654 lines
21 KiB
Python
654 lines
21 KiB
Python
"""
|
|
Process raw qstr file and output qstr data with length, hash and data bytes.
|
|
|
|
This script is only regularly tested with the same version of Python used
|
|
during CI, typically the latest "3.x". However, incompatibilities with any
|
|
supported CPython version are unintended.
|
|
|
|
For documentation about the format of compressed translated strings, see
|
|
supervisor/shared/translate/translate.h
|
|
"""
|
|
|
|
from __future__ import print_function
|
|
|
|
import bisect
|
|
from dataclasses import dataclass
|
|
import re
|
|
import sys
|
|
|
|
import collections
|
|
import gettext
|
|
import pathlib
|
|
|
|
if hasattr(sys.stdout, "reconfigure"):
|
|
sys.stdout.reconfigure(encoding="utf-8")
|
|
sys.stderr.reconfigure(errors="backslashreplace")
|
|
|
|
sys.path.append(str(pathlib.Path(__file__).parent.parent / "tools/huffman"))
|
|
|
|
import huffman
|
|
from html.entities import codepoint2name
|
|
import math
|
|
|
|
|
|
codepoint2name[ord("-")] = "hyphen"
|
|
|
|
# add some custom names to map characters that aren't in HTML
|
|
codepoint2name[ord(" ")] = "space"
|
|
codepoint2name[ord("'")] = "squot"
|
|
codepoint2name[ord(",")] = "comma"
|
|
codepoint2name[ord(".")] = "dot"
|
|
codepoint2name[ord(":")] = "colon"
|
|
codepoint2name[ord(";")] = "semicolon"
|
|
codepoint2name[ord("/")] = "slash"
|
|
codepoint2name[ord("%")] = "percent"
|
|
codepoint2name[ord("#")] = "hash"
|
|
codepoint2name[ord("(")] = "paren_open"
|
|
codepoint2name[ord(")")] = "paren_close"
|
|
codepoint2name[ord("[")] = "bracket_open"
|
|
codepoint2name[ord("]")] = "bracket_close"
|
|
codepoint2name[ord("{")] = "brace_open"
|
|
codepoint2name[ord("}")] = "brace_close"
|
|
codepoint2name[ord("*")] = "star"
|
|
codepoint2name[ord("!")] = "bang"
|
|
codepoint2name[ord("\\")] = "backslash"
|
|
codepoint2name[ord("+")] = "plus"
|
|
codepoint2name[ord("$")] = "dollar"
|
|
codepoint2name[ord("=")] = "equals"
|
|
codepoint2name[ord("?")] = "question"
|
|
codepoint2name[ord("@")] = "at_sign"
|
|
codepoint2name[ord("^")] = "caret"
|
|
codepoint2name[ord("|")] = "pipe"
|
|
codepoint2name[ord("~")] = "tilde"
|
|
|
|
C_ESCAPES = {
|
|
"\a": "\\a",
|
|
"\b": "\\b",
|
|
"\f": "\\f",
|
|
"\n": "\\n",
|
|
"\r": "\\r",
|
|
"\t": "\\t",
|
|
"\v": "\\v",
|
|
"'": "\\'",
|
|
'"': '\\"',
|
|
}
|
|
|
|
|
|
# this must match the equivalent function in qstr.c
|
|
def compute_hash(qstr, bytes_hash):
|
|
hash = 5381
|
|
for b in qstr:
|
|
hash = (hash * 33) ^ b
|
|
# Make sure that valid hash is never zero, zero means "hash not computed"
|
|
return (hash & ((1 << (8 * bytes_hash)) - 1)) or 1
|
|
|
|
|
|
def translate(translation_file, i18ns):
|
|
with open(translation_file, "rb") as f:
|
|
table = gettext.GNUTranslations(f)
|
|
|
|
translations = []
|
|
for original in i18ns:
|
|
unescaped = original
|
|
for s in C_ESCAPES:
|
|
unescaped = unescaped.replace(C_ESCAPES[s], s)
|
|
translation = table.gettext(unescaped)
|
|
# Add in carriage returns to work in terminals
|
|
translation = translation.replace("\n", "\r\n")
|
|
translations.append((original, translation))
|
|
return translations
|
|
|
|
|
|
class TextSplitter:
|
|
def __init__(self, words):
|
|
words = sorted(words, key=lambda x: len(x), reverse=True)
|
|
self.words = set(words)
|
|
if words:
|
|
pat = "|".join(re.escape(w) for w in words) + "|."
