6446010753
This adds support for CIRCUITPY_WIFI_SSID and CIRCUITPY_WIFI_PASSWORD in `/.env`. When both are defined, CircuitPython will attempt to connect to the network even when user code isn't running. If the user code attempts to a network with the same SSID, it will return immediately. Connecting to another SSID will disconnect from the auto-connected network. If the user code initiates the connection, then it will be shutdown after user code exits. (Should match <8 behavior.) This PR also reworks the default displayio terminal. It now supports a title bar TileGrid in addition to the (newly renamed) scroll area. The default title bar is the top row of the display and is positioned to the right of the Blinka logo when it is enabled. The scroll area is now below the Blinka logo. The Wi-Fi auto-connect code now uses the title bar to show its state including the IP address when connected. It does this through the "standard" OSC control sequence `ESC ] 0 ; <s> ESC \` where <s> is the title bar string. This is commonly supported by terminals so it should work over USB and UART as well. Related to #6174
1004 lines
35 KiB
C
1004 lines
35 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2016-2017 Scott Shawcroft for Adafruit Industries
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "extmod/vfs.h"
|
|
#include "extmod/vfs_fat.h"
|
|
|
|
#include "genhdr/mpversion.h"
|
|
#include "py/nlr.h"
|
|
#include "py/compile.h"
|
|
#include "py/frozenmod.h"
|
|
#include "py/mphal.h"
|
|
#include "py/runtime.h"
|
|
#include "py/repl.h"
|
|
#include "py/gc.h"
|
|
#include "py/stackctrl.h"
|
|
|
|
#include "shared/readline/readline.h"
|
|
#include "shared/runtime/pyexec.h"
|
|
|
|
#include "background.h"
|
|
#include "mpconfigboard.h"
|
|
#include "supervisor/background_callback.h"
|
|
#include "supervisor/board.h"
|
|
#include "supervisor/cpu.h"
|
|
#include "supervisor/filesystem.h"
|
|
#include "supervisor/memory.h"
|
|
#include "supervisor/port.h"
|
|
#include "supervisor/serial.h"
|
|
#include "supervisor/shared/reload.h"
|
|
#include "supervisor/shared/safe_mode.h"
|
|
#include "supervisor/shared/stack.h"
|
|
#include "supervisor/shared/status_leds.h"
|
|
#include "supervisor/shared/tick.h"
|
|
#include "supervisor/shared/traceback.h"
|
|
#include "supervisor/shared/translate/translate.h"
|
|
#include "supervisor/shared/workflow.h"
|
|
#include "supervisor/usb.h"
|
|
#include "supervisor/workflow.h"
|
|
#include "supervisor/shared/external_flash/external_flash.h"
|
|
|
|
#include "shared-bindings/microcontroller/__init__.h"
|
|
#include "shared-bindings/microcontroller/Processor.h"
|
|
#include "shared-bindings/supervisor/Runtime.h"
|
|
|
|
#if CIRCUITPY_ALARM
|
|
#include "shared-bindings/alarm/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_ATEXIT
|
|
#include "shared-module/atexit/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_BLEIO
|
|
#include "shared-bindings/_bleio/__init__.h"
|
|
#include "supervisor/shared/bluetooth/bluetooth.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_BOARD
|
|
#include "shared-module/board/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_CANIO
|
|
#include "common-hal/canio/CAN.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_DISPLAYIO
|
|
#include "shared-module/displayio/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_KEYPAD
|
|
#include "shared-module/keypad/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_MEMORYMONITOR
|
|
#include "shared-module/memorymonitor/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_SOCKETPOOL
|
|
#include "shared-bindings/socketpool/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_USB_HID
|
|
#include "shared-module/usb_hid/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_WIFI
|
|
#include "shared-bindings/wifi/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_BOOT_COUNTER
|
|
#include "shared-bindings/nvm/ByteArray.h"
|
|
uint8_t value_out = 0;
|
|
#endif
|
|
|
|
#if MICROPY_ENABLE_PYSTACK
|
|
static size_t PLACE_IN_DTCM_BSS(_pystack[CIRCUITPY_PYSTACK_SIZE / sizeof(size_t)]);
|
|
#endif
|
|
|
|
static void reset_devices(void) {
|
|
#if CIRCUITPY_BLEIO_HCI
|
|
bleio_reset();
|
|
#endif
|
|
}
|
|
|
|
STATIC void start_mp(supervisor_allocation *heap, bool first_run) {
|
|
supervisor_workflow_reset();
|
|
|
|
// Stack limit should be less than real stack size, so we have a chance
|
|
// to recover from limit hit. (Limit is measured in bytes.)
|
|
mp_stack_ctrl_init();
|
|
|
|
if (stack_get_bottom() != NULL) {
|
|
mp_stack_set_limit(stack_get_length() - 1024);
|
|
}
|
|
|
|
|
|
#if MICROPY_MAX_STACK_USAGE
|
|
// _ezero (same as _ebss) is an int, so start 4 bytes above it.
|
|
if (stack_get_bottom() != NULL) {
|
|
mp_stack_set_bottom(stack_get_bottom());
|
|
mp_stack_fill_with_sentinel();
|
|
}
|
|
#endif
|
|
|
|
// Sync the file systems in case any used RAM from the GC to cache. As soon
|
|
// as we re-init the GC all bets are off on the cache.
