circuitpython/main.c
2021-04-23 00:18:05 -04:00

686 lines
22 KiB
C
Executable File

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016-2017 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <string.h>
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"
#include "genhdr/mpversion.h"
#include "py/nlr.h"
#include "py/compile.h"
#include "py/frozenmod.h"
#include "py/mphal.h"
#include "py/runtime.h"
#include "py/repl.h"
#include "py/gc.h"
#include "py/stackctrl.h"
#include "lib/mp-readline/readline.h"
#include "lib/utils/pyexec.h"
#include "background.h"
#include "mpconfigboard.h"
#include "supervisor/background_callback.h"
#include "supervisor/board.h"
#include "supervisor/cpu.h"
#include "supervisor/filesystem.h"
#include "supervisor/memory.h"
#include "supervisor/port.h"
#include "supervisor/serial.h"
#include "supervisor/shared/autoreload.h"
#include "supervisor/shared/rgb_led_status.h"
#include "supervisor/shared/safe_mode.h"
#include "supervisor/shared/stack.h"
#include "supervisor/shared/status_leds.h"
#include "supervisor/shared/translate.h"
#include "supervisor/shared/workflow.h"
#include "supervisor/usb.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/microcontroller/Processor.h"
#include "shared-bindings/supervisor/Runtime.h"
#if CIRCUITPY_ALARM
#include "shared-bindings/alarm/__init__.h"
#endif
#if CIRCUITPY_BLEIO
#include "shared-bindings/_bleio/__init__.h"
#include "supervisor/shared/bluetooth.h"
#endif
#if CIRCUITPY_BOARD
#include "shared-module/board/__init__.h"
#endif
#if CIRCUITPY_CANIO
#include "common-hal/canio/CAN.h"
#endif
#if CIRCUITPY_DISPLAYIO
#include "shared-module/displayio/__init__.h"
#endif
#if CIRCUITPY_MEMORYMONITOR
#include "shared-module/memorymonitor/__init__.h"
#endif
#if CIRCUITPY_NETWORK
#include "shared-module/network/__init__.h"
#endif
#if CIRCUITPY_STORAGE
#include "shared-module/storage/__init__.h"
#endif
#if CIRCUITPY_USB_CDC
#include "shared-module/usb_cdc/__init__.h"
#endif
#if CIRCUITPY_USB_MIDI
#include "shared-module/usb_midi/__init__.h"
#endif
#if CIRCUITPY_WIFI
#include "shared-bindings/wifi/__init__.h"
#endif
#if MICROPY_ENABLE_PYSTACK
static size_t PLACE_IN_DTCM_BSS(_pystack[CIRCUITPY_PYSTACK_SIZE / sizeof(size_t)]);
#endif
static void reset_devices(void) {
#if CIRCUITPY_BLEIO_HCI
bleio_reset();
#endif
}
STATIC void start_mp(supervisor_allocation* heap) {
reset_status_led();
autoreload_stop();
supervisor_workflow_reset();
// Stack limit should be less than real stack size, so we have a chance
// to recover from limit hit. (Limit is measured in bytes.)
mp_stack_ctrl_init();
if (stack_get_bottom() != NULL) {
mp_stack_set_limit(stack_get_length() - 1024);
}
#if MICROPY_MAX_STACK_USAGE
// _ezero (same as _ebss) is an int, so start 4 bytes above it.
if (stack_get_bottom() != NULL) {
mp_stack_set_bottom(stack_get_bottom());
mp_stack_fill_with_sentinel();
}
#endif
// Sync the file systems in case any used RAM from the GC to cache. As soon
// as we re-init the GC all bets are off on the cache.
filesystem_flush();
// Clear the readline history. It references the heap we're about to destroy.
readline_init0();
#if MICROPY_ENABLE_PYSTACK
mp_pystack_init(_pystack, _pystack + (sizeof(_pystack) / sizeof(size_t)));
#endif
#if MICROPY_ENABLE_GC
gc_init(heap->ptr, heap->ptr + get_allocation_length(heap) / 4);
#endif
mp_init();
mp_obj_list_init(mp_sys_path, 0);
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_));
// Frozen modules are in their own pseudo-dir, e.g., ".frozen".