|
|
else:
|
|
pat = "."
|
|
self.pat = re.compile(pat, flags=re.DOTALL)
|
|
|
|
def iter_words(self, text):
|
|
s = []
|
|
words = self.words
|
|
for m in self.pat.finditer(text):
|
|
t = m.group(0)
|
|
if t in words:
|
|
if s:
|
|
yield (False, "".join(s))
|
|
s = []
|
|
yield (True, t)
|
|
else:
|
|
s.append(t)
|
|
if s:
|
|
yield (False, "".join(s))
|
|
|
|
def iter(self, text):
|
|
for m in self.pat.finditer(text):
|
|
yield m.group(0)
|
|
|
|
|
|
def iter_substrings(s, minlen, maxlen):
|
|
len_s = len(s)
|
|
maxlen = min(len_s, maxlen)
|
|
for n in range(minlen, maxlen + 1):
|
|
for begin in range(0, len_s - n + 1):
|
|
yield s[begin : begin + n]
|
|
|
|
|
|
translation_requires_uint16 = {"cs", "ja", "ko", "pl", "tr", "zh_Latn_pinyin"}
|
|
|
|
|
|
def compute_unicode_offset(texts):
|
|
all_ch = set(" ".join(texts))
|
|
ch_160 = sorted(c for c in all_ch if 160 <= ord(c) < 255)
|
|
ch_256 = sorted(c for c in all_ch if 255 < ord(c))
|
|
if not ch_256:
|
|
return 0, 0
|
|
min_256 = ord(min(ch_256))
|
|
span = ord(max(ch_256)) - ord(min(ch_256)) + 1
|
|
|
|
if ch_160:
|
|
max_160 = ord(max(ch_160)) + 1
|
|
else:
|
|
max_160 = max(160, 255 - span)
|
|
|
|
if max_160 + span > 256:
|
|
return 0, 0
|
|
|
|
offstart = max_160
|
|
offset = min_256 - max_160
|
|
return offstart, offset
|
|
|
|
|
|
@dataclass
|
|
class EncodingTable:
|
|
values: object
|
|
lengths: object
|
|
words: object
|
|
canonical: object
|
|
extractor: object
|
|
apply_offset: object
|
|
remove_offset: object
|
|
translation_qstr_bits: int
|
|
qstrs: object
|
|
qstrs_inv: object
|
|
|
|
|
|
def compute_huffman_coding(qstrs, translation_name, translations, f, compression_level):
|
|
# possible future improvement: some languages are better when consider len(k) > 2. try both?
|
|
qstrs = dict((k, v) for k, v in qstrs.items() if len(k) > 3)
|
|
qstr_strs = list(qstrs.keys())
|
|
texts = [t[1] for t in translations]
|
|
words = []
|
|
|
|
start_unused = 0x80
|
|
end_unused = 0xFF
|
|
max_ord = 0
|
|
offstart, offset = compute_unicode_offset(texts)
|
|
|
|
def apply_offset(c):
|
|
oc = ord(c)
|
|
if oc >= offstart:
|
|
oc += offset
|
|
return chr(oc)
|
|
|
|
def remove_offset(c):
|
|
oc = ord(c)
|
|
if oc >= offstart:
|
|
oc = oc - offset
|
|
try:
|
|
return chr(oc)
|
|
except Exception as e:
|
|
raise ValueError(f"remove_offset {offstart=} {oc=}") from e
|
|
|
|
for text in texts:
|
|
for c in text:
|
|
c = remove_offset(c)
|
|
ord_c = ord(c)
|
|
max_ord = max(ord_c, max_ord)
|
|
if 0x80 <= ord_c < 0xFF:
|
|
end_unused = min(ord_c, end_unused)
|
|
max_words = end_unused - 0x80
|
|
if compression_level < 5:
|
|
max_words = 0
|
|
|
|
bits_per_codepoint = 16 if max_ord > 255 else 8
|
|
values_type = "uint16_t" if max_ord > 255 else "uint8_t"
|
|
translation_name = translation_name.split("/")[-1].split(".")[0]
|
|
if max_ord > 255 and translation_name not in translation_requires_uint16:
|
|
raise ValueError(
|
|
f"Translation {translation_name} expected to fit in 8 bits but required 16 bits"
|
|
)
|
|
|
|
# Prune the qstrs to only those that appear in the texts
|
|
qstr_counters = collections.Counter()
|
|
qstr_extractor = TextSplitter(qstr_strs)
|
|
for t in texts:
|
|
for qstr in qstr_extractor.iter(t):
|
|
if qstr in qstr_strs:
|
|
qstr_counters[qstr] += 1
|
|
qstr_strs = list(qstr_counters.keys())
|
|
|
|
while len(words) < max_words:
