c046b23ea2
Helps prevent the filesystem from getting formatted by mistake, among other things. For example, on a Pico board, entering Ctrl+D and Ctrl+C fast many times will eventually wipe the filesystem (without warning or notice). Further rationale: Ctrl+C is used a lot by automation scripts (eg mpremote) and UI's (eg Mu, Thonny) to get the board into a known state. If the board is not responding for a short time then it's not possible to know if it's just a slow start up (eg in _boot.py), or an infinite loop in the main application. The former should not be interrupted, but the latter should. The only way to distinguish these two cases would be to wait "long enough", and if there's nothing on the serial after "long enough" then assume it's running the application and Ctrl+C should break out of it. But defining "long enough" is impossible for all the different boards and their possible behaviour. The solution in this commit is to make it so that frozen start-up code cannot be interrupted by Ctrl+C. That code then effectively acts like normal C start-up code, which also cannot be interrupted. Note: on the stm32 port this was never seen as an issue because all start-up code is in C. But now other ports start to put more things in _boot.py and so this problem crops up. Signed-off-by: David Grayson <davidegrayson@gmail.com>
261 lines
7.2 KiB
C
261 lines
7.2 KiB
C
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include "py/builtin.h"
|
|
#include "py/compile.h"
|
|
#include "py/runtime.h"
|
|
#include "py/repl.h"
|
|
#include "py/gc.h"
|
|
#include "py/mperrno.h"
|
|
#include "shared/runtime/pyexec.h"
|
|
|
|
#if MICROPY_ENABLE_COMPILER
|
|
void do_str(const char *src, mp_parse_input_kind_t input_kind) {
|
|
nlr_buf_t nlr;
|
|
if (nlr_push(&nlr) == 0) {
|
|
mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, src, strlen(src), 0);
|
|
qstr source_name = lex->source_name;
|
|
mp_parse_tree_t parse_tree = mp_parse(lex, input_kind);
|
|
mp_obj_t module_fun = mp_compile(&parse_tree, source_name, true);
|
|
mp_call_function_0(module_fun);
|
|
nlr_pop();
|
|
} else {
|
|
// uncaught exception
|
|
mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static char *stack_top;
|
|
#if MICROPY_ENABLE_GC
|
|
static char heap[MICROPY_HEAP_SIZE];
|
|
#endif
|
|
|
|
int main(int argc, char **argv) {
|
|
int stack_dummy;
|
|
stack_top = (char *)&stack_dummy;
|
|
|
|
#if MICROPY_ENABLE_GC
|
|
gc_init(heap, heap + sizeof(heap));
|
|
#endif
|
|
mp_init();
|
|
#if MICROPY_ENABLE_COMPILER
|
|
#if MICROPY_REPL_EVENT_DRIVEN
|
|
pyexec_event_repl_init();
|
|
for (;;) {
|
|
int c = mp_hal_stdin_rx_chr();
|
|
if (pyexec_event_repl_process_char(c)) {
|
|
break;
|
|
}
|
|
}
|
|
#else
|
|
pyexec_friendly_repl();
|
|
#endif
|
|
// do_str("print('hello world!', list(x+1 for x in range(10)), end='eol\\n')", MP_PARSE_SINGLE_INPUT);
|
|
// do_str("for i in range(10):\r\n print(i)", MP_PARSE_FILE_INPUT);
|
|
#else
|
|
pyexec_frozen_module("frozentest.py", false);
|
|
#endif
|
|
mp_deinit();
|
|
return 0;
|
|
}
|
|
|
|
#if MICROPY_ENABLE_GC
|
|
void gc_collect(void) {
|
|
// WARNING: This gc_collect implementation doesn't try to get root
|
|
// pointers from CPU registers, and thus may function incorrectly.