// Prioritize .frozen over /lib.
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_FROZEN_FAKE_DIR_QSTR));
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_lib));
mp_obj_list_init(mp_sys_argv, 0);
#if CIRCUITPY_ALARM
// Record which alarm woke us up, if any. An object may be created so the heap must be functional.
shared_alarm_save_wake_alarm();
// Reset alarm module only after we retrieved the wakeup alarm.
alarm_reset();
#endif
#if CIRCUITPY_NETWORK
network_module_init();
#endif
// Do before boot.py.
#if CIRCUITPY_STORAGE
storage_init();
#endif
#if CIRCUITPY_USB_CDC
usb_cdc_init();
#endif
#if CIRCUITPY_USB_MIDI
usb_midi_init();
#endif
}
STATIC void stop_mp(void) {
#if CIRCUITPY_NETWORK
network_module_deinit();
#endif
#if MICROPY_VFS
mp_vfs_mount_t *vfs = MP_STATE_VM(vfs_mount_table);
// Unmount all heap allocated vfs mounts.
while (gc_nbytes(vfs) > 0) {
vfs = vfs->next;
}
MP_STATE_VM(vfs_mount_table) = vfs;
MP_STATE_VM(vfs_cur) = vfs;
#endif
background_callback_reset();
usb_background();
gc_deinit();
}
#define STRING_LIST(...) {__VA_ARGS__, ""}
// Look for the first file that exists in the list of filenames, using mp_import_stat().
// Return its index. If no file found, return -1.
STATIC const char* first_existing_file_in_list(const char * const * filenames) {
for (int i = 0; filenames[i] != (char*)""; i++) {
mp_import_stat_t stat = mp_import_stat(filenames[i]);
if (stat == MP_IMPORT_STAT_FILE) {
return filenames[i];
}
}
return NULL;
}
STATIC bool maybe_run_list(const char * const * filenames, pyexec_result_t* exec_result) {
const char* filename = first_existing_file_in_list(filenames);
if (filename == NULL) {
return false;
}
mp_hal_stdout_tx_str(filename);
const compressed_string_t* compressed = translate(" output:\n");
char decompressed[decompress_length(compressed)];
decompress(compressed, decompressed);
mp_hal_stdout_tx_str(decompressed);
pyexec_file(filename, exec_result);
return true;
}
STATIC void cleanup_after_vm(supervisor_allocation* heap) {
// Reset port-independent devices, like CIRCUITPY_BLEIO_HCI.
reset_devices();
// Turn off the display and flush the filesystem before the heap disappears.
#if CIRCUITPY_DISPLAYIO
reset_displays();
#endif
#if CIRCUITPY_MEMORYMONITOR
memorymonitor_reset();
#endif
filesystem_flush();
stop_mp();
free_memory(heap);
supervisor_move_memory();
#if CIRCUITPY_CANIO
common_hal_canio_reset();
#endif
// reset_board_busses() first because it may release pins from the never_reset state, so that
// reset_port() can reset them.
#if CIRCUITPY_BOARD
reset_board_busses();
#endif
reset_port();
reset_board();
reset_status_led();
}
STATIC void print_code_py_status_message(safe_mode_t safe_mode) {
if (autoreload_is_enabled()) {
serial_write_compressed(translate("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\n"));
} else {
serial_write_compressed(translate("Auto-reload is off.\n"));
}
if (safe_mode != NO_SAFE_MODE) {
serial_write_compressed(translate("Running in safe mode! "));
serial_write_compressed(translate("Not running saved code.\n"));
}
}
STATIC bool run_code_py(safe_mode_t safe_mode) {
bool serial_connected_at_start = serial_connected();
#if CIRCUITPY_AUTORELOAD_DELAY_MS > 0
serial_write("\n");
print_code_py_status_message(safe_mode);
print_safe_mode_message(safe_mode);
serial_write("\n");
#endif
pyexec_result_t result;
result.return_code = 0;
result.exception_type = NULL;
result.exception_line = 0;
bool found_main = false;
if (safe_mode == NO_SAFE_MODE) {
new_status_color(MAIN_RUNNING);
static const char * const supported_filenames[] = STRING_LIST(
"code.txt", "code.py", "main.py", "main.txt");
#if CIRCUITPY_FULL_BUILD
static const char * const double_extension_filenames[] = STRING_LIST(
"code.txt.py", "code.py.txt", "code.txt.txt","code.py.py",
"main.txt.py", "main.py.txt", "main.txt.txt","main.py.py");
#endif
stack_resize();
filesystem_flush();
supervisor_allocation* heap = allocate_remaining_memory();
start_mp(heap);
found_main = maybe_run_list(supported_filenames, &result);
#if CIRCUITPY_FULL_BUILD
if (!found_main){
found_main = maybe_run_list(double_extension_filenames, &result);
if (found_main) {
serial_write_compressed(translate("WARNING: Your code filename has two extensions\n"));
}
}
#endif
cleanup_after_vm(heap);
if (result.return_code & PYEXEC_FORCED_EXIT) {
return reload_requested;
}
if (reload_requested && result.return_code == PYEXEC_EXCEPTION) {
serial_write_compressed(translate("\nCode stopped by auto-reload.\n"));
} else {
serial_write_compressed(translate("\nCode done running.\n"));
}
}
// Program has finished running.
