|
|
// Disable our interrupts.
|
|
uint32_t channel_mask = 0;
|
|
if (dma->channel[0] < NUM_DMA_CHANNELS) {
|
|
channel_mask |= 1 << dma->channel[0];
|
|
}
|
|
if (dma->channel[1] < NUM_DMA_CHANNELS) {
|
|
channel_mask |= 1 << dma->channel[1];
|
|
}
|
|
dma_hw->inte0 &= ~channel_mask;
|
|
if (!dma_hw->inte0) {
|
|
irq_set_mask_enabled(1 << DMA_IRQ_0, false);
|
|
}
|
|
|
|
// Run any remaining audio tasks because we remove ourselves from
|
|
// playing_audio.
|
|
RUN_BACKGROUND_TASKS;
|
|
|
|
for (size_t i = 0; i < 2; i++) {
|
|
size_t channel = dma->channel[i];
|
|
if (channel == NUM_DMA_CHANNELS) {
|
|
// Channel not in use.
|
|
continue;
|
|
}
|
|
|
|
dma_channel_config c = dma_channel_get_default_config(dma->channel[i]);
|
|
channel_config_set_enable(&c, false);
|
|
dma_channel_set_config(channel, &c, false /* trigger */);
|
|
|
|
if (dma_channel_is_busy(channel)) {
|
|
dma_channel_abort(channel);
|
|
}
|
|
|
|
dma_channel_set_read_addr(channel, NULL, false /* trigger */);
|
|
dma_channel_set_write_addr(channel, NULL, false /* trigger */);
|
|
dma_channel_set_trans_count(channel, 0, false /* trigger */);
|
|
dma_channel_unclaim(channel);
|
|
MP_STATE_PORT(playing_audio)[channel] = NULL;
|
|
dma->channel[i] = NUM_DMA_CHANNELS;
|
|
}
|
|
dma->playing_in_progress = false;
|
|
|
|
// Hold onto our buffers.
|
|
}
|
|
|
|
// To pause we simply stop the DMA. It is the responsibility of the output peripheral
|
|
// to hold the previous value.
|
|
void audio_dma_pause(audio_dma_t *dma) {
|
|
dma_hw->ch[dma->channel[0]].al1_ctrl &= ~DMA_CH0_CTRL_TRIG_EN_BITS;
|
|
dma_hw->ch[dma->channel[1]].al1_ctrl &= ~DMA_CH1_CTRL_TRIG_EN_BITS;
|
|
}
|
|
|
|
void audio_dma_resume(audio_dma_t *dma) {
|
|
// Always re-enable the non-busy channel first so it's ready to continue when the busy channel
|
|
// finishes and chains to it. (An interrupt could make the time between enables long.)
|
|
if (dma_channel_is_busy(dma->channel[0])) {
|
|
dma_hw->ch[dma->channel[1]].al1_ctrl |= DMA_CH1_CTRL_TRIG_EN_BITS;
|
|
dma_hw->ch[dma->channel[0]].al1_ctrl |= DMA_CH0_CTRL_TRIG_EN_BITS;
|
|
} else {
|
|
dma_hw->ch[dma->channel[0]].al1_ctrl |= DMA_CH0_CTRL_TRIG_EN_BITS;
|
|
dma_hw->ch[dma->channel[1]].al1_ctrl |= DMA_CH1_CTRL_TRIG_EN_BITS;
|
|
}
|
|
}
|
|
|
|
bool audio_dma_get_paused(audio_dma_t *dma) {
|
|
if (dma->channel[0] >= NUM_DMA_CHANNELS) {
|
|
return false;
|
|
}
|
|
uint32_t control = dma_hw->ch[dma->channel[0]].ctrl_trig;
|
|
|
|
return (control & DMA_CH0_CTRL_TRIG_EN_BITS) == 0;
|
|
}
|
|
|
|
void audio_dma_init(audio_dma_t *dma) {
|
|
dma->buffer[0] = NULL;
|
|
dma->buffer[1] = NULL;
|
|
|
|
dma->channel[0] = NUM_DMA_CHANNELS;
|
|
dma->channel[1] = NUM_DMA_CHANNELS;
|
|
}
|
|
|
|
void audio_dma_deinit(audio_dma_t *dma) {
|
|
m_free(dma->buffer[0]);
|
|
dma->buffer[0] = NULL;
|
|
|
|
m_free(dma->buffer[1]);
|
|
dma->buffer[1] = NULL;
|
|
}
|
|
|
|
bool audio_dma_get_playing(audio_dma_t *dma) {
|
|
if (dma->channel[0] == NUM_DMA_CHANNELS) {
|
|
return false;
|
|
}
|
|
return dma->playing_in_progress;
|
|
}
|
|
|
|
// WARN(tannewt): DO NOT print from here, or anything it calls. Printing calls
|
|
// background tasks such as this and causes a stack overflow.
|
|
// NOTE(dhalbert): I successfully printed from here while debugging.
|
|
// So it's possible, but be careful.
|
|
STATIC void dma_callback_fun(void *arg) {
|
|
audio_dma_t *dma = arg;
|
|
if (dma == NULL) {
|
|
return;
|
|
}
|
|
|
|
common_hal_mcu_disable_interrupts();
|
|
uint32_t channels_to_load_mask = dma->channels_to_load_mask;
|
|
dma->channels_to_load_mask = 0;
|
|
common_hal_mcu_enable_interrupts();
|
|
|
|
// Load the blocks for the requested channels.
|
|
uint32_t channel = 0;
|
|
while (channels_to_load_mask) {
|
|
if (channels_to_load_mask & 1) {
|
|
if (dma->channel[0] == channel) {
|
|
audio_dma_load_next_block(dma, 0);
|
|
}
|
|
if (dma->channel[1] == channel) {
|
|
audio_dma_load_next_block(dma, 1);
|
|
}
|
|
}
|
|
channels_to_load_mask >>= 1;
|
|
channel++;
|
|
}
|
|
}
|
|
|
|
void isr_dma_0(void) {
|
|
for (size_t i = 0; i < NUM_DMA_CHANNELS; i++) {
|
|
uint32_t mask = 1 << i;
|
|
if ((dma_hw->intr & mask) == 0) {
|
|
continue;
|
|
}
|
|
// acknowledge interrupt early. Doing so late means that you could lose an
|
|
// interrupt if the buffer is very small and the DMA operation
|
|
// completed by the time callback_add() / dma_complete() returned. This
|
|
// affected PIO continuous write more than audio.
|
|
dma_hw->ints0 = mask;
|
|
if (MP_STATE_PORT(playing_audio)[i] != NULL) {
|
|
audio_dma_t *dma = MP_STATE_PORT(playing_audio)[i];
|
|
// Record all channels whose DMA has completed; they need loading.
|
|
dma->channels_to_load_mask |= mask;
|
|
background_callback_add(&dma->callback, dma_callback_fun, (void *)dma);
|
|
}
|
|
if (MP_STATE_PORT(background_pio)[i] != NULL) {
|
|
rp2pio_statemachine_obj_t *pio = MP_STATE_PORT(background_pio)[i];
|
|
rp2pio_statemachine_dma_complete(pio, i);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|