Glenn Ruben Bakke 82fe6b0526 nrf: Add nrf9160 base support.
This patch add basic building blocks for nrf9P60.

It also includes a secure bootloader which forwards all
possible peripherals that are user selectable to become
non-secure. After configuring Flash, RAM and peripherals
the secure bootloader will jump to the non-secure domain
where MicroPython is placed.

The minimum size of a secure boot has to be a flash
block of 32Kb, hence why the linker scripts are
offsetting the main application this much.

The RAM offset is set to 128K, to allow for later
integration of Nordic Semiconductor's BSD socket
library which reserves the range 0x20010000 - 0x2001FFFF.
2019-10-10 21:35:27 +02:00

195 lines
7.5 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Glenn Ruben Bakke
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <arm_cmse.h>
#include <nrf.h>
// Secure flash 32K.
#define SECURE_32K_FLASH_PAGE_START (0)
#define SECURE_32K_FLASH_PAGE_END (0)
// Non-secure flash 992K.
#define NONSECURE_32K_FLASH_PAGE_START (1)
#define NONSECURE_32K_FLASH_PAGE_END (31)
// Secure RAM 64K.
#define SECURE_8K_RAM_BLOCK_START (0)
#define SECURE_8K_RAM_BLOCK_END (7)
// Non-secure RAM 128K + 64K BSD lib.
#define NONSECURE_8K_RAM_BLOCK_START (8)
#define NONSECURE_8K_RAM_BLOCK_END (31)
#define PERIPHERAL_ID_GET(base_addr) (((uint32_t)(base_addr) >> 12) & 0xFF)
#if !defined(__ARM_FEATURE_CMSE)
#pragma warning "CMSE not enabled"
#endif
static void configure_flash(void) {
for (uint8_t i = SECURE_32K_FLASH_PAGE_START; i <= SECURE_32K_FLASH_PAGE_END; i++) {
uint32_t perm = 0;
perm |= (SPU_FLASHREGION_PERM_EXECUTE_Enable << SPU_FLASHREGION_PERM_EXECUTE_Pos);
perm |= (SPU_FLASHREGION_PERM_WRITE_Enable << SPU_FLASHREGION_PERM_WRITE_Pos);
perm |= (SPU_FLASHREGION_PERM_READ_Enable << SPU_FLASHREGION_PERM_READ_Pos);
perm |= (SPU_FLASHREGION_PERM_LOCK_Locked << SPU_FLASHREGION_PERM_LOCK_Pos);
perm |= (SPU_FLASHREGION_PERM_SECATTR_Secure << SPU_FLASHREGION_PERM_SECATTR_Pos);
NRF_SPU_S->FLASHREGION[i].PERM = perm;
}
for (uint8_t i = NONSECURE_32K_FLASH_PAGE_START; i <= NONSECURE_32K_FLASH_PAGE_END; i++) {
uint32_t perm = 0;
perm |= (SPU_FLASHREGION_PERM_EXECUTE_Enable << SPU_FLASHREGION_PERM_EXECUTE_Pos);
perm |= (SPU_FLASHREGION_PERM_WRITE_Enable << SPU_FLASHREGION_PERM_WRITE_Pos);
perm |= (SPU_FLASHREGION_PERM_READ_Enable << SPU_FLASHREGION_PERM_READ_Pos);
perm |= (SPU_FLASHREGION_PERM_LOCK_Locked << SPU_FLASHREGION_PERM_LOCK_Pos);
perm |= (SPU_FLASHREGION_PERM_SECATTR_Non_Secure << SPU_FLASHREGION_PERM_SECATTR_Pos);
NRF_SPU_S->FLASHREGION[i].PERM = perm;
}
}
static void configure_ram(void) {
for (uint8_t i = SECURE_8K_RAM_BLOCK_START; i <= SECURE_8K_RAM_BLOCK_END; i++) {
uint32_t perm = 0;
perm |= (SPU_RAMREGION_PERM_EXECUTE_Enable << SPU_RAMREGION_PERM_EXECUTE_Pos);
perm |= (SPU_RAMREGION_PERM_WRITE_Enable << SPU_RAMREGION_PERM_WRITE_Pos);
perm |= (SPU_RAMREGION_PERM_READ_Enable << SPU_RAMREGION_PERM_READ_Pos);
perm |= (SPU_RAMREGION_PERM_LOCK_Locked << SPU_RAMREGION_PERM_LOCK_Pos);
perm |= (SPU_RAMREGION_PERM_SECATTR_Secure << SPU_RAMREGION_PERM_SECATTR_Pos);
NRF_SPU_S->RAMREGION[i].PERM = perm;
}
for (uint8_t i = NONSECURE_8K_RAM_BLOCK_START; i <= NONSECURE_8K_RAM_BLOCK_END; i++) {
uint32_t perm = 0;
perm |= (SPU_RAMREGION_PERM_EXECUTE_Enable << SPU_RAMREGION_PERM_EXECUTE_Pos);
perm |= (SPU_RAMREGION_PERM_WRITE_Enable << SPU_RAMREGION_PERM_WRITE_Pos);
perm |= (SPU_RAMREGION_PERM_READ_Enable << SPU_RAMREGION_PERM_READ_Pos);