|
|
filesystem_flush();
|
|
|
|
// Clear the readline history. It references the heap we're about to destroy.
|
|
readline_init0();
|
|
|
|
#if MICROPY_ENABLE_PYSTACK
|
|
mp_pystack_init(_pystack, _pystack + (sizeof(_pystack) / sizeof(size_t)));
|
|
#endif
|
|
|
|
#if MICROPY_ENABLE_GC
|
|
gc_init(heap->ptr, heap->ptr + get_allocation_length(heap) / 4);
|
|
#endif
|
|
mp_init();
|
|
mp_obj_list_init((mp_obj_list_t *)mp_sys_path, 0);
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_));
|
|
#if MICROPY_MODULE_FROZEN
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__dot_frozen));
|
|
#endif
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_lib));
|
|
|
|
mp_obj_list_init((mp_obj_list_t *)mp_sys_argv, 0);
|
|
|
|
#if CIRCUITPY_ALARM
|
|
// Record which alarm woke us up, if any. An object may be created so the heap must be functional.
|
|
// There is no alarm if this is not the first time code.py or the REPL has been run.
|
|
shared_alarm_save_wake_alarm(first_run ? common_hal_alarm_create_wake_alarm() : mp_const_none);
|
|
// Reset alarm module only after we retrieved the wakeup alarm.
|
|
alarm_reset();
|
|
#endif
|
|
}
|
|
|
|
STATIC void stop_mp(void) {
|
|
#if MICROPY_VFS
|
|
mp_vfs_mount_t *vfs = MP_STATE_VM(vfs_mount_table);
|
|
|
|
// Unmount all heap allocated vfs mounts.
|
|
while (gc_nbytes(vfs) > 0) {
|
|
vfs = vfs->next;
|
|
}
|
|
MP_STATE_VM(vfs_mount_table) = vfs;
|
|
MP_STATE_VM(vfs_cur) = vfs;
|
|
#endif
|
|
|
|
background_callback_reset();
|
|
|
|
#if CIRCUITPY_USB
|
|
usb_background();
|
|
#endif
|
|
|
|
gc_deinit();
|
|
}
|
|
|
|
#define STRING_LIST(...) {__VA_ARGS__, ""}
|
|
|
|
// Look for the first file that exists in the list of filenames, using mp_import_stat().
|
|
// Return its index. If no file found, return -1.
|
|
STATIC const char *first_existing_file_in_list(const char *const *filenames) {
|
|
for (int i = 0; filenames[i] != (char *)""; i++) {
|
|
mp_import_stat_t stat = mp_import_stat(filenames[i]);
|
|
if (stat == MP_IMPORT_STAT_FILE) {
|
|
return filenames[i];
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
STATIC bool maybe_run_list(const char *const *filenames, pyexec_result_t *exec_result) {
|
|
const char *filename = first_existing_file_in_list(filenames);
|
|
if (filename == NULL) {
|
|
return false;
|
|
}
|
|
mp_hal_stdout_tx_str(filename);
|
|
serial_write_compressed(translate(" output:\n"));
|
|
pyexec_file(filename, exec_result);
|
|
#if CIRCUITPY_ATEXIT
|
|
shared_module_atexit_execute(exec_result);
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
STATIC void count_strn(void *data, const char *str, size_t len) {
|
|
*(size_t *)data += len;
|
|
}
|
|
|
|
STATIC void cleanup_after_vm(supervisor_allocation *heap, mp_obj_t exception) {
|
|
// Get the traceback of any exception from this run off the heap.
|
|
// MP_OBJ_SENTINEL means "this run does not contribute to traceback storage, don't touch it"
|
|
// MP_OBJ_NULL (=0) means "this run completed successfully, clear any stored traceback"
|
|
if (exception != MP_OBJ_SENTINEL) {
|
|
free_memory(prev_traceback_allocation);
|
|
// ReloadException is exempt from traceback printing in pyexec_file(), so treat it as "no
|
|
// traceback" here too.
|
|
if (exception && exception != MP_OBJ_FROM_PTR(&MP_STATE_VM(mp_reload_exception))) {
|
|
size_t traceback_len = 0;
|
|
mp_print_t print_count = {&traceback_len, count_strn};
|
|
mp_obj_print_exception(&print_count, exception);
|
|
prev_traceback_allocation = allocate_memory(align32_size(traceback_len + 1), false, true);
|
|
// Empirically, this never fails in practice - even when the heap is totally filled up
|
|
// with single-block-sized objects referenced by a root pointer, exiting the VM frees
|
|
// up several hundred bytes, sufficient for the traceback (which tends to be shortened
|
|
// because there wasn't memory for the full one). There may be convoluted ways of
|
|
// making it fail, but at this point I believe they are not worth spending code on.
|
|
if (prev_traceback_allocation != NULL) {
|
|
vstr_t vstr;
|
|
vstr_init_fixed_buf(&vstr, traceback_len, (char *)prev_traceback_allocation->ptr);
|
|
mp_print_t print = {&vstr, (mp_print_strn_t)vstr_add_strn};
|
|
mp_obj_print_exception(&print, exception);
|
|
((char *)prev_traceback_allocation->ptr)[traceback_len] = '\0';
|
|
}
|
|
} else {
|
|
prev_traceback_allocation = NULL;
|
|
}
|
|
}
|
|
|
|
// Reset port-independent devices, like CIRCUITPY_BLEIO_HCI.