|
|
void *dummy;
|
|
gc_collect_start();
|
|
gc_collect_root(&dummy, ((mp_uint_t)stack_top - (mp_uint_t)&dummy) / sizeof(mp_uint_t));
|
|
gc_collect_end();
|
|
gc_dump_info(&mp_plat_print);
|
|
}
|
|
#endif
|
|
|
|
mp_lexer_t *mp_lexer_new_from_file(const char *filename) {
|
|
mp_raise_OSError(MP_ENOENT);
|
|
}
|
|
|
|
mp_import_stat_t mp_import_stat(const char *path) {
|
|
return MP_IMPORT_STAT_NO_EXIST;
|
|
}
|
|
|
|
void nlr_jump_fail(void *val) {
|
|
while (1) {
|
|
;
|
|
}
|
|
}
|
|
|
|
void NORETURN __fatal_error(const char *msg) {
|
|
while (1) {
|
|
;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
|
|
printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
|
|
__fatal_error("Assertion failed");
|
|
}
|
|
#endif
|
|
|
|
#if MICROPY_MIN_USE_CORTEX_CPU
|
|
|
|
// this is a minimal IRQ and reset framework for any Cortex-M CPU
|
|
|
|
extern uint32_t _estack, _sidata, _sdata, _edata, _sbss, _ebss;
|
|
|
|
void Reset_Handler(void) __attribute__((naked));
|
|
void Reset_Handler(void) {
|
|
// set stack pointer
|
|
__asm volatile ("ldr sp, =_estack");
|
|
// copy .data section from flash to RAM
|
|
for (uint32_t *src = &_sidata, *dest = &_sdata; dest < &_edata;) {
|
|
*dest++ = *src++;
|
|
}
|
|
// zero out .bss section
|
|
for (uint32_t *dest = &_sbss; dest < &_ebss;) {
|
|
*dest++ = 0;
|
|
}
|
|
// jump to board initialisation
|
|
void _start(void);
|
|
_start();
|
|
}
|
|
|
|
void Default_Handler(void) {
|
|
for (;;) {
|
|
}
|
|
}
|
|
|
|
const uint32_t isr_vector[] __attribute__((section(".isr_vector"))) = {
|
|
(uint32_t)&_estack,
|
|
(uint32_t)&Reset_Handler,
|
|
(uint32_t)&Default_Handler, // NMI_Handler
|
|
(uint32_t)&Default_Handler, // HardFault_Handler
|
|
(uint32_t)&Default_Handler, // MemManage_Handler
|
|
(uint32_t)&Default_Handler, // BusFault_Handler
|
|
(uint32_t)&Default_Handler, // UsageFault_Handler
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
(uint32_t)&Default_Handler, // SVC_Handler
|
|
(uint32_t)&Default_Handler, // DebugMon_Handler
|
|
0,
|
|
(uint32_t)&Default_Handler, // PendSV_Handler
|
|
(uint32_t)&Default_Handler, // SysTick_Handler
|
|
};
|
|
|
|
void _start(void) {
|
|
// when we get here: stack is initialised, bss is clear, data is copied
|
|
|
|
// SCB->CCR: enable 8-byte stack alignment for IRQ handlers, in accord with EABI
|
|
*((volatile uint32_t *)0xe000ed14) |= 1 << 9;
|
|
|
|
// initialise the cpu and peripherals
|
|
#if MICROPY_MIN_USE_STM32_MCU
|
|
void stm32_init(void);
|
|
stm32_init();
|
|
#endif
|
|
|
|
// now that we have a basic system up and running we can call main
|
|
main(0, NULL);
|
|
|
|
// we must not return
|
|
for (;;) {
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if MICROPY_MIN_USE_STM32_MCU
|
|
|
|
// this is minimal set-up code for an STM32 MCU
|
|
|
|
typedef struct {
|
|
volatile uint32_t CR;
|
|
volatile uint32_t PLLCFGR;
|
|
volatile uint32_t CFGR;