bool printed_press_any_key = false;
#if CIRCUITPY_DISPLAYIO
bool refreshed_epaper_display = false;
#endif
rgb_status_animation_t animation;
prep_rgb_status_animation(&result, found_main, safe_mode, &animation);
bool fake_sleeping = false;
while (true) {
RUN_BACKGROUND_TASKS;
if (reload_requested) {
#if CIRCUITPY_ALARM
if (fake_sleeping) {
board_init();
}
#endif
supervisor_set_run_reason(RUN_REASON_AUTO_RELOAD);
reload_requested = false;
return true;
}
if (serial_connected() && serial_bytes_available()) {
#if CIRCUITPY_ALARM
if (fake_sleeping) {
board_init();
}
#endif
// Skip REPL if reload was requested.
bool ctrl_d = serial_read() == CHAR_CTRL_D;
if (ctrl_d) {
supervisor_set_run_reason(RUN_REASON_REPL_RELOAD);
}
return ctrl_d;
}
// Check for a deep sleep alarm and restart the VM. This can happen if
// an alarm alerts faster than our USB delay or if we pretended to deep
// sleep.
#if CIRCUITPY_ALARM
if (fake_sleeping && common_hal_alarm_woken_from_sleep()) {
serial_write_compressed(translate("Woken up by alarm.\n"));
board_init();
supervisor_set_run_reason(RUN_REASON_STARTUP);
return true;
}
#endif
if (!printed_press_any_key && serial_connected()) {
if (!serial_connected_at_start) {
print_code_py_status_message(safe_mode);
}
print_safe_mode_message(safe_mode);
serial_write("\n");
serial_write_compressed(translate("Press any key to enter the REPL. Use CTRL-D to reload.\n"));
printed_press_any_key = true;
}
if (!serial_connected()) {
serial_connected_at_start = false;
printed_press_any_key = false;
}
// Refresh the ePaper display if we have one. That way it'll show an error message.
#if CIRCUITPY_DISPLAYIO
// Don't refresh the display if we're about to deep sleep.
#if CIRCUITPY_ALARM
refreshed_epaper_display = refreshed_epaper_display || result.return_code & PYEXEC_DEEP_SLEEP;
#endif
if (!refreshed_epaper_display) {
refreshed_epaper_display = maybe_refresh_epaperdisplay();
}
#endif
// Sleep until our next interrupt.
#if CIRCUITPY_ALARM
if (result.return_code & PYEXEC_DEEP_SLEEP) {
// Make sure we have been awake long enough for USB to connect (enumeration delay).
int64_t connecting_delay_ticks = CIRCUITPY_USB_CONNECTED_SLEEP_DELAY * 1024 - port_get_raw_ticks(NULL);
// Until it's safe to decide whether we're real/fake sleeping, just run the RGB
if (connecting_delay_ticks < 0 && !fake_sleeping) {
fake_sleeping = true;
new_status_color(BLACK);
board_deinit();
if (!supervisor_workflow_active()) {
// Enter true deep sleep. When we wake up we'll be back at the
// top of main(), not in this loop.
common_hal_alarm_enter_deep_sleep();
// Does not return.