|
|
# Until the dictionary is filled to capacity, use a heuristic to find
|
|
# the best "word" (2- to 11-gram) to add to it.
|
|
#
|
|
# The TextSplitter allows us to avoid considering parts of the text
|
|
# that are already covered by a previously chosen word, for example
|
|
# if "the" is in words then not only will "the" not be considered
|
|
# again, neither will "there" or "wither", since they have "the"
|
|
# as substrings.
|
|
extractor = TextSplitter(words + qstr_strs)
|
|
counter = collections.Counter()
|
|
for t in texts:
|
|
for atom in extractor.iter(t):
|
|
if atom in qstrs:
|
|
atom = "\1"
|
|
counter[atom] += 1
|
|
cb = huffman.codebook(counter.items())
|
|
lengths = sorted(dict((v, len(cb[k])) for k, v in counter.items()).items())
|
|
|
|
def bit_length(s):
|
|
return sum(len(cb[c]) for c in s)
|
|
|
|
def est_len(occ):
|
|
idx = bisect.bisect_left(lengths, (occ, 0))
|
|
return lengths[idx][1] + 1
|
|
|
|
# The cost of adding a dictionary word is just its storage size
|
|
# while its savings is close to the difference between the original
|
|
# huffman bit-length of the string and the estimated bit-length
|
|
# of the dictionary word, times the number of times the word appears.
|
|
#
|
|
# The savings is not strictly accurate because including a word into
|
|
# the Huffman tree bumps up the encoding lengths of all words in the
|
|
# same subtree. In the extreme case when the new word is so frequent
|
|
# that it gets a one-bit encoding, all other words will cost an extra
|
|
# bit each. This is empirically modeled by the constant factor added to
|
|
# cost, but the specific value used isn't "proven" to be correct.
|
|
#
|
|
# Another source of inaccuracy is that compressed strings end up
|
|
# on byte boundaries, not bit boundaries, so saving 1 bit somewhere
|
|
# might not save a byte.
|
|
#
|
|
# In fact, when this change was first made, some translations (luckily,
|
|
# ones on boards not at all close to full) wasted up to 40 bytes,
|
|
# while the most constrained boards typically gained 100 bytes or
|
|
# more.
|
|
#
|
|
# The difference between the two is the estimated net savings, in bits.
|
|
def est_net_savings(s, occ):
|
|
savings = occ * (bit_length(s) - est_len(occ))
|
|
cost = len(s) * bits_per_codepoint + 24
|
|
return savings - cost
|
|
|
|
counter = collections.Counter()
|
|
for t in texts:
|
|
for found, word in extractor.iter_words(t):
|
|
if not found:
|
|
for substr in iter_substrings(word, minlen=2, maxlen=11):
|
|
counter[substr] += 1
|
|
|
|
# Score the candidates we found. This is a semi-empirical formula that
|
|
# attempts to model the number of bits saved as closely as possible.
|
|
#
|
|
# It attempts to compute the codeword lengths of the original word
|
|
# to the codeword length the dictionary entry would get, times
|
|
# the number of occurrences, less the ovehead of the entries in the
|
|
# words[] array.
|
|
#
|
|
# The set of candidates is pruned by estimating their relative value and
|
|
# picking to top 100 scores.
|
|
|
|
counter = sorted(counter.items(), key=lambda x: math.log(x[1]) * len(x[0]), reverse=True)[
|
|
:100
|
|
]
|
|
scores = sorted(
|
|
((s, -est_net_savings(s, occ)) for (s, occ) in counter if occ > 1),
|
|
key=lambda x: x[1],
|
|
)