|
|
reset_devices();
|
|
|
|
#if CIRCUITPY_ATEXIT
|
|
atexit_reset();
|
|
#endif
|
|
|
|
// Turn off the display and flush the filesystem before the heap disappears.
|
|
#if CIRCUITPY_DISPLAYIO
|
|
reset_displays();
|
|
#endif
|
|
|
|
#if CIRCUITPY_MEMORYMONITOR
|
|
memorymonitor_reset();
|
|
#endif
|
|
|
|
// Disable user related BLE state that uses the micropython heap.
|
|
#if CIRCUITPY_BLEIO
|
|
bleio_user_reset();
|
|
#endif
|
|
|
|
#if CIRCUITPY_CANIO
|
|
common_hal_canio_reset();
|
|
#endif
|
|
|
|
#if CIRCUITPY_KEYPAD
|
|
keypad_reset();
|
|
#endif
|
|
|
|
// Close user-initiated sockets.
|
|
#if CIRCUITPY_SOCKETPOOL
|
|
socketpool_user_reset();
|
|
#endif
|
|
|
|
// Turn off user initiated WiFi connections.
|
|
#if CIRCUITPY_WIFI
|
|
wifi_user_reset();
|
|
#endif
|
|
|
|
// reset_board_buses() first because it may release pins from the never_reset state, so that
|
|
// reset_port() can reset them.
|
|
#if CIRCUITPY_BOARD
|
|
reset_board_buses();
|
|
#endif
|
|
reset_port();
|
|
reset_board();
|
|
|
|
// Free the heap last because other modules may reference heap memory and need to shut down.
|
|
filesystem_flush();
|
|
stop_mp();
|
|
free_memory(heap);
|
|
supervisor_move_memory();
|
|
|
|
// Let the workflows know we've reset in case they want to restart.
|
|
supervisor_workflow_reset();
|
|
}
|
|
|
|
STATIC void print_code_py_status_message(safe_mode_t safe_mode) {
|
|
if (autoreload_is_enabled()) {
|
|
serial_write_compressed(
|
|
translate("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\n"));
|
|
} else {
|
|
serial_write_compressed(translate("Auto-reload is off.\n"));
|
|
}
|
|
if (safe_mode != NO_SAFE_MODE) {
|
|
serial_write_compressed(translate("Running in safe mode! Not running saved code.\n"));
|
|
}
|
|
}
|
|
|
|
STATIC bool run_code_py(safe_mode_t safe_mode, bool first_run, bool *simulate_reset) {
|
|
bool serial_connected_at_start = serial_connected();
|
|
bool printed_safe_mode_message = false;
|
|
#if CIRCUITPY_AUTORELOAD_DELAY_MS > 0
|
|
if (serial_connected_at_start) {
|
|
serial_write("\r\n");
|
|
print_code_py_status_message(safe_mode);
|
|
print_safe_mode_message(safe_mode);
|
|
printed_safe_mode_message = true;
|
|
}
|
|
#endif
|
|
|
|
pyexec_result_t result;
|
|
|
|
result.return_code = 0;
|
|
result.exception = MP_OBJ_NULL;
|
|
result.exception_line = 0;
|
|
|
|
bool skip_repl = false;
|
|
bool skip_wait = false;
|
|
bool found_main = false;
|
|
uint8_t next_code_options = 0;
|
|
// Collects stickiness bits that apply in the current situation.
|
|
uint8_t next_code_stickiness_situation = SUPERVISOR_NEXT_CODE_OPT_NEWLY_SET;
|
|
|
|
// Do the filesystem flush check before reload in case another write comes
|
|
// in while we're doing the flush.
|
|
if (safe_mode == NO_SAFE_MODE) {
|
|
stack_resize();
|
|
filesystem_flush();
|
|
}
|
|
if (safe_mode == NO_SAFE_MODE && !autoreload_pending()) {
|
|
static const char *const supported_filenames[] = STRING_LIST(
|
|
"code.txt", "code.py", "main.py", "main.txt");
|
|
#if CIRCUITPY_FULL_BUILD
|
|
static const char *const double_extension_filenames[] = STRING_LIST(
|
|
"code.txt.py", "code.py.txt", "code.txt.txt","code.py.py",
|
|
"main.txt.py", "main.py.txt", "main.txt.txt","main.py.py");
|
|
#endif
|
|
|
|
supervisor_allocation *heap = allocate_remaining_memory();
|
|
|
|
// Prepare the VM state. Includes an alarm check/reset for sleep.