} else {
serial_write_compressed(translate("Pretending to deep sleep until alarm, CTRL-C or file write.\n"));
}
}
}
#endif
if (!fake_sleeping) {
tick_rgb_status_animation(&animation);
} else {
// This waits until a pretend deep sleep alarm occurs. They are set
// during common_hal_alarm_set_deep_sleep_alarms. On some platforms
// it may also return due to another interrupt, that's why we check
// for deep sleep alarms above. If it wasn't a deep sleep alarm,
// then we'll idle here again.
#if CIRCUITPY_ALARM
common_hal_alarm_pretending_deep_sleep();
#else
port_idle_until_interrupt();
#endif
}
}
}
FIL* boot_output_file;
STATIC void __attribute__ ((noinline)) run_boot_py(safe_mode_t safe_mode) {
// If not in safe mode, run boot before initing USB and capture output in a
// file.
if (filesystem_present() && safe_mode == NO_SAFE_MODE && MP_STATE_VM(vfs_mount_table) != NULL) {
static const char * const boot_py_filenames[] = STRING_LIST("settings.txt", "settings.py", "boot.py", "boot.txt");
new_status_color(BOOT_RUNNING);
#ifdef CIRCUITPY_BOOT_OUTPUT_FILE
FIL file_pointer;
boot_output_file = &file_pointer;
// Get the base filesystem.
FATFS *fs = &((fs_user_mount_t *) MP_STATE_VM(vfs_mount_table)->obj)->fatfs;
bool have_boot_py = first_existing_file_in_list(boot_py_filenames) != NULL;
bool skip_boot_output = false;
// If there's no boot.py file that might write some changing output,
// read the existing copy of CIRCUITPY_BOOT_OUTPUT_FILE and see if its contents
// match the version info we would print anyway. If so, skip writing CIRCUITPY_BOOT_OUTPUT_FILE.
// This saves wear and tear on the flash and also prevents filesystem damage if power is lost
// during the write, which may happen due to bobbling the power connector or weak power.
static const size_t NUM_CHARS_TO_COMPARE = 160;
if (!have_boot_py && f_open(fs, boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_READ) == FR_OK) {
char file_contents[NUM_CHARS_TO_COMPARE];
UINT chars_read = 0;
f_read(boot_output_file, file_contents, NUM_CHARS_TO_COMPARE, &chars_read);
f_close(boot_output_file);
skip_boot_output =
// + 2 accounts for \r\n.
chars_read == strlen(MICROPY_FULL_VERSION_INFO) + 2 &&
strncmp(file_contents, MICROPY_FULL_VERSION_INFO, strlen(MICROPY_FULL_VERSION_INFO)) == 0;
}
if (!skip_boot_output) {
// Wait 1.5 seconds before opening CIRCUITPY_BOOT_OUTPUT_FILE for write,
// in case power is momentary or will fail shortly due to, say a low, battery.
if (common_hal_mcu_processor_get_reset_reason() == RESET_REASON_POWER_ON) {
mp_hal_delay_ms(1500);
}
// USB isn't up, so we can write the file.
filesystem_set_internal_writable_by_usb(false);
f_open(fs, boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_WRITE | FA_CREATE_ALWAYS);
// Switch the filesystem back to non-writable by Python now instead of later,
// since boot.py might change it back to writable.
filesystem_set_internal_writable_by_usb(true);
// Write version info to boot_out.txt.
mp_hal_stdout_tx_str(MICROPY_FULL_VERSION_INFO);
mp_hal_stdout_tx_str("\r\n");
}
#endif
// TODO(tannewt): Allocate temporary space to hold custom usb descriptors.
filesystem_flush();
supervisor_allocation* heap = allocate_remaining_memory();
start_mp(heap);
// TODO(tannewt): Re-add support for flashing boot error output.