|
|
|
|
# Pick the one with the highest score. The score must be negative.
|
|
if not scores or scores[0][-1] >= 0:
|
|
break
|
|
|
|
word = scores[0][0]
|
|
words.append(word)
|
|
|
|
splitters = words[:]
|
|
if compression_level > 3:
|
|
splitters.extend(qstr_strs)
|
|
|
|
words.sort(key=len)
|
|
extractor = TextSplitter(splitters)
|
|
counter = collections.Counter()
|
|
used_qstr = 0
|
|
for t in texts:
|
|
for atom in extractor.iter(t):
|
|
if atom in qstrs:
|
|
used_qstr = max(used_qstr, qstrs[atom])
|
|
atom = "\1"
|
|
counter[atom] += 1
|
|
cb = huffman.codebook(counter.items())
|
|
|
|
word_start = start_unused
|
|
word_end = word_start + len(words) - 1
|
|
f.write(f"// # words {len(words)}\n")
|
|
f.write(f"// words {words}\n")
|
|
|
|
values = []
|
|
length_count = {}
|
|
renumbered = 0
|
|
last_length = None
|
|
canonical = {}
|
|
for atom, code in sorted(cb.items(), key=lambda x: (len(x[1]), x[0])):
|
|
if atom in qstr_strs:
|
|
atom = "\1"
|
|
values.append(atom)
|
|
length = len(code)
|
|
if length not in length_count:
|
|
length_count[length] = 0
|
|
length_count[length] += 1
|
|
if last_length:
|
|
renumbered <<= length - last_length
|
|
# print(f"atom={repr(atom)} code={code}", file=sys.stderr)
|
|
canonical[atom] = "{0:0{width}b}".format(renumbered, width=length)
|
|
if len(atom) > 1:
|
|
o = words.index(atom) + 0x80
|
|
s = "".join(C_ESCAPES.get(ch1, ch1) for ch1 in atom)
|
|
f.write(f"// {o} {s} {counter[atom]} {canonical[atom]} {renumbered}\n")
|
|
else:
|
|
s = C_ESCAPES.get(atom, atom)
|
|
canonical[atom] = "{0:0{width}b}".format(renumbered, width=length)
|
|
o = ord(atom)
|
|
f.write(f"// {o} {s} {counter[atom]} {canonical[atom]} {renumbered}\n")
|
|
renumbered += 1
|
|
last_length = length
|
|
lengths = bytearray()
|
|
f.write(f"// length count {length_count}\n")
|
|
|
|
for i in range(1, max(length_count) + 2):
|
|
lengths.append(length_count.get(i, 0))
|
|
f.write(f"// values {values} lengths {len(lengths)} {lengths}\n")
|
|
|
|
f.write(f"// {values} {lengths}\n")
|
|
values = [(atom if len(atom) == 1 else chr(0x80 + words.index(atom))) for atom in values]
|
|
max_translation_encoded_length = max(
|
|
len(translation.encode("utf-8")) for (original, translation) in translations
|
|
)
|
|
|
|
maxlen = len(words[-1]) if words else 0
|
|
minlen = len(words[0]) if words else 0
|
|
wlencount = [len([None for w in words if len(w) == l]) for l in range(minlen, maxlen + 1)]
|
|
|
|
translation_qstr_bits = used_qstr.bit_length()
|
|
|
|
f.write("typedef {} mchar_t;\n".format(values_type))
|
|
f.write("const uint8_t lengths[] = {{ {} }};\n".format(", ".join(map(str, lengths))))
|
|
f.write(
|
|
"const mchar_t values[] = {{ {} }};\n".format(
|
|
", ".join(str(ord(remove_offset(u))) for u in values)
|
|
)
|
|
)
|
|
f.write(
|
|
"#define compress_max_length_bits ({})\n".format(
|
|
max_translation_encoded_length.bit_length()
|
|
)
|
|
)
|
|
f.write(
|
|
"const mchar_t words[] = {{ {} }};\n".format(
|
|
", ".join(str(ord(remove_offset(c))) for w in words for c in w)
|
|
)
|
|
)
|
|
f.write("const uint8_t wlencount[] = {{ {} }};\n".format(", ".join(str(p) for p in wlencount)))
|
|
f.write("#define word_start {}\n".format(word_start))
|
|
f.write("#define word_end {}\n".format(word_end))
|
|
f.write("#define minlen {}\n".format(minlen))
|
|
f.write("#define maxlen {}\n".format(maxlen))
|
|
f.write("#define translation_offstart {}\n".format(offstart))
|
|
f.write("#define translation_offset {}\n".format(offset))
|
|
f.write("#define translation_qstr_bits {}\n".format(translation_qstr_bits))
|
|
|
|