|
|
start_mp(heap, first_run);
|
|
|
|
#if CIRCUITPY_USB
|
|
usb_setup_with_vm();
|
|
#endif
|
|
|
|
// Check if a different run file has been allocated
|
|
if (next_code_allocation) {
|
|
((next_code_info_t *)next_code_allocation->ptr)->options &= ~SUPERVISOR_NEXT_CODE_OPT_NEWLY_SET;
|
|
next_code_options = ((next_code_info_t *)next_code_allocation->ptr)->options;
|
|
if (((next_code_info_t *)next_code_allocation->ptr)->filename[0] != '\0') {
|
|
const char *next_list[] = {((next_code_info_t *)next_code_allocation->ptr)->filename, ""};
|
|
// This is where the user's python code is actually executed:
|
|
found_main = maybe_run_list(next_list, &result);
|
|
if (!found_main) {
|
|
serial_write(((next_code_info_t *)next_code_allocation->ptr)->filename);
|
|
serial_write_compressed(translate(" not found.\n"));
|
|
}
|
|
}
|
|
}
|
|
// Otherwise, default to the standard list of filenames
|
|
if (!found_main) {
|
|
// This is where the user's python code is actually executed:
|
|
found_main = maybe_run_list(supported_filenames, &result);
|
|
// If that didn't work, double check the extensions
|
|
#if CIRCUITPY_FULL_BUILD
|
|
if (!found_main) {
|
|
found_main = maybe_run_list(double_extension_filenames, &result);
|
|
if (found_main) {
|
|
serial_write_compressed(translate("WARNING: Your code filename has two extensions\n"));
|
|
}
|
|
}
|
|
#else
|
|
(void)found_main;
|
|
#endif
|
|
}
|
|
|
|
// Print done before resetting everything so that we get the message over
|
|
// BLE before it is reset and we have a delay before reconnect.
|
|
if ((result.return_code & PYEXEC_RELOAD) && supervisor_get_run_reason() == RUN_REASON_AUTO_RELOAD) {
|
|
serial_write_compressed(translate("\nCode stopped by auto-reload. Reloading soon.\n"));
|
|
} else {
|
|
serial_write_compressed(translate("\nCode done running.\n"));
|
|
}
|
|
|
|
|
|
// Finished executing python code. Cleanup includes filesystem flush and a board reset.
|
|
cleanup_after_vm(heap, result.exception);
|
|
|
|
// If a new next code file was set, that is a reason to keep it (obviously). Stuff this into
|
|
// the options because it can be treated like any other reason-for-stickiness bit. The
|
|
// source is different though: it comes from the options that will apply to the next run,
|
|
// while the rest of next_code_options is what applied to this run.
|
|
if (next_code_allocation != NULL &&
|
|
(((next_code_info_t *)next_code_allocation->ptr)->options & SUPERVISOR_NEXT_CODE_OPT_NEWLY_SET)) {
|
|
next_code_options |= SUPERVISOR_NEXT_CODE_OPT_NEWLY_SET;
|
|
}
|
|
|
|
if (result.return_code & PYEXEC_RELOAD) {
|
|
next_code_stickiness_situation |= SUPERVISOR_NEXT_CODE_OPT_STICKY_ON_RELOAD;
|
|
// Reload immediately unless the reload is due to autoreload. In that
|
|
// case, we wait below to see if any other writes occur.
|
|
if (supervisor_get_run_reason() != RUN_REASON_AUTO_RELOAD) {
|
|
skip_repl = true;
|
|
skip_wait = true;
|
|
}
|
|
} else if (result.return_code == 0) {
|
|
next_code_stickiness_situation |= SUPERVISOR_NEXT_CODE_OPT_STICKY_ON_SUCCESS;
|
|
if (next_code_options & SUPERVISOR_NEXT_CODE_OPT_RELOAD_ON_SUCCESS) {
|
|
skip_repl = true;
|
|
skip_wait = true;
|
|
}
|
|
} else {
|
|
next_code_stickiness_situation |= SUPERVISOR_NEXT_CODE_OPT_STICKY_ON_ERROR;
|
|
// Deep sleep cannot be skipped
|
|
// TODO: settings in deep sleep should persist, using a new sleep memory API
|
|
if (next_code_options & SUPERVISOR_NEXT_CODE_OPT_RELOAD_ON_ERROR
|
|
&& !(result.return_code & PYEXEC_DEEP_SLEEP)) {
|
|
skip_repl = true;
|
|
skip_wait = true;
|
|
}
|
|
}
|
|
if (result.return_code & PYEXEC_FORCED_EXIT) {
|
|
skip_repl = false;
|
|
skip_wait = true;
|
|
}
|
|
}
|
|
|
|
// Program has finished running.
|
|
bool printed_press_any_key = false;
|
|
#if CIRCUITPY_DISPLAYIO
|
|
size_t time_to_epaper_refresh = 1;
|
|
#endif
|
|
|
|
// Setup LED blinks.
|
|
#if CIRCUITPY_STATUS_LED
|
|
uint32_t color;
|
|
uint8_t blink_count;
|
|
bool led_active = false;
|
|
#if CIRCUITPY_ALARM
|
|
if (result.return_code & PYEXEC_DEEP_SLEEP) {
|
|
color = BLACK;
|
|
blink_count = 0;
|
|
} else
|
|
#endif
|
|
if (result.return_code != PYEXEC_EXCEPTION) {
|
|
if (safe_mode == NO_SAFE_MODE) {
|
|
color = ALL_DONE;
|
|
blink_count = ALL_DONE_BLINKS;
|
|
} else {
|
|
color = SAFE_MODE;
|
|
blink_count = SAFE_MODE_BLINKS;
|
|
}
|
|
} else {
|
|
color = EXCEPTION;
|
|
blink_count = EXCEPTION_BLINKS;
|
|
}
|
|
size_t pattern_start = supervisor_ticks_ms32();
|
|
size_t single_blink_time = (OFF_ON_RATIO + 1) * BLINK_TIME_MS;
|
|
size_t blink_time = single_blink_time * blink_count;
|
|
size_t total_time = blink_time + LED_SLEEP_TIME_MS;
|
|
#endif
|
|
|
|
// This loop is waits after code completes. It waits for fake sleeps to
|
|
// finish, user input or autoreloads.