bool found_boot = maybe_run_list(boot_py_filenames, NULL);
(void) found_boot;
#ifdef CIRCUITPY_BOOT_OUTPUT_FILE
if (!skip_boot_output) {
f_close(boot_output_file);
filesystem_flush();
}
boot_output_file = NULL;
#endif
cleanup_after_vm(heap);
}
}
STATIC int run_repl(void) {
int exit_code = PYEXEC_FORCED_EXIT;
stack_resize();
filesystem_flush();
supervisor_allocation* heap = allocate_remaining_memory();
start_mp(heap);
autoreload_suspend();
new_status_color(REPL_RUNNING);
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
exit_code = pyexec_raw_repl();
} else {
exit_code = pyexec_friendly_repl();
}
cleanup_after_vm(heap);
autoreload_resume();
return exit_code;
}
int __attribute__((used)) main(void) {
// initialise the cpu and peripherals
safe_mode_t safe_mode = port_init();
// Turn on LEDs
init_status_leds();
rgb_led_status_init();
// Wait briefly to give a reset window where we'll enter safe mode after the reset.
if (safe_mode == NO_SAFE_MODE) {
safe_mode = wait_for_safe_mode_reset();
}
stack_init();
// Create a new filesystem only if we're not in a safe mode.
// A power brownout here could make it appear as if there's
// no SPI flash filesystem, and we might erase the existing one.
filesystem_init(safe_mode == NO_SAFE_MODE, false);
// displays init after filesystem, since they could share the flash SPI
board_init();
// Start the debug serial
serial_early_init();
// Reset everything and prep MicroPython to run boot.py.
reset_port();
// Port-independent devices, like CIRCUITPY_BLEIO_HCI.
reset_devices();
reset_board();
// This is first time we are running CircuitPython after a reset or power-up.
supervisor_set_run_reason(RUN_REASON_STARTUP);
// If not in safe mode turn on autoreload by default but before boot.py in case it wants to change it.
if (safe_mode == NO_SAFE_MODE) {
autoreload_enable();
}
// By default our internal flash is readonly to local python code and
// writable over USB. Set it here so that boot.py can change it.
filesystem_set_internal_concurrent_write_protection(true);
filesystem_set_internal_writable_by_usb(true);
run_boot_py(safe_mode);
// Start serial and HID after giving boot.py a chance to tweak behavior.
serial_init();
#if CIRCUITPY_BLEIO
supervisor_start_bluetooth();
#endif
// Boot script is finished, so now go into REPL/main mode.
int exit_code = PYEXEC_FORCED_EXIT;
bool skip_repl = true;
bool first_run = true;
for (;;) {
if (!skip_repl) {
exit_code = run_repl();
}
if (exit_code == PYEXEC_FORCED_EXIT) {
if (!first_run) {
serial_write_compressed(translate("soft reboot\n"));
}
first_run = false;
skip_repl = run_code_py(safe_mode);
} else if (exit_code != 0) {
break;
}
}
mp_deinit();
return 0;
}
void gc_collect(void) {
gc_collect_start();
mp_uint_t regs[10];
mp_uint_t sp = cpu_get_regs_and_sp(regs);
// This collects root pointers from the VFS mount table. Some of them may
// have lost their references in the VM even though they are mounted.
gc_collect_root((void**)&MP_STATE_VM(vfs_mount_table), sizeof(mp_vfs_mount_t) / sizeof(mp_uint_t));
background_callback_gc_collect();
#if CIRCUITPY_USB
usb_gc_collect();
#endif
#if CIRCUITPY_ALARM
common_hal_alarm_gc_collect();
#endif
#if CIRCUITPY_DISPLAYIO
displayio_gc_collect();
#endif
#if CIRCUITPY_BLEIO
common_hal_bleio_gc_collect();
#endif
#if CIRCUITPY_WIFI
common_hal_wifi_gc_collect();
#endif
// This naively collects all object references from an approximate stack
// range.
gc_collect_root((void**)sp, ((uint32_t)port_stack_get_top() - sp) / sizeof(uint32_t));
gc_collect_end();
}
void NORETURN nlr_jump_fail(void *val) {
reset_into_safe_mode(MICROPY_NLR_JUMP_FAIL);
while (true) {}
}
void NORETURN __fatal_error(const char *msg) {
reset_into_safe_mode(MICROPY_FATAL_ERROR);
while (true) {}
}
#ifndef NDEBUG
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
mp_printf(&mp_plat_print, "Assertion '%s' failed, at file %s:%d\n", expr, file, line);
__fatal_error("Assertion failed");
}
#endif