|
|
volatile uint32_t CIR;
|
|
uint32_t _1[8];
|
|
volatile uint32_t AHB1ENR;
|
|
volatile uint32_t AHB2ENR;
|
|
volatile uint32_t AHB3ENR;
|
|
uint32_t _2;
|
|
volatile uint32_t APB1ENR;
|
|
volatile uint32_t APB2ENR;
|
|
} periph_rcc_t;
|
|
|
|
typedef struct {
|
|
volatile uint32_t MODER;
|
|
volatile uint32_t OTYPER;
|
|
volatile uint32_t OSPEEDR;
|
|
volatile uint32_t PUPDR;
|
|
volatile uint32_t IDR;
|
|
volatile uint32_t ODR;
|
|
volatile uint16_t BSRRL;
|
|
volatile uint16_t BSRRH;
|
|
volatile uint32_t LCKR;
|
|
volatile uint32_t AFR[2];
|
|
} periph_gpio_t;
|
|
|
|
typedef struct {
|
|
volatile uint32_t SR;
|
|
volatile uint32_t DR;
|
|
volatile uint32_t BRR;
|
|
volatile uint32_t CR1;
|
|
} periph_uart_t;
|
|
|
|
#define USART1 ((periph_uart_t *)0x40011000)
|
|
#define GPIOA ((periph_gpio_t *)0x40020000)
|
|
#define GPIOB ((periph_gpio_t *)0x40020400)
|
|
#define RCC ((periph_rcc_t *)0x40023800)
|
|
|
|
// simple GPIO interface
|
|
#define GPIO_MODE_IN (0)
|
|
#define GPIO_MODE_OUT (1)
|
|
#define GPIO_MODE_ALT (2)
|
|
#define GPIO_PULL_NONE (0)
|
|
#define GPIO_PULL_UP (0)
|
|
#define GPIO_PULL_DOWN (1)
|
|
void gpio_init(periph_gpio_t *gpio, int pin, int mode, int pull, int alt) {
|
|
gpio->MODER = (gpio->MODER & ~(3 << (2 * pin))) | (mode << (2 * pin));
|
|
// OTYPER is left as default push-pull
|
|
// OSPEEDR is left as default low speed
|
|
gpio->PUPDR = (gpio->PUPDR & ~(3 << (2 * pin))) | (pull << (2 * pin));
|
|
gpio->AFR[pin >> 3] = (gpio->AFR[pin >> 3] & ~(15 << (4 * (pin & 7)))) | (alt << (4 * (pin & 7)));
|
|
}
|
|
#define gpio_get(gpio, pin) ((gpio->IDR >> (pin)) & 1)
|
|
#define gpio_set(gpio, pin, value) do { gpio->ODR = (gpio->ODR & ~(1 << (pin))) | (value << pin); } while (0)
|
|
#define gpio_low(gpio, pin) do { gpio->BSRRH = (1 << (pin)); } while (0)
|
|
#define gpio_high(gpio, pin) do { gpio->BSRRL = (1 << (pin)); } while (0)
|
|
|
|
void stm32_init(void) {
|
|
// basic MCU config
|
|
RCC->CR |= (uint32_t)0x00000001; // set HSION
|
|
RCC->CFGR = 0x00000000; // reset all
|
|
RCC->CR &= (uint32_t)0xfef6ffff; // reset HSEON, CSSON, PLLON
|
|
RCC->PLLCFGR = 0x24003010; // reset PLLCFGR
|
|
RCC->CR &= (uint32_t)0xfffbffff; // reset HSEBYP
|
|
RCC->CIR = 0x00000000; // disable IRQs
|
|
|
|
// leave the clock as-is (internal 16MHz)
|
|
|
|
// enable GPIO clocks
|
|
RCC->AHB1ENR |= 0x00000003; // GPIOAEN, GPIOBEN
|
|
|
|
// turn on an LED! (on pyboard it's the red one)
|
|
gpio_init(GPIOA, 13, GPIO_MODE_OUT, GPIO_PULL_NONE, 0);
|
|
gpio_high(GPIOA, 13);
|
|
|
|
// enable UART1 at 9600 baud (TX=B6, RX=B7)
|
|
gpio_init(GPIOB, 6, GPIO_MODE_ALT, GPIO_PULL_NONE, 7);
|
|
gpio_init(GPIOB, 7, GPIO_MODE_ALT, GPIO_PULL_NONE, 7);
|
|
RCC->APB2ENR |= 0x00000010; // USART1EN
|
|
USART1->BRR = (104 << 4) | 3; // 16MHz/(16*104.1875) = 9598 baud
|
|
USART1->CR1 = 0x0000200c; // USART enable, tx enable, rx enable
|
|
}
|
|
|
|
#endif
|