|
|
#if CIRCUITPY_ALARM
|
|
bool fake_sleeping = false;
|
|
#endif
|
|
while (!skip_wait) {
|
|
RUN_BACKGROUND_TASKS;
|
|
|
|
// If a reload was requested by the supervisor or autoreload, return.
|
|
if (autoreload_ready()) {
|
|
next_code_stickiness_situation |= SUPERVISOR_NEXT_CODE_OPT_STICKY_ON_RELOAD;
|
|
// Should the STICKY_ON_SUCCESS and STICKY_ON_ERROR bits be cleared in
|
|
// next_code_stickiness_situation? I can see arguments either way, but I'm deciding
|
|
// "no" for now, mainly because it's a bit less code. At this point, we have both a
|
|
// success or error and a reload, so let's have both of the respective options take
|
|
// effect (in OR combination).
|
|
skip_repl = true;
|
|
// We're kicking off the autoreload process so reset now. If any
|
|
// other reloads trigger after this, then we'll want another wait
|
|
// period.
|
|
autoreload_reset();
|
|
break;
|
|
}
|
|
|
|
// If interrupted by keyboard, return
|
|
if (serial_connected() && serial_bytes_available()) {
|
|
// Skip REPL if reload was requested.
|
|
skip_repl = serial_read() == CHAR_CTRL_D;
|
|
if (skip_repl) {
|
|
supervisor_set_run_reason(RUN_REASON_REPL_RELOAD);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Check for a deep sleep alarm and restart the VM. This can happen if
|
|
// an alarm alerts faster than our USB delay or if we pretended to deep
|
|
// sleep.
|
|
#if CIRCUITPY_ALARM
|
|
if (fake_sleeping && common_hal_alarm_woken_from_sleep()) {
|
|
serial_write_compressed(translate("Woken up by alarm.\n"));
|
|
supervisor_set_run_reason(RUN_REASON_STARTUP);
|
|
skip_repl = true;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
// If messages haven't been printed yet, print them
|
|
if (!printed_press_any_key && serial_connected() && !autoreload_pending()) {
|
|
if (!serial_connected_at_start) {
|
|
print_code_py_status_message(safe_mode);
|
|
}
|
|
|
|
if (!printed_safe_mode_message) {
|
|
print_safe_mode_message(safe_mode);
|
|
printed_safe_mode_message = true;
|
|
}
|
|
serial_write("\r\n");
|
|
serial_write_compressed(translate("Press any key to enter the REPL. Use CTRL-D to reload.\n"));
|
|
printed_press_any_key = true;
|
|
}
|
|
if (!serial_connected()) {
|
|
serial_connected_at_start = false;
|
|
printed_press_any_key = false;
|
|
}
|
|
|
|
// Sleep until our next interrupt.
|
|
#if CIRCUITPY_ALARM
|
|
if (result.return_code & PYEXEC_DEEP_SLEEP) {
|
|
const bool awoke_from_true_deep_sleep =
|
|
common_hal_mcu_processor_get_reset_reason() == RESET_REASON_DEEP_SLEEP_ALARM;
|
|
|
|
if (fake_sleeping) {
|
|
// This waits until a pretend deep sleep alarm occurs. They are set
|
|
// during common_hal_alarm_set_deep_sleep_alarms. On some platforms
|
|
// it may also return due to another interrupt, that's why we check
|
|
// for deep sleep alarms above. If it wasn't a deep sleep alarm,
|
|
// then we'll idle here again.
|
|
common_hal_alarm_pretending_deep_sleep();
|
|
}
|
|
// The first time we go into a deep sleep, make sure we have been awake long enough
|
|
// for USB to connect (enumeration delay), or for the BLE workflow to start.
|
|
// We wait CIRCUITPY_WORKFLOW_CONNECTION_SLEEP_DELAY seconds after a restart.
|
|
// But if we woke up from a real deep sleep, don't wait for connection. The user will need to
|
|
// do a hard reset to get out of the real deep sleep.
|
|
else if (awoke_from_true_deep_sleep ||
|
|
port_get_raw_ticks(NULL) > CIRCUITPY_WORKFLOW_CONNECTION_SLEEP_DELAY * 1024) {
|
|
// OK to start sleeping, real or fake.
|
|
status_led_deinit();
|
|
deinit_rxtx_leds();
|
|
board_deinit();
|
|
|
|
// Continue with true deep sleep even if workflow is available.
|
|
if (awoke_from_true_deep_sleep || !supervisor_workflow_active()) {
|
|
// Enter true deep sleep. When we wake up we'll be back at the
|
|
// top of main(), not in this loop.
|
|
common_hal_alarm_enter_deep_sleep();
|
|
// Does not return.
|
|
} else {
|
|
serial_write_compressed(
|
|
translate("Pretending to deep sleep until alarm, CTRL-C or file write.\n"));
|
|
fake_sleeping = true;
|
|
}
|
|
} else {
|
|
// Loop while checking the time. We can't idle because we don't want to override a
|
|
// time alarm set for the deep sleep.