perm |= (SPU_RAMREGION_PERM_LOCK_Locked << SPU_RAMREGION_PERM_LOCK_Pos);
perm |= (SPU_RAMREGION_PERM_SECATTR_Non_Secure << SPU_RAMREGION_PERM_SECATTR_Pos);
NRF_SPU_S->RAMREGION[i].PERM = perm;
}
}
static void peripheral_setup(uint8_t peripheral_id)
{
NVIC_DisableIRQ(peripheral_id);
uint32_t perm = 0;
perm |= (SPU_PERIPHID_PERM_PRESENT_IsPresent << SPU_PERIPHID_PERM_PRESENT_Pos);
perm |= (SPU_PERIPHID_PERM_SECATTR_NonSecure << SPU_PERIPHID_PERM_SECATTR_Pos);
perm |= (SPU_PERIPHID_PERM_LOCK_Locked << SPU_PERIPHID_PERM_LOCK_Pos);
NRF_SPU_S->PERIPHID[peripheral_id].PERM = perm;
NVIC_SetTargetState(peripheral_id);
}
static void configure_peripherals(void)
{
NRF_SPU_S->GPIOPORT[0].PERM = 0;
peripheral_setup(PERIPHERAL_ID_GET(NRF_REGULATORS_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_CLOCK_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_UARTE0_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_UARTE1_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_UARTE2_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_UARTE3_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_SAADC_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_TIMER0_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_TIMER1_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_TIMER2_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_RTC0_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_RTC1_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_DPPIC_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_WDT_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_EGU1_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_EGU2_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_EGU3_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_EGU4_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_EGU5_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_PWM0_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_PWM1_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_PWM2_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_PWM3_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_PDM_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_I2S_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_IPC_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_FPU_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_GPIOTE1_NS));
peripheral_setup(PERIPHERAL_ID_GET(NRF_NVMC_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_VMC_S));
peripheral_setup(PERIPHERAL_ID_GET(NRF_P0_NS));
}
typedef void __attribute__((cmse_nonsecure_call)) nsfunc(void);
static void jump_to_non_secure(void)
{
TZ_SAU_Disable();
SAU->CTRL |= SAU_CTRL_ALLNS_Msk;
// Set NS vector table.
uint32_t * vtor_ns = (uint32_t *)0x8000;
SCB_NS->VTOR = (uint32_t)vtor_ns;
// Allow for FPU to be used by NS.
SCB->NSACR |= (1UL << SCB_NSACR_CP10_Pos) | (1UL << SCB_NSACR_CP11_Pos);
// Set stack pointers.
__TZ_set_MSP_NS(vtor_ns[0]);
__TZ_set_PSP_NS(0);
uint32_t control_ns = __TZ_get_CONTROL_NS();
control_ns &= ~(CONTROL_SPSEL_Msk | CONTROL_nPRIV_Msk);
__TZ_set_CONTROL_NS(control_ns);
// Cast NS Reset_Handler to a non-secure function.
nsfunc *fp = (nsfunc *)vtor_ns[1];
fp = (nsfunc *)((intptr_t)(fp) & ~1);
if (cmse_is_nsfptr(fp)) {
__DSB();
__ISB();
// Jump to Non-Secure function.
fp();
}
}
int main(void) {
configure_flash();
configure_ram();
configure_peripherals();
jump_to_non_secure();
while (1) {
;
}
return 0;
}
void _start(void) {main();}