qstrs_inv = dict((v, k) for k, v in qstrs.items())
|
|
return EncodingTable(
|
|
values,
|
|
lengths,
|
|
words,
|
|
canonical,
|
|
extractor,
|
|
apply_offset,
|
|
remove_offset,
|
|
translation_qstr_bits,
|
|
qstrs,
|
|
qstrs_inv,
|
|
)
|
|
|
|
|
|
def decompress(encoding_table, encoded, encoded_length_bits):
|
|
qstrs_inv = encoding_table.qstrs_inv
|
|
values = encoding_table.values
|
|
lengths = encoding_table.lengths
|
|
words = encoding_table.words
|
|
|
|
def bititer():
|
|
for byte in encoded:
|
|
for bit in (0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1):
|
|
yield bool(byte & bit)
|
|
|
|
nextbit = bititer().__next__
|
|
|
|
def getnbits(n):
|
|
bits = 0
|
|
for i in range(n):
|
|
bits = (bits << 1) | nextbit()
|
|
return bits
|
|
|
|
dec = []
|
|
length = getnbits(encoded_length_bits)
|
|
|
|
i = 0
|
|
while i < length:
|
|
bits = 0
|
|
bit_length = 0
|
|
max_code = lengths[0]
|
|
searched_length = lengths[0]
|
|
while True:
|
|
bits = (bits << 1) | nextbit()
|
|
bit_length += 1
|
|
if max_code > 0 and bits < max_code:
|
|
# print('{0:0{width}b}'.format(bits, width=bit_length))
|
|
break
|
|
max_code = (max_code << 1) + lengths[bit_length]
|
|
searched_length += lengths[bit_length]
|
|
|
|
v = values[searched_length + bits - max_code]
|
|
if v == chr(1):
|
|
qstr_idx = getnbits(encoding_table.translation_qstr_bits)
|
|
v = qstrs_inv[qstr_idx]
|
|
elif v >= chr(0x80) and v < chr(0x80 + len(words)):
|
|
v = words[ord(v) - 0x80]
|
|
i += len(v.encode("utf-8"))
|
|
dec.append(v)
|
|
return "".join(dec)
|
|
|
|
|
|
def compress(encoding_table, decompressed, encoded_length_bits, len_translation_encoded):
|
|
if not isinstance(decompressed, str):
|
|
raise TypeError()
|
|
qstrs = encoding_table.qstrs
|
|
canonical = encoding_table.canonical
|
|
extractor = encoding_table.extractor
|
|
|
|
enc = 1
|
|
|
|
def put_bit(enc, b):
|
|
return (enc << 1) | bool(b)
|
|
|
|
def put_bits(enc, b, n):
|
|
for i in range(n - 1, -1, -1):
|
|
enc = put_bit(enc, b & (1 << i))
|
|
return enc
|
|
|
|
enc = put_bits(enc, len_translation_encoded, encoded_length_bits)
|
|
|
|
for atom in extractor.iter(decompressed):
|
|
if atom in qstrs:
|
|
can = canonical["\1"]
|
|
else:
|
|
can = canonical[atom]
|
|
for b in can:
|
|
enc = put_bit(enc, b == "1")
|
|
if atom in qstrs:
|
|
enc = put_bits(enc, qstrs[atom], encoding_table.translation_qstr_bits)
|
|
|
|
while enc.bit_length() % 8 != 1:
|
|
enc = put_bit(enc, 0)
|
|
|
|
r = enc.to_bytes((enc.bit_length() + 7) // 8, "big")
|
|
return r[1:]
|
|
|
|
|
|
def qstr_escape(qst):
|
|
def esc_char(m):
|
|
c = ord(m.group(0))
|
|
try:
|
|
name = codepoint2name[c]
|
|
except KeyError:
|
|
name = "0x%02x" % c
|
|
return "_" + name + "_"
|
|
|
|
return re.sub(r"[^A-Za-z0-9_]", esc_char, qst)
|
|
|
|
|
|
def parse_qstrs(infile):
|
|
r = {}
|
|
rx = re.compile(r'QDEF\([A-Za-z0-9_]+,\s*\d+,\s*\d+,\s*(?P<cstr>"(?:[^"\\\\]*|\\.)")\)')
|
|
content = infile.read()
|
|
for i, mat in enumerate(rx.findall(content, re.M)):
|
|
mat = eval(mat)
|
|
r[mat] = i
|
|
return r
|
|
|
|
|
|
def parse_input_headers(infiles):
|
|
i18ns = set()
|
|
|
|
# read the TRANSLATE strings in from the input files
|
|
for infile in infiles:
|
|
with open(infile, "rt") as f:
|
|
for line in f:
|
|
line = line.strip()
|
|
|
|
match = re.match(r'^TRANSLATE\("(.*)"\)$', line)
|
|
if match:
|
|
i18ns.add(match.group(1))
|
|
continue
|
|
|
|
return i18ns
|
|
|
|
|
|
def escape_bytes(qstr):
|
|
if all(32 <= ord(c) <= 126 and c != "\\" and c != '"' for c in qstr):
|
|
# qstr is all printable ASCII so render it as-is (for easier debugging)
|
|
return qstr
|