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
// Refresh the ePaper display if we have one. That way it'll show an error message.
|
|
#if CIRCUITPY_DISPLAYIO
|
|
if (time_to_epaper_refresh > 0) {
|
|
time_to_epaper_refresh = maybe_refresh_epaperdisplay();
|
|
}
|
|
|
|
#if !CIRCUITPY_STATUS_LED
|
|
port_interrupt_after_ticks(time_to_epaper_refresh);
|
|
#endif
|
|
#endif
|
|
|
|
#if CIRCUITPY_STATUS_LED
|
|
uint32_t tick_diff = supervisor_ticks_ms32() - pattern_start;
|
|
|
|
// By default, don't sleep.
|
|
size_t time_to_next_change = 0;
|
|
if (tick_diff < blink_time) {
|
|
uint32_t blink_diff = tick_diff % (single_blink_time);
|
|
if (blink_diff >= BLINK_TIME_MS) {
|
|
if (led_active) {
|
|
new_status_color(BLACK);
|
|
status_led_deinit();
|
|
led_active = false;
|
|
}
|
|
time_to_next_change = single_blink_time - blink_diff;
|
|
} else {
|
|
if (!led_active) {
|
|
status_led_init();
|
|
new_status_color(color);
|
|
led_active = true;
|
|
}
|
|
time_to_next_change = BLINK_TIME_MS - blink_diff;
|
|
}
|
|
} else if (tick_diff > total_time) {
|
|
pattern_start = supervisor_ticks_ms32();
|
|
} else {
|
|
if (led_active) {
|
|
new_status_color(BLACK);
|
|
status_led_deinit();
|
|
led_active = false;
|
|
}
|
|
time_to_next_change = total_time - tick_diff;
|
|
}
|
|
#if CIRCUITPY_DISPLAYIO
|
|
if (time_to_epaper_refresh > 0 && time_to_next_change > 0) {
|
|
time_to_next_change = MIN(time_to_next_change, time_to_epaper_refresh);
|
|
}
|
|
#endif
|
|
|
|
// time_to_next_change is in ms and ticks are slightly shorter so
|
|
// we'll undersleep just a little. It shouldn't matter.
|
|
port_interrupt_after_ticks(time_to_next_change);
|
|
#endif
|
|
port_idle_until_interrupt();
|
|
}
|
|
}
|
|
|
|
// Done waiting, start the board back up.
|
|
|
|
// We delay resetting BLE until after the wait in case we're transferring
|
|
// more files over.
|
|
#if CIRCUITPY_BLEIO
|
|
bleio_reset();
|
|
#endif
|
|
|
|
// free code allocation if unused
|
|
if ((next_code_options & next_code_stickiness_situation) == 0) {
|
|
free_memory(next_code_allocation);
|
|
next_code_allocation = NULL;
|
|
}
|
|
|
|
#if CIRCUITPY_STATUS_LED
|
|
if (led_active) {
|
|
new_status_color(BLACK);
|
|
status_led_deinit();
|
|
}
|
|
#endif
|
|
|
|
#if CIRCUITPY_ALARM
|
|
if (fake_sleeping) {
|
|
board_init();
|
|
// Pretend that the next run is the first run, as if we were reset.
|
|
*simulate_reset = true;
|
|
}
|
|
#endif
|
|
|
|
return skip_repl;
|
|
}
|
|
|
|
vstr_t *boot_output;
|
|
|
|
STATIC void __attribute__ ((noinline)) run_boot_py(safe_mode_t safe_mode) {
|
|
// If not in safe mode, run boot before initing USB and capture output in a file.
|
|
|
|
// There is USB setup to do even if boot.py is not actually run.
|
|
const bool ok_to_run = filesystem_present()
|
|
&& safe_mode == NO_SAFE_MODE
|
|
&& MP_STATE_VM(vfs_mount_table) != NULL;
|
|
|
|
static const char *const boot_py_filenames[] = STRING_LIST("boot.py", "boot.txt");
|
|
|
|
// Do USB setup even if boot.py is not run.
|
|
|
|
supervisor_allocation *heap = allocate_remaining_memory();
|
|
|
|
// true means this is the first set of VM's after a hard reset.
|
|
start_mp(heap, true);
|
|
|
|
#if CIRCUITPY_USB
|
|
// Set up default USB values after boot.py VM starts but before running boot.py.
|
|
usb_set_defaults();
|
|
#endif
|
|
|
|
pyexec_result_t result = {0, MP_OBJ_NULL, 0};
|
|
|
|
if (ok_to_run) {
|
|
#ifdef CIRCUITPY_BOOT_OUTPUT_FILE
|
|
vstr_t boot_text;
|
|
vstr_init(&boot_text, 512);
|
|
boot_output = &boot_text;
|
|
#endif
|
|
|
|
// Write version info
|
|
mp_printf(&mp_plat_print, "%s\nBoard ID:%s\n", MICROPY_FULL_VERSION_INFO, CIRCUITPY_BOARD_ID);
|
|
|
|
bool found_boot = maybe_run_list(boot_py_filenames, &result);
|
|
(void)found_boot;
|
|
|
|
|
|
#ifdef CIRCUITPY_BOOT_OUTPUT_FILE
|
|
// Get the base filesystem.
|
|
fs_user_mount_t *vfs = (fs_user_mount_t *)MP_STATE_VM(vfs_mount_table)->obj;
|
|
FATFS *fs = &vfs->fatfs;
|
|
|
|
boot_output = NULL;
|
|
bool write_boot_output = true;
|
|
FIL boot_output_file;
|
|
if (f_open(fs, &boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_READ) == FR_OK) {
|
|
char *file_contents = m_new(char, boot_text.alloc);
|
|
UINT chars_read;
|
|
if (f_read(&boot_output_file, file_contents, 1 + boot_text.len, &chars_read) == FR_OK) {
|
|
write_boot_output =
|
|
(chars_read != boot_text.len) || (memcmp(boot_text.buf, file_contents, chars_read) != 0);
|
|
}
|
|
// no need to f_close the file
|
|
}
|
|
|
|
if (write_boot_output) {
|
|
// Wait 1 second before opening CIRCUITPY_BOOT_OUTPUT_FILE for write,
|
|
// in case power is momentary or will fail shortly due to, say a low, battery.
|
|
mp_hal_delay_ms(1000);
|
|
|
|
// USB isn't up, so we can write the file.
|
|
// operating at the oofatfs (f_open) layer means the usb concurrent write permission
|
|
// is not even checked!
|
|
f_open(fs, &boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_WRITE | FA_CREATE_ALWAYS);
|
|
UINT chars_written;
|
|
f_write(&boot_output_file, boot_text.buf, boot_text.len, &chars_written);
|
|
f_close(&boot_output_file);
|
|
filesystem_flush();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if CIRCUITPY_USB
|
|
// Some data needs to be carried over from the USB settings in boot.py
|
|
// to the next VM, while the heap is still available.
|
|
// Its size can vary, so save it temporarily on the stack,
|
|
// and then when the heap goes away, copy it in into a
|
|
// storage_allocation.
|
|
size_t size = usb_boot_py_data_size();
|
|
uint8_t usb_boot_py_data[size];
|
|
usb_get_boot_py_data(usb_boot_py_data, size);
|
|
#endif
|
|
|
|
cleanup_after_vm(heap, result.exception);
|
|
|
|
#if CIRCUITPY_USB
|
|
// Now give back the data we saved from the heap going away.
|
|
usb_return_boot_py_data(usb_boot_py_data, size);
|
|
#endif
|
|
}
|
|
|
|
STATIC int run_repl(bool first_run) {
|
|
int exit_code = PYEXEC_FORCED_EXIT;
|
|
stack_resize();
|
|
filesystem_flush();
|
|
supervisor_allocation *heap = allocate_remaining_memory();
|
|
start_mp(heap, first_run);
|
|
|
|
#if CIRCUITPY_USB
|
|
usb_setup_with_vm();
|
|
#endif
|
|
|
|
autoreload_suspend(AUTORELOAD_SUSPEND_REPL);
|
|
|
|
// Set the status LED to the REPL color before running the REPL. For
|
|
// NeoPixels and DotStars this will be sticky but for PWM or single LED it
|
|
// won't. This simplifies pin sharing because they won't be in use when
|
|
// actually in the REPL.
|
|
#if CIRCUITPY_STATUS_LED
|
|
status_led_init();
|
|
new_status_color(REPL_RUNNING);
|
|
status_led_deinit();
|
|
#endif
|
|
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
|
|
exit_code = pyexec_raw_repl();
|
|
} else {
|
|
exit_code = pyexec_friendly_repl();
|
|
}
|
|
#if CIRCUITPY_ATEXIT
|
|
pyexec_result_t result;
|
|
shared_module_atexit_execute(&result);
|
|
if (result.return_code == PYEXEC_DEEP_SLEEP) {
|
|
exit_code = PYEXEC_DEEP_SLEEP;
|
|
}
|
|
#endif
|
|
cleanup_after_vm(heap, MP_OBJ_SENTINEL);
|
|
#if CIRCUITPY_STATUS_LED
|
|
status_led_init();
|
|
new_status_color(BLACK);
|
|
status_led_deinit();
|
|
#endif
|
|
|
|
autoreload_resume(AUTORELOAD_SUSPEND_REPL);
|
|
return exit_code;
|
|
}
|
|
|
|
int __attribute__((used)) main(void) {
|
|
// initialise the cpu and peripherals
|
|
safe_mode_t safe_mode = port_init();
|
|
|
|
// Turn on RX and TX LEDs if we have them.
|
|
init_rxtx_leds();
|
|
|
|
#if CIRCUITPY_BOOT_COUNTER
|
|
// Increment counter before possibly entering safe mode
|
|
common_hal_nvm_bytearray_get_bytes(&common_hal_mcu_nvm_obj,0,1,&value_out);
|
|
++value_out;
|
|
common_hal_nvm_bytearray_set_bytes(&common_hal_mcu_nvm_obj,0,&value_out,1);
|
|
#endif
|
|
|
|
// Wait briefly to give a reset window where we'll enter safe mode after the reset.
|
|
if (safe_mode == NO_SAFE_MODE) {
|
|
safe_mode = wait_for_safe_mode_reset();
|
|
}
|
|
|
|
stack_init();
|
|
|
|
#if CIRCUITPY_BLEIO
|
|
// Early init so that a reset press can cause BLE public advertising.