|
else:
|
|
# qstr contains non-printable codes so render entire thing as hex pairs
|
|
qbytes = bytes(qstr, "utf8")
|
|
return "".join(("\\x%02x" % b) for b in qbytes)
|
|
|
|
|
|
def make_bytes(cfg_bytes_len, cfg_bytes_hash, qstr):
|
|
qbytes = bytes(qstr, "utf8")
|
|
qlen = len(qbytes)
|
|
qhash = compute_hash(qbytes, cfg_bytes_hash)
|
|
if qlen >= (1 << (8 * cfg_bytes_len)):
|
|
print("qstr is too long:", qstr)
|
|
assert False
|
|
qdata = escape_bytes(qstr)
|
|
return '%d, %d, "%s"' % (qhash, qlen, qdata)
|
|
|
|
|
|
def output_translation_data(encoding_table, i18ns, out):
|
|
# print out the starter of the generated C file
|
|
out.write("// This file was automatically generated by maketranslatedata.py\n")
|
|
out.write('#include "supervisor/shared/translate/compressed_string.h"\n')
|
|
out.write("\n")
|
|
|
|
total_text_size = 0
|
|
total_text_compressed_size = 0
|
|
max_translation_encoded_length = max(
|
|
len(translation.encode("utf-8")) for original, translation in i18ns
|
|
)
|
|
encoded_length_bits = max_translation_encoded_length.bit_length()
|
|
for i, translation in enumerate(i18ns):
|
|
original, translation = translation
|
|
translation_encoded = translation.encode("utf-8")
|
|
compressed = compress(
|
|
encoding_table, translation, encoded_length_bits, len(translation_encoded)
|
|
)
|
|
total_text_compressed_size += len(compressed)
|
|
decompressed = decompress(encoding_table, compressed, encoded_length_bits)
|
|
assert decompressed == translation, (decompressed, translation)
|
|
for c in C_ESCAPES:
|
|
decompressed = decompressed.replace(c, C_ESCAPES[c])
|
|
formatted = ["{:d}".format(x) for x in compressed]
|
|
out.write(
|
|
"const mp_rom_error_text_t translation{} = {{ .data = {}, .tail = {{ {} }} }}; // {}\n".format(
|
|
i, formatted[0], ", ".join(formatted[1:]), original, decompressed
|
|
)
|
|
)
|
|
total_text_size += len(translation.encode("utf-8"))
|
|
|
|
out.write("\n")
|
|
out.write("// {} bytes worth of translations\n".format(total_text_size))
|
|
out.write("// {} bytes worth of translations compressed\n".format(total_text_compressed_size))
|
|
out.write("// {} bytes saved\n".format(total_text_size - total_text_compressed_size))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description="Process TRANSLATE strings into headers for compilation"
|
|
)
|
|
parser.add_argument(
|
|
"infiles", metavar="N", type=str, nargs="+", help="an integer for the accumulator"
|
|
)
|
|
parser.add_argument(
|
|
"--translation", default=None, type=str, help="translations for i18n() items"
|
|
)
|
|
parser.add_argument(
|
|
"--compression_level",
|
|
type=int,
|
|
default=9,
|
|
help="degree of compression (>5: construct dictionary; >3: use qstrs)",
|
|
)
|
|
parser.add_argument(
|
|
"--compression_filename",
|
|
type=argparse.FileType("w", encoding="UTF-8"),
|
|
help="header for compression info",
|
|
)
|
|
parser.add_argument(
|
|
"--translation_filename",
|
|
type=argparse.FileType("w", encoding="UTF-8"),
|
|
help="c file for translation data",
|
|
)
|
|
parser.add_argument(
|
|
"--qstrdefs_filename",
|
|
type=argparse.FileType("r", encoding="UTF-8"),
|
|
help="",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
qstrs = parse_qstrs(args.qstrdefs_filename)
|
|
i18ns = parse_input_headers(args.infiles)
|
|
i18ns = sorted(i18ns)
|
|
translations = translate(args.translation, i18ns)
|
|
encoding_table = compute_huffman_coding(
|
|
qstrs, args.translation, translations, args.compression_filename, args.compression_level
|
|
)
|
|
output_translation_data(encoding_table, translations, args.translation_filename)
|