|
|
supervisor_bluetooth_init();
|
|
#endif
|
|
|
|
// Start the debug serial
|
|
serial_early_init();
|
|
|
|
#if !INTERNAL_FLASH_FILESYSTEM
|
|
// Set up anything that might need to get done before we try to use SPI flash
|
|
// This is needed for some boards where flash relies on GPIO setup to work
|
|
external_flash_setup();
|
|
#endif
|
|
|
|
// Create a new filesystem only if we're not in a safe mode.
|
|
// A power brownout here could make it appear as if there's
|
|
// no SPI flash filesystem, and we might erase the existing one.
|
|
|
|
// Check whether CIRCUITPY is available. No need to reset to get safe mode
|
|
// since we haven't run user code yet.
|
|
if (!filesystem_init(safe_mode == NO_SAFE_MODE, false)) {
|
|
safe_mode = NO_CIRCUITPY;
|
|
}
|
|
|
|
// displays init after filesystem, since they could share the flash SPI
|
|
board_init();
|
|
|
|
// Reset everything and prep MicroPython to run boot.py.
|
|
reset_port();
|
|
// Port-independent devices, like CIRCUITPY_BLEIO_HCI.
|
|
reset_devices();
|
|
reset_board();
|
|
|
|
// This is first time we are running CircuitPython after a reset or power-up.
|
|
supervisor_set_run_reason(RUN_REASON_STARTUP);
|
|
|
|
// If not in safe mode turn on autoreload by default but before boot.py in case it wants to change it.
|
|
if (safe_mode == NO_SAFE_MODE) {
|
|
autoreload_enable();
|
|
}
|
|
|
|
// By default our internal flash is readonly to local python code and
|
|
// writable over USB. Set it here so that boot.py can change it.
|
|
filesystem_set_internal_concurrent_write_protection(true);
|
|
filesystem_set_internal_writable_by_usb(CIRCUITPY_USB == 1);
|
|
|
|
run_boot_py(safe_mode);
|
|
|
|
supervisor_workflow_start();
|
|
|
|
// Boot script is finished, so now go into REPL or run code.py.
|
|
int exit_code = PYEXEC_FORCED_EXIT;
|
|
bool skip_repl = true;
|
|
bool first_run = true;
|
|
bool simulate_reset;
|
|
for (;;) {
|
|
simulate_reset = false;
|
|
if (!skip_repl) {
|
|
exit_code = run_repl(first_run);
|
|
supervisor_set_run_reason(RUN_REASON_REPL_RELOAD);
|
|
}
|
|
if (exit_code == PYEXEC_FORCED_EXIT) {
|
|
if (!first_run) {
|
|
serial_write_compressed(translate("soft reboot\n"));
|
|
}
|
|
if (pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
|
|
skip_repl = run_code_py(safe_mode, first_run, &simulate_reset);
|
|
} else {
|
|
skip_repl = false;
|
|
}
|
|
} else if (exit_code != 0) {
|
|
break;
|
|
}
|
|
|
|
// Either the REPL or code.py has run and finished.
|
|
// If code.py did a fake deep sleep, pretend that we are running code.py for
|
|
// the first time after a hard reset. This will preserve any alarm information.
|
|
first_run = simulate_reset;
|
|
}
|
|
mp_deinit();
|
|
return 0;
|
|
}
|
|
|
|
void gc_collect(void) {
|
|
gc_collect_start();
|
|
|
|
mp_uint_t regs[10];
|
|
mp_uint_t sp = cpu_get_regs_and_sp(regs);
|
|
|
|
// This collects root pointers from the VFS mount table. Some of them may
|
|
// have lost their references in the VM even though they are mounted.
|
|
gc_collect_root((void **)&MP_STATE_VM(vfs_mount_table), sizeof(mp_vfs_mount_t) / sizeof(mp_uint_t));
|
|
|
|
background_callback_gc_collect();
|
|
|
|
#if CIRCUITPY_ALARM
|
|
common_hal_alarm_gc_collect();
|
|
#endif
|
|
|
|
#if CIRCUITPY_ATEXIT
|
|
atexit_gc_collect();
|
|
#endif
|
|
|
|
#if CIRCUITPY_DISPLAYIO
|
|
displayio_gc_collect();
|
|
#endif
|
|
|
|
#if CIRCUITPY_BLEIO
|
|
common_hal_bleio_gc_collect();
|
|
#endif
|
|
|
|
#if CIRCUITPY_USB_HID
|
|
usb_hid_gc_collect();
|
|
#endif
|
|
|
|
#if CIRCUITPY_WIFI
|
|
common_hal_wifi_gc_collect();
|
|
#endif
|
|
|
|
// This naively collects all object references from an approximate stack
|
|
// range.
|
|
gc_collect_root((void **)sp, ((mp_uint_t)port_stack_get_top() - sp) / sizeof(mp_uint_t));
|
|
gc_collect_end();
|
|
}
|
|
|
|
void NORETURN nlr_jump_fail(void *val) {
|
|
reset_into_safe_mode(MICROPY_NLR_JUMP_FAIL);
|
|
while (true) {
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static void NORETURN __fatal_error(const char *msg) {
|
|
reset_into_safe_mode(MICROPY_FATAL_ERROR);
|
|
while (true) {
|
|
}
|
|
}
|
|
|
|
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
|
|
mp_printf(&mp_plat_print, "Assertion '%s' failed, at file %s:%d\n", expr, file, line);
|
|
__fatal_error("Assertion failed");
|
|
}
|
|
#